Lecture 18: Max-Flow & Min-Cut
Applications

Rafael Oliveira

University of Waterloo
Cheriton School of Computer Science
rafael.oliveira.teaching@gmail.com

November 14, 2023
Overview

- Applications of Max-Flow & Min-Cut
 - Maximum Bipartite Matching
 - Minimum Vertex Cover
 - Edge-disjoint Paths
 - Vertex-disjoint Paths

- Further Remarks

- Acknowledgements
Matchings

- Given an undirected graph $G(V, E)$ a matching M is a subset of E such that all edges in M are pairwise vertex disjoint (i.e., no two edges share a common vertex).
- A matching $M \subset E$ is called a perfect matching if every vertex in the graph is matched.
Maximum Bipartite Matching

- **Input:** A bipartite graph $G(L \sqcup R, E)$
- **Output:** A maximum cardinality matching $M \subseteq E$
Maximum Bipartite Matching

- **Input:** A bipartite graph \(G(L \sqcup R, E) \)
- **Output:** A maximum cardinality matching \(M \subset E \)
- Consider directed graph \(H(\{s, t\} \sqcup L \sqcup R, F, c) \) given by

\[
\begin{cases}
\{u, v\} \in E, \ u \in L, \ v \in R \iff (u, v) \in F, \ c(u, v) = \infty \\
(s, u) \in F, \ c(s, u) = 1 \ \forall \ u \in L \\
(v, t) \in F, \ c(v, t) = 1 \ \forall \ v \in R
\end{cases}
\]

in picture:
Maximum Bipartite Matching

- **Input:** A bipartite graph \(G(L \sqcup R, E) \)
- **Output:** A maximum cardinality matching \(M \subseteq E \)
- Consider directed graph \(H(\{s, t\} \sqcup L \sqcup R, F, c) \) given by

\[
\begin{align*}
\{u, v\} \in E, \ u \in L, \ v \in R & \iff (u, v) \in F, \ c(u, v) = \infty \\
(s, u) \in F, \ c(s, u) = 1 & \forall u \in L \\
(v, t) \in F, \ c(v, t) = 1 & \forall v \in R
\end{align*}
\]

in picture:
- **Claim:** there is matching of size \(k \) in \(G \) \(\iff \) there is an \(s \rightarrow t \) flow of value \(k \) in \(H \)
Maximum Bipartite Matching

Claim: there is matching of size k in $G \iff$ there is an $s \rightarrow t$ flow of value k in H

- (\Rightarrow) from matching $M = \{\{u_i, v_i\}\}_{i=1}^k$ we get flow $f(s, u_i) = f(u_i, v_i) = f(v_i, t) = 1$ of value k
Maximum Bipartite Matching

- **Claim:** there is matching of size k in $G \iff$ there is an $s \to t$ flow of value k in H

 - (\iff) from (integral) flow of value k (exists by Ford-Fulkerson), use flow decomposition lemma (note that H is a DAG) to get k $s \to t$ paths P_1, \ldots, P_k, where

 $$P_i = (s, u_i, v_i, t)$$

 Path decomposition lemma says that (s, u_i)'s and (v_i, t)'s must be distinct, since

 $$0 < f(s, u_i) \leq c(s, u_i) = 1 \Rightarrow f(s, u_i) = 1$$

 (same for (v_i, t)).

 Moreover, $\{u_i, v_i\} \in E$ for $i \in [k]$, by construction of H.

 Thus, $M = \{\{u_i, v_i\}\}_{i=1}^k$ must be a matching in G.

Maximum Bipartite Matching

- **Claim:** there is matching of size k in $G \iff$ there is an $s \to t$ flow of value k in H

- (\Leftarrow) from (integral) flow of value k (exists by Ford-Fulkerson), use flow decomposition lemma (note that H is a DAG) to get k $s \to t$ paths P_1, \ldots, P_k, where

 $$P_i = (s, u_i, v_i, t)$$

Path decomposition lemma says that (s, u_i)’s and (v_i, t)’s must be distinct, since

$$0 < f(s, u_i) \leq c(s, u_i) = 1 \Rightarrow f(s, u_i) = 1$$

(same for (v_i, t)).

