Lecture 17: Max-Flow & Min-Cut

Rafael Oliveira

University of Waterloo
Cheriton School of Computer Science
rafael.oliveira.teaching@gmail.com

November 9, 2023
Overview

- Ford-Fulkerson Recap
 - Algorithm
 - Running Time

- Max-Flow Min-Cut Theorem & Correctness of Ford-Fulkerson

- Acknowledgements
The residual graph is the object we will study to find augmenting paths.
Residual Graph

- The residual graph is the object we will study to find augmenting paths.
- Given $G(V, E, c)$ and $s \rightarrow t$ flow f on G, define the residual graph G_f as follows:
 - $V(G_f) = V(G)$
 - For each $(u, v) = e \in E$ add edges:
 - (u, v) to G_f with capacity $c(e) - f(e)$ (forward edges)
 - (v, u) to G_f with capacity $f(e)$ (backward edges)
Augmenting Path

An *augmenting path* with respect to a flow f is simply an $s \to t$ path\(^1\) in G_f

\(^1\)By path here we mean a simple path, and not a walk.
Augmenting Path

- An *augmenting path* with respect to a flow f is simply an $s \to t$ path\(^1\) in G_f
- Given augmenting path P in G_f, want to push *as much flow as possible* through it:
 \[
 \text{bottleneck}(P, f) := \text{minimum capacity of edge of } P \text{ in } G_f
 \]

\(^1\)By path here we mean a simple path, and not a walk.
Improving the Flow

- **Input:** flow f and an augmenting path P in G_f
- **Output:** improved flow f'

Let $b := \text{bottleneck}(P, f)$ and $f'(e) = f(e)$ for all $e \in E$

for each $e := (u, v) \in P$:
- If e forward edge: $f'(e) = f'(e) + b$
- If e backward edge: $f'(v, u) = f'(v, u) - b$ (decrease reversed edge)

return f'
Improving the Flow

- **Input:** flow f and an augmenting path P in G_f
- **Output:** improved flow f'

$\text{augment}(f, P):$
- Let $b := \text{bottleneck}(P, f)$ and $f'(e) = f(e)$ for all $e \in E$
- for each $e := (u, v) \in P$:
 - If e forward edge:
 $$f'(e) = f'(e) + b$$
 - If e backward edge:
 $$f'(v, u) = f'(v, u) - b$$ \hspace{1cm} (decrease reversed edge)
- return f'
Improving Flow

Lemma (Flow Improvement)

Let f be a flow in G with $f_{in}(s) = 0$ and P an augmenting path with respect to f. If f' is the output from $\text{augment}(f, P)$, then f' is a flow with

$$\text{value}(f') = \text{value}(f) + \text{bottleneck}(P, f)$$

and $f'_{in}(s) = 0$.

Let $b := \text{bottleneck}(P, f)$. Value of flow f' and f' in (s):

Value of f': by previous bullet, only forward edges out of s, thus:

$$\text{value}(f') = f'_{out}(s) = f_{out}(s) + b = \text{value}(f) + b$$
Lemma (Flow Improvement)

Let f be a flow in G with $f_{\text{in}}(s) = 0$ and P an augmenting path with respect to f. If f' is the output from $\text{augment}(f, P)$, then f' is a flow with

$$\text{value}(f') = \text{value}(f) + \text{bottleneck}(P, f)$$

and $f'_{\text{in}}(s) = 0$.

- To check that f' is a flow, need to check capacity constraint and flow conservation constraint.
Let \(f \) be a flow in \(G \) with \(f_{\text{in}}(s) = 0 \) and \(P \) an augmenting path with respect to \(f \). If \(f' \) is the output from \(\text{augment}(f, P) \), then \(f' \) is a flow with

\[
\text{value}(f') = \text{value}(f) + \text{bottleneck}(P, f)
\]

and \(f'_{\text{in}}(s) = 0 \).

- Let \(b := \text{bottleneck}(P, f) \).
- **Capacity constraint:** given \(e \in E(G_f) \), we have
 - \(e \) forward edge in \(G_f \), then
 \[
 f'(e) = f(e) + b \leq f(e) + (c(e) - f(e)) = c(e)
 \]
 - \(e := (u, v) \) backward edge in \(G_f \), then
 \[
 f'(v, u) = f(v, u) - b \leq f(v, u) \leq c(v, u)
 \]
 and
 \[
 f'(v, u) = f(v, u) - b \geq f(v, u) - f(v, u) \geq 0
 \]
Improving Flow

Lemma (Flow Improvement)

Let f be a flow in G with $f_{in}(s) = 0$ and P an augmenting path with respect to f. If f' is the output from $\text{augment}(f, P)$, then f' is a flow with

$$\text{value}(f') = \text{value}(f) + \text{bottleneck}(P, f)$$

and $f'_{in}(s) = 0$.

