CS 341: Algorithms

Lecture 18: Applications of flows and cuts

Éric Schost

based on lecture notes by many other CS341 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Fall 2024

Problem:

- input: a directed graph, with source s and sink t
- output: the maximum number of edge-disjoint paths s
 ightarrow t

Algorithm

- all edges get capacity 1
- Ford-Fulkerson outputs a 0/1 flow

(0/1 flow = flow which only takes values 0 and 1)

proof: flow values are integers ≤ 1

Problem:

- input: a directed graph, with source s and sink t
- output: the maximum number of edge-disjoint paths s
 ightarrow t

Algorithm

- all edges get capacity 1
- Ford-Fulkerson outputs a 0/1 flow

(0/1 flow = flow which only takes values 0 and 1)

proof: flow values are integers ≤ 1

Claim

There is a 0/1 flow with value k iff there are k edge-disjoint paths $s \to t$ in G (using the edges with flow 1)

Paths \rightarrow **flow:** set flow to 1 on edges covered by paths

Flow \rightarrow **paths by induction:** given a 0/1 flow f with N flow-1 edges, can find Val(f) edge-disjoint paths $s \rightarrow t$ in G using only flow-1 edges

- OK for N = 0
- induction assumption: true for $0, 1, \ldots, N-1$
- start from s, follow edges with flow 1
- if we loop, set flow to 0 on the cycle \rightarrow flow with same value and smaller N
- if we get to t, set flow to 0 on the path \rightarrow flow with value $\mathsf{Val}(f) 1$ and smaller N

Remarks

- 1. Runtime:
 - value of the flow is at most n so runtime O(mn) if no isolated vertex, O((m+n)n) otherwise
- **2. Edge version of Menger's theorem** (from max flow = min cut)
 - max number of edge-disjoint paths $s \to t = \min$ number of edges to remove if we want to ensure there is no path $s \to t$
 - exercise: fill in the details

Remarks

- 1. Runtime:
 - value of the flow is at most n so runtime O(mn) if no isolated vertex, O((m+n)n) otherwise
- **2. Edge version of Menger's theorem** (from max flow = min cut)
 - max number of edge-disjoint paths $s \to t = \min$ number of edges to remove if we want to ensure there is no path $s \to t$
 - exercise: fill in the details

3. Vertex-disjoint paths

• transform the graph and find edge-disjoint paths

• $n' \leq 2n, m' \leq m+n$

Bipartite matching

Example

Context: students and professors:

- each professor offers **one** internship, but not all students may be eligible;
- each student wants **one** internship, and is ready to go for any of them.

Example: 3 students and 3 professors.

 P_1 will only consider S_1 and S_2 P_2 will only consider S_2 P_3 will only consider S_1 and S_3

How to find the best matching?

Bipartite graphs

Definition

a (symmetric) graph G whose vertices are split into two groups S_i and P_j , with no edge between S_i 's, or between P_j 's.

Can be turned into a weighted directed graph G', adding a source and a sink

Bipartite graphs

Definition

a (symmetric) graph G whose vertices are split into two groups S_i and P_j , with no edge between S_i 's, or between P_j 's.

Can be turned into a weighted directed graph G', adding a source and a sink

In general

Bipartite matching:

- a set of r edges (between the S_i and the P_j) with no common vertex, *i.e.*,
- vertices S_{m_1}, \ldots, S_{m_r} and $P_{\ell_1}, \ldots, P_{\ell_r}$ such that S_{m_i} is connected to P_{ℓ_i}

How to find one: set up a flow problem as before

- a matching of size \boldsymbol{r} gives a 0/1 flow of value \boldsymbol{r}
- a 0/1 flow of value r gives a matching of size r as in edge-disjoint paths (using 1s instead of ∞ s, this is edge-disjoint paths)
- Ford-Fulkerson's algorithm returns a 0/1 flow

Runtime: n + 2 vertices, m + n edges so O((m + n)n)

Minimum vertex cover

Definition

- G = (V, E) is a symmetric graph
- a vertex cover C is a subset of vertices that contains an extremity of every edge
- C vertex cover iff V C independent set (no vertices in it are directly connected)
- want C as small as possible

Complexity

- trees: dynamic programming (for independent sets)
- bipartite graphs: min cut
- general graphs: NP-hard

Thm

in a **bipartite graph**, maximum size of a matching = minimum size of a vertex cover

take a matching of maximum size \boldsymbol{r}

All vertex covers have size at least r

• need at least r vertices to cover these edges

Proof of =

- max flow has value r in G'
- max flow = min cut: there is a cut A, B = V A of capacity r in G'
- use it to find a vertex cover of size r

А

R

С

Define $C = (L \cap B) \cup (R \cap A)$

Define $C = (L \cap B) \cup (R \cap A)$

- there are no edges blue in $L \rightarrow \text{red}$ in R (they have infinite capacity)
- so C is a vertex cover in G
- and $r = c(A) = |(\text{edges } s \to C)| + |(\text{edges } C \to t)| = |C|$

Special case: *d*-regular bipartite graphs (bonus)

d-regular:

- all vertices have d incident edges
- if G is also **bipartite**, then m = d|L| = d|R| and so |L| = |R|

Special case: *d*-regular bipartite graphs (bonus)

d-regular:

- all vertices have d incident edges
- if G is also **bipartite**, then m = d|L| = d|R| and so |L| = |R|

Claim

In a *d*-regular bipartite graph, there is a **perfect matching** (all vertices are matched)

Special case: *d*-regular bipartite graphs (bonus)

d-regular:

- all vertices have d incident edges
- if G is also **bipartite**, then m = d|L| = d|R| and so |L| = |R|

Claim

In a *d*-regular bipartite graph, there is a **perfect matching** (all vertices are matched)

Proof

König's theorem: maximum size of a matching = minimum size of a vertex cover

- call r = |L| = |R|
 - 1 vertex covers d edges
 - 2 vertices cover at most 2d edges
 - . . .
 - r-1 vertices cover at most (r-1)d edges
- we have \mathbf{rd} edges, so r-1 vertices are not sufficient
- so r vertices are necessary, and also sufficient (easy), and min vertex cover has size r

Suppliers a, b, c, d, \ldots want to send stuff to a buyer z, through a network

Initially, there are s_a, s_b, \ldots units of stuff in a, b, \ldots .

We take shipping time into account: a maximum of stuff should arrive before t = T.

- the amount of stuff that can leave a toward b per time unit is $c_{(a,b)}$, and the same for $c_{(a,c)}, \ldots$
- the traversal time from a to b is $t_{(a,b)}$, and the same for $t_{(a,c)}, \ldots$

Suppliers a, b, c, d, \ldots want to send stuff to a buyer z, through a network

Initially, there are s_a, s_b, \ldots units of stuff in a, b, \ldots .

We take shipping time into account: a maximum of stuff should arrive before t = T.

- the amount of stuff that can leave a toward b per time unit is $c_{(a,b)}$, and the same for $c_{(a,c)}, \ldots$
- the traversal time from a to b is $t_{(a,b)}$, and the same for $t_{(a,c)}, \ldots$

- previous graph is copied T + 1 times: one copy for each time step
- edges are arranged to match the time contraints
- capacities are the $c_{(u,v)}$
- super-source and super-sink

- previous graph is copied T + 1 times: one copy for each time step
- edges are arranged to match the time contraints
- capacities are the $c_{(u,v)}$
- super-source and super-sink

- previous graph is copied T + 1 times: one copy for each time step
- edges are arranged to match the time contraints
- capacities are the $c_{(u,v)}$
- super-source and super-sink

16.

- previous graph is copied T + 1 times: one copy for each time step
- edges are arranged to match the time contraints
- capacities are the $c_{(u,v)}$
- super-source and super-sink

16.

- previous graph is copied T + 1 times: one copy for each time step
- edges are arranged to match the time contraints
- capacities are the $c_{(u,v)}$
- super-source and super-sink

16

Image segmentation

Segmenting an image: separating a grid P of pixels into background and foreground.

Constraints:

- single-pixel: each pixel v in P comes with integers f_v and b_v
 - f_v large: v should be in the foreground
 - b_v large: v should be in the **background**
- connectivity: for adjacent pixels v, w, there is a **penalty** $p_{v,w}$ to pay if they are **not** in the same component.

Finding $f_v, b_v, p_{v,w}$ takes some work. Assuming we know them, want to find subset F (foreground) and B = P - F (background) that maximizes

$$W(F) = \sum_{v \in F} f_v + \sum_{v \in B} b_v - \sum_{v \in F, w \in B, (v,w) \text{ connected}} p_{v,w}.$$

Making it a min-cut problem

Step 1: turning a max into a min.

So

Let $K = \sum_{v} f_{v} + \sum_{v} b_{v}$ (independent of the choice of F and B). Then

$$K = \sum_{v \in F} f_v + \sum_{v \in B} f_v + \sum_{v \in F} b_v + \sum_{v \in B} b_v.$$
$$W(F, B) = K - \sum_{v \in B} f_v - \sum_{v \in F} b_v - \sum_{v \in F, w \in B, (v,w) \text{ connected}} p_{v,w}.$$

Since K does not depend on F and B, maximizing W is the same thing as minimizing

$$\sum_{v \in B} f_v + \sum_{v \in F} b_v + \sum_{v \in F, w \in B, (v,w) \text{ connected}} p_{v,w}.$$

Making it a min-cut problem

Step 2: setting up the graph G:

- vertices of G are **all pixels**, plus a source s and a sink t;
- edges of G:
 - for all v, an edge (s, v), with capacity b_v ;
 - for all v, an edge (v, t), with capacity f_v ;
 - for all neighbours v, w, edges (v, w) and (w, v), with capacities $p_{v,w}$.

Making it a min-cut problem

Step 3: understanding the cuts.

A cut (U, V = P - U) in G gives a partition of the pixels:

- the background B is $U \{s\}$,
- the foreground F is $V \{t\}$.

What is its capacity? The edges $U \to V$ come into 3 categories:

- edges (v, t), for v in B, contributes f_v to the capacity,
- edges (s, v), for v in F, contributes b_v to the capacity,
- edges (v, w), for v in B and w in F, contributes $p_{v,w}$ to the capacity.

The capacity of the cut is

$$\sum_{v \in B} f_v + \sum_{v \in F} b_v + \sum_{v \in F, w \in B, (v,w) \text{ connected}} p_{v,w}$$

so solving min-cut solves the problem.