Moreover, $\{u_i, v_i\} \in E$ for $i \in [k]$, by construction of H.

Thus, $M = \{\{u_i, v_i\}\}_{i=1}^{k}$ must be a matching in G.

- Ford-Fulkerson gives algorithm with running time $O(|V| \cdot |E|)$ for maximum bipartite matching.
Applications of Max-Flow & Min-Cut
- Maximum Bipartite Matching
- Minimum Vertex Cover
- Edge-disjoint Paths
- Vertex-disjoint Paths

Further Remarks

Acknowledgements
Minimum Vertex Cover

Definition: given graph \(G(V, E) \), a subset \(S \subseteq V \) is a vertex cover if for every edge \(\{u, v\} \in E \), we have \(\{u, v\} \cap S \neq \emptyset \)
Minimum Vertex Cover

- **Input:** Bipartite graph $G(L \sqcup R, E)$
- **Output:** Minimum cardinality vertex cover
Minimum Vertex Cover

- **Input:** Bipartite graph \(G(L \sqcup R, E) \)
- **Output:** Minimum cardinality vertex cover
- **König’s Theorem:**

Theorem (König’s Theorem)

In a bipartite graph, the maximum size of a matching equals the minimum size of a vertex cover.
Minimum Vertex Cover

- **Input**: Bipartite graph $G(L \sqcup R, E)$
- **Output**: Minimum cardinality vertex cover
- **König’s Theorem**:

Theorem (König’s Theorem)

In a bipartite graph, the maximum size of a matching equals the minimum size of a vertex cover.

- Ford-Fulkerson finds a min-cut in the modified graph H from the previous slides, and from it we will obtain a vertex cover. (we’ll see this in the next slide)
Proof of König’s theorem

- Let $G(L \uplus R, E)$ be our bipartite graph and k be the maximum size of a matching in it.
- Let $H(\{s, t\} \uplus L \uplus R, F)$ be constructed as before. By our previous result, the max-flow in H has value k.
Proof of König’s theorem

- Let $G(L \sqcup R, E)$ be our bipartite graph and k be the maximum size of a matching in it.
- Let $H(\{s, t\} \sqcup L \sqcup R, F)$ be constructed as before. By our previous result, the max-flow in H has value k.
- By the max-flow min-cut theorem, let S be an $s – t$ cut in H with $s \in S \& \text{C}_{\text{out}}(S) = k$. (Ford-Fulkerson finds us such cut)
Proof of König’s theorem

- Let $G(L \sqcup R, E)$ be our bipartite graph and k be the maximum size of a matching in it.
- Let $H(\{s, t\} \sqcup L \sqcup R, F)$ be constructed as before. By our previous result, the max-flow in H has value k.
- By the max-flow min-cut theorem, let S be an $s - t$ cut in H with $s \in S$ & $\text{Cout}(S) = k$. (Ford-Fulkerson finds us such cut)
- **Claim 1**: $|(L \setminus S) \cup (S \cap R)| = k$
Proof of König’s theorem

- Let $G(L \sqcup R, E)$ be our bipartite graph and k be the maximum size of a matching in it.
- Let $H(\{s, t\} \sqcup L \sqcup R, F)$ be constructed as before. By our previous result, the max-flow in H has value k.
- By the max-flow min-cut theorem, let S be an $s - t$ cut in H with $s \in S$ & $C_{out}(S) = k$. (Ford-Fulkerson finds us such cut)
- **Claim 1:** $|(L \setminus S) \cup (S \cap R)| = k$
 - s has edge of capacity 1 to each vertex in $L \setminus S$
 - t has edge of capacity 1 from each vertex in $S \cap R$
Proof of König’s theorem

- Let \(G(L \sqcup R, E) \) be our bipartite graph and \(k \) be the maximum size of a matching in it.

- Let \(H(\{s, t\} \sqcup L \sqcup R, F) \) be constructed as before. By our previous result, the max-flow in \(H \) has value \(k \).