- Let $b := \text{bottleneck}(P, f)$.
- Flow Conservation: let $u \in V$ be a vertex.
 - if $u \notin P$ then flow in and out of u doesn’t change.
Improving Flow

Lemma (Flow Improvement)

Let f be a flow in G with $f_{\text{in}}(s) = 0$ and P an augmenting path with respect to f. If f' is the output from $\text{augment}(f, P)$, then f' is a flow with

$$\text{value}(f') = \text{value}(f) + \text{bottleneck}(P, f)$$

and $f'_{\text{in}}(s) = 0$.

- Let $b := \text{bottleneck}(P, f)$.
- **Flow Conservation:** let $u \in V$ be a vertex.
 - if $u \in P$, have 4 cases to analyze. Let $e_1 := (w, u)$ and $e_2 := (u, z)$ be the edges in P passing through u in G_f.
 - 1. e_1, e_2 forward edges: *both* incoming and outgoing flow *increase* by b
 - 2. e_1, e_2 backward edges: *both* incoming and outgoing flow *decrease* by b
 - 3. e_1 forward, e_2 backward: *both* incoming and outgoing flow *unchanged*
 - 4. e_1 backward, e_2 forward: *both* incoming and outgoing flow *unchanged*
Lemma (Flow Improvement)

Let \(f \) be a flow in \(G \) with \(f_{\text{in}}(s) = 0 \) and \(P \) an augmenting path with respect to \(f \). If \(f' \) is the output from \(\text{augment}(f, P) \), then \(f' \) is a flow with

\[
\text{value}(f') = \text{value}(f) + \text{bottleneck}(P, f)
\]

and \(f'_{\text{in}}(s) = 0 \).

- Let \(b := \text{bottleneck}(P, f) \).
- Value of flow \(f' \) and \(f'_{\text{in}}(s) \):
 - \(f_{\text{in}}(s) = 0 \Rightarrow \) no backward edges incident to \(s \) in \(G_f \)
 - \[
f'_{\text{in}}(s) = f_{\text{in}}(s) + 0 = f_{\text{in}}(s) = 0
\]
Improving Flow

Lemma (Flow Improvement)

Let \(f \) be a flow in \(G \) with \(f_{\text{in}}(s) = 0 \) and \(P \) an augmenting path with respect to \(f \). If \(f' \) is the output from \(\text{augment}(f, P) \), then \(f' \) is a flow with

\[
\text{value}(f') = \text{value}(f) + \text{bottleneck}(P, f)
\]

and \(f'_{\text{in}}(s) = 0 \).

- Let \(b := \text{bottleneck}(P, f) \).
- Value of flow \(f' \) and \(f'_{\text{in}}(s) \):
 - Value of \(f' \): by previous bullet, only forward edges out of \(s \), thus:

\[
\text{value}(f') = f'_{\text{out}}(s) = f_{\text{out}}(s) + b = \text{value}(f) + b
\]
Ford-Fulkerson Algorithm

Now that we know that augmenting paths can only improve our flow, we can describe Ford-Fulkerson, which simply applies the augmenting operation until we can no longer do it.

Ford-Fulkerson(G):

1. Initialize $f(e) = 0$ for all $e \in E$, and initialize G_f accordingly
2. While there is $s \rightarrow t$ path $P \in G_f$:
 - $f \leftarrow$ augment(f, P)
 - update G_f
3. return f

Use BFS to decide whether there exists $s \rightarrow t$ path in G_f, and take P to be the shortest path returned by the BFS, if exists
• Ford-Fulkerson Recap
 • Algorithm
 • Running Time

• Max-Flow Min-Cut Theorem & Correctness of Ford-Fulkerson

• Acknowledgements
Running Time Analysis

- Each iteration can be implemented in $O(n + m)$ time (runtime of BFS)
Running Time Analysis

- Each iteration can be implemented in $O(n + m)$ time (runtime of BFS).
- If all capacities are integral, then flow improvement lemma says that the value of our flow increases by at least 1 in each iteration.
Running Time Analysis

- Each iteration can be implemented in $O(n + m)$ time (runtime of BFS).
- If all capacities are integral, then flow improvement lemma says that the value of our flow increases by at least 1 in each iteration.
- If flow has value k, then runtime is

$$O(k \cdot (n + m))$$
Running Time Analysis

- Each iteration can be implemented in $O(n + m)$ time (runtime of BFS).
- If all capacities are integral, then flow improvement lemma says that the value of our flow increases by at least 1 in each iteration.
- If flow has value k, then runtime is $O(k \cdot (n + m))$.

For more details & variations on the algorithm we presented (and the proof by Edmonds-Karp), please see references. Also, if you liked flows and want to learn more, consider taking C&O’s Network Flows course.
Ford-Fulkerson Recap

- Algorithm
- Running Time

Max-Flow Min-Cut Theorem & Correctness of Ford-Fulkerson

Acknowledgements
Max-Flow Min-Cut Theorem

Theorem (Max-Flow Min-Cut Theorem)

The value of the maximum $s - t$ flow equals the minimum capacity among all cuts.

\[
\max_{f \text{ s-t flow}} \text{value}(f) = \min_{S \text{ is s-t cut}} C_{\text{out}}(S)
\]

- **Easy direction:** given any flow f and $s - t$ cut S, we have

\[
\text{value}(f) \leq C_{\text{out}}(S).
\]

- To prove the above, will prove following claim:

\[
f_{\text{out}}(s) - f_{\text{in}}(s) =: \text{value}(f) = f_{\text{out}}(S) - f_{\text{in}}(S)
\]
Proof of Claim 1

\[
\text{value}(f) = f_{\text{out}}(s) - f_{\text{in}}(s) \\
= \sum_{v \in S} (f_{\text{out}}(v) - f_{\text{in}}(v)) \\
= \sum_{v \in S} \left(\sum_{z \in N_{\text{out}}(v)} f(v, z) - \sum_{w \in N_{\text{in}}(v)} f(w, v) \right) \quad \text{(flow conservation)} \\
= \sum_{e \in \delta_{\text{out}}(S)} f(e) - \sum_{e \in \delta_{\text{in}}(S)} f(e) \quad \text{(definition)} \\
= f_{\text{out}}(S) - f_{\text{in}}(S) \quad \text{(cancellations)}
\]
Hard direction

Proposition

If f *is an* $s \to t$ *flow such that there is no* $s \to t$ *path in the residual graph* G_f, *then there is* $s - t$ *cut* S *such that* $\text{value}(f) = C_{out}(S)$.

Hard direction

Proposition

If f is an $s \rightarrow t$ flow such that there is no $s \rightarrow t$ path in the residual graph G_f, then there is $s-t$ cut S such that $\text{value}(f) = C_{out}(S)$.

- No $s \rightarrow t$ path in G_f, by BFS/DFS, can find the set of visited vertices in G_f starting from s.
 - Let S be this set. Then, no $s \rightarrow t$ path $\Rightarrow t \notin S$.
Proposition

If f is an $s \rightarrow t$ flow such that there is no $s \rightarrow t$ path in the residual graph G_f, then there is $s-t$ cut S such that $\text{value}(f) = C_{\text{out}}(S)$.

- No $s \rightarrow t$ path in G_f, by BFS/DFS, can find the set of visited vertices in G_f starting from s.
 Let S be this set. Then, no $s \rightarrow t$ path $\Rightarrow t \notin S$.
- We will prove that $C_{\text{out}}(S) = \text{value}(f)$. Let’s look at G:
 - Let $(u, v) \in \delta_{\text{out}}(S)$. S has no outgoing edge in G_f implies $f((u, v)) = c((u, v))$ (otherwise G_f has forward edge)
HARD DIRECTION

Proposition

If \(f \) is an \(s \to t \) flow such that there is no \(s \to t \) path in the residual graph \(G_f \), then there is \(s \to t \) cut \(S \) such that \(\text{value}(f) = \text{Cout}(S) \).

- No \(s \to t \) path in \(G_f \), by BFS/DFS, can find the set of visited vertices in \(G_f \) starting from \(s \).
 Let \(S \) be this set. Then, no \(s \to t \) path \(\Rightarrow t \notin S \).
- We will prove that \(\text{Cout}(S) = \text{value}(f) \). Let’s look at \(G \):
 - Let \((u, v) \in \delta_{out}(S)\). \(S \) has no outgoing edge in \(G_f \) implies \(f((u, v)) = c((u, v)) \) (otherwise \(G_f \) has forward edge)
 - Let \((u', v') \in \delta_{in}(S)\). \(S \) has no outgoing edge in \(G_f \) implies \(f((u', v')) = 0 \) (otherwise \(G_f \) has backward edge)
Hard direction

Proposition

If f is an $s \to t$ flow such that there is no $s \to t$ path in the residual graph G_f, then there is $s-t$ cut S such that $\text{value}(f) = C_{\text{out}}(S)$.

- No $s \to t$ path in G_f, by BFS/DFS, can find the set of visited vertices in G_f starting from s.
 Let S be this set. Then, no $s \to t$ path $\Rightarrow t \notin S$.
- We will prove that $C_{\text{out}}(S) = \text{value}(f)$. Let’s look at G:
 - Let $(u, v) \in \delta_{\text{out}}(S)$. S has no outgoing edge in G_f implies $f((u, v)) = c((u, v))$ (otherwise G_f has forward edge)
 - Let $(u', v') \in \delta_{\text{in}}(S)$. S has no outgoing edge in G_f implies $f((u', v')) = 0$ (otherwise G_f has backward edge)
 - Thus, we have:

$$f_{\text{out}}(S) - f_{\text{in}}(S) = C_{\text{out}}(S) - 0 = C_{\text{out}}(S)$$
Acknowledgement

Based on

- Prof. Lau’s Lecture 15
 https://cs.uwaterloo.ca/~lapchi/cs341/notes/L15.pdf
- Jeff Erickson’s book, Chapter 10