- By the max-flow min-cut theorem, let \(S \) be an \(s-t \) cut in \(H \) with \(s \in S \) & \(C_{\text{out}}(S) = k \). (Ford-Fulkerson finds us such cut)

- **Claim 1:** \(|(L \setminus S) \cup (S \cap R)| = k\)
 - \(s \) has edge of capacity 1 to each vertex in \(L \setminus S \)
 - \(t \) has edge of capacity 1 from each vertex in \(S \cap R \)
 - These edges are in \(\delta_{\text{out}}(S) \)
Proof of König’s theorem

- Let $G(L \sqcup R, E)$ be our bipartite graph and k be the maximum size of a matching in it.
- Let $H(\{s, t\} \sqcup L \sqcup R, F)$ be constructed as before. By our previous result, the max-flow in H has value k.
- By the max-flow min-cut theorem, let S be an $s - t$ cut in H with $s \in S$ & $C_{\text{out}}(S) = k$. (Ford-Fulkerson finds us such cut)

Claim 1: $|(L \setminus S) \cup (S \cap R)| = k$

- s has edge of capacity 1 to each vertex in $L \setminus S$
- t has edge of capacity 1 from each vertex in $S \cap R$
- These edges are in $\delta_{\text{out}}(S)$
- Note that $\delta_{\text{out}}(S)$ cannot contain edge from L to R (as these have ∞ capacity), so the edges above are the only ones in $\delta_{\text{out}}(S)$.
Proof of König’s theorem

- Let $G(L \sqcup R, E)$ be our bipartite graph and k be the maximum size of a matching in it.

- Let $H(\{s, t\} \sqcup L \sqcup R, F)$ be constructed as before. By our previous result, the max-flow in H has value k.

- By the max-flow min-cut theorem, let S be an $s-t$ cut in H with $s \in S$ & $C_{out}(S) = k$. (Ford-Fulkerson finds us such cut)

 Claim 1: $|(L \setminus S) \cup (S \cap R)| = k$
 - s has edge of capacity 1 to each vertex in $L \setminus S$
 - t has edge of capacity 1 from each vertex in $S \cap R$
 - These edges are in $\delta_{out}(S)$
 - Note that $\delta_{out}(S)$ cannot contain edge from L to R (as these have ∞ capacity), so the edges above are the only ones in $\delta_{out}(S)$.

- **Claim 2:** $(L \setminus S) \cup (S \cap R)$ is a vertex cover of G
Proof of König’s theorem

- Let $G(L \sqcup R, E)$ be our bipartite graph and k be the maximum size of a matching in it.
- Let $H(\{s, t\} \sqcup L \sqcup R, F)$ be constructed as before. By our previous result, the max-flow in H has value k.
- By the max-flow min-cut theorem, let S be an $s - t$ cut in H with $s \in S$ & $C_{out}(S) = k$. (Ford-Fulkerson finds us such cut)
- **Claim 1:** $|(L \setminus S) \cup (S \cap R)| = k$
 - s has edge of capacity 1 to each vertex in $L \setminus S$
 - t has edge of capacity 1 from each vertex in $S \cap R$
 - These edges are in $\delta_{out}(S)$
 - Note that $\delta_{out}(S)$ cannot contain edge from L to R (as these have infinite capacity), so the edges above are the only ones in $\delta_{out}(S)$.
- **Claim 2:** $(L \setminus S) \cup (S \cap R)$ is a vertex cover of G
 - Note that $\delta_{out}(S)$ cannot contain edge from L to R (as these have infinite capacity).
Proof of König’s theorem

- Let \(G(L \sqcup R, E) \) be our bipartite graph and \(k \) be the maximum size of a matching in it.
- Let \(H(\{s, t\} \sqcup L \sqcup R, F) \) be constructed as before. By our previous result, the max-flow in \(H \) has value \(k \).
- By the max-flow min-cut theorem, let \(S \) be an \(s - t \) cut in \(H \) with \(s \in S \) & \(\text{Cut}(S) = k \). (Ford-Fulkerson finds us such cut)
- **Claim 1:** \(|(L \setminus S) \cup (S \cap R)| = k \)
 - \(s \) has edge of capacity 1 to each vertex in \(L \setminus S \)
 - \(t \) has edge of capacity 1 from each vertex in \(S \cap R \)
 - These edges are in \(\delta_{out}(S) \)
 - Note that \(\delta_{out}(S) \) cannot contain edge from \(L \) to \(R \) (as these have \(\infty \) capacity), so the edges above are the only ones in \(\delta_{out}(S) \).
- **Claim 2:** \((L \setminus S) \cup (S \cap R) \) is a vertex cover of \(G \)
 - Note that \(\delta_{out}(S) \) cannot contain edge from \(L \) to \(R \) (as these have \(\infty \) capacity).
 - Thus, every edge in \(G \) must be from \(L \setminus S \) or to \(S \cap R \) \(\Rightarrow \) vertex cover
Hall’s Theorem

Theorem (Hall’s Theorem)

A bipartite graph $G(L \sqcup R, E)$ with $|L| = |R| = n$ has a perfect matching if and only if for every subset $S \subseteq L$, it holds that $|N(S)| \geq |S|$.
Hall’s Theorem

Theorem (Hall’s Theorem)

A bipartite graph \(G(L \sqcup R, E) \) with \(|L| = |R| = n \) has a perfect matching if and only if for every subset \(S \subset L \), it holds that \(|N(S)| \geq |S| \).

- Proof of this theorem can be derived from König’s theorem.
- **Hint:** can we have a vertex cover of size \(< n\) when the neighborhood constraints hold?
Applications of Max-Flow & Min-Cut
- Maximum Bipartite Matching
- Minimum Vertex Cover
- Edge-disjoint Paths
- Vertex-disjoint Paths

Further Remarks

Acknowledgements
Edge-Disjoint Paths

- **Input:** Directed (unweighted) graph $G(V, E)$, vertices $s, t \in V$
- **Output:** Maximum subset of edge-disjoint $s \rightarrow t$ paths
Edge-Disjoint Paths

- **Input:** Directed (unweighted) graph $G(V, E)$, vertices $s, t \in V$
- **Output:** Maximum subset of edge-disjoint $s \rightarrow t$ paths
- Simply set capacity of each edge to be 1, and run the max-flow algorithm for it.
Edge-Disjoint Paths

- **Input:** Directed (unweighted) graph $G(V, E)$, vertices $s, t \in V$
- **Output:** Maximum subset of edge-disjoint $s \to t$ paths

Simply set capacity of each edge to be 1, and run the max-flow algorithm for it.

Claim 3: there are k edge-disjoint $s \to t$ paths iff there is $s \to t$ flow of value k

- (\Rightarrow) given k edge disjoint paths P_1, \ldots, P_k, we can simply get a flow of value k by “adding” the paths P_i, that is, set the flow value to be 1 for each edge in one of the paths, and all other edges get 0 capacity
- (\Leftarrow) given flow of value k, by flow decomposition theorem we have k paths P_1, \ldots, P_k, and these must be edge disjoint, since for any $e \in E$, we have $0 \leq f(e) \leq c(e) = 1$.
Edge-Disjoint Paths

- **Input:** Directed (unweighted) graph $G(V, E)$, vertices $s, t \in V$
- **Output:** Maximum subset of edge-disjoint $s \to t$ paths
- Simply set capacity of each edge to be 1, and run the max-flow algorithm for it.

Claim 3: there are k edge-disjoint $s \to t$ paths iff there is $s \to t$ flow of value k

- (\Rightarrow) given k edge disjoint paths P_1, \ldots, P_k, we can simply get a flow of value k by “adding” the paths P_i, that is, set the flow value to be 1 for each edge in one of the paths, and all other edges get 0 capacity
- (\Leftarrow) given flow of value k, by flow decomposition theorem we have k paths P_1, \ldots, P_k, and these must be edge disjoint, since for any $e \in E$, we have $0 \leq f(e) \leq c(e) = 1.$

- **Runtime:** Ford-Fulkerson takes $O(|V| \cdot |E|)$ time
Edge-Disjoint Paths

- **Input:** Directed (unweighted) graph $G(V, E)$, vertices $s, t \in V$
- **Output:** Maximum subset of edge-disjoint $s \rightarrow t$ paths
- Simply set capacity of each edge to be 1, and run the max-flow algorithm for it.
- **Claim 3:** there are k edge-disjoint $s \rightarrow t$ paths iff there is $s \rightarrow t$ flow of value k
 - (\Rightarrow) given k edge disjoint paths P_1, \ldots, P_k, we can simply get a flow of value k by “adding” the paths P_i, that is, set the flow value to be 1 for each edge in one of the paths, and all other edges get 0 capacity
 - (\Leftarrow) given flow of value k, by flow decomposition theorem we have k paths P_1, \ldots, P_k, and these must be edge disjoint, since for any $e \in E$, we have $0 \leq f(e) \leq c(e) = 1$.
- **Runtime:** Ford-Fulkerson takes $O(|V| \cdot |E|)$ time
- By the max-flow min-cut theorem, can prove:
 The maximum number of edge-disjoint $s \rightarrow t$ paths equals the minimum number of edges whose removal disconnects s and t (i.e., no $s \rightarrow t$ paths).
Applications of Max-Flow & Min-Cut

- Maximum Bipartite Matching
- Minimum Vertex Cover
- Edge-disjoint Paths
- Vertex-disjoint Paths

Further Remarks

Acknowledgements
Vertex-Disjoint Paths

- **Input:** Directed (unweighted) graph $G(V, E)$, vertices $s, t \in V$
- **Output:** Maximum subset of vertex-disjoint $s \rightarrow t$ paths
Vertex-Disjoint Paths

- **Input:** Directed (unweighted) graph $G(V, E)$, vertices $s, t \in V$
- **Output:** Maximum subset of vertex-disjoint $s \rightarrow t$ paths
- Reduce this problem to the edge-disjoint paths problem!
Vertex-Disjoint Paths

- **Input:** Directed (unweighted) graph \(G(V, E) \), vertices \(s, t \in V \)
- **Output:** Maximum subset of vertex-disjoint \(s \rightarrow t \) paths
- Reduce this problem to the edge-disjoint paths problem!
- For each \(u \in V \setminus \{ s, t \} \), replace it by two vertices \(u_1, u_2 \) and edges

\[
\begin{align*}
(u_1, u_2) \\
(w, u_1), & \quad \forall \ w \in N_{in}(u) \\
(u_2, v), & \quad \forall \ v \in N_{out}(u)
\end{align*}
\]
Vertex-Disjoint Paths

- **Input:** Directed (unweighted) graph $G(V, E)$, vertices $s, t \in V$
- **Output:** Maximum subset of vertex-disjoint $s \rightarrow t$ paths

Reduce this problem to the edge-disjoint paths problem!

For each $u \in V \setminus \{s, t\}$, replace it by two vertices u_1, u_2 and edges

$$
\begin{cases}
(u_1, u_2) \\
(w, u_1), \ \forall \ w \in N_{in}(u) \\
(u_2, v), \ \forall \ v \in N_{out}(u)
\end{cases}
$$

- **Claim 4:** There are k vertex-disjoint $s \rightarrow t$ paths in $G \iff$ there are k edge-disjoint $s \rightarrow t$ paths in the new graph.
Vertex-Disjoint Paths

- **Input**: Directed (unweighted) graph \(G(V, E) \), vertices \(s, t \in V \)
- **Output**: Maximum subset of vertex-disjoint \(s \to t \) paths

Reduce this problem to the edge-disjoint paths problem!

For each \(u \in V \setminus \{s, t\} \), replace it by two vertices \(u_1, u_2 \) and edges

\[
\begin{align*}
(u_1, u_2) \\
(w, u_1), \quad \forall \ w \in N_{in}(u) \\
(u_2, v), \quad \forall \ v \in N_{out}(u)
\end{align*}
\]

- **Claim 4**: There are \(k \) vertex-disjoint \(s \to t \) paths in \(G \) \iff there are \(k \) edge-disjoint \(s \to t \) paths in the new graph.

In this case, Ford-Fulkerson also gives us a \(O(|V| \cdot |E|) \) time algorithm.
Applications of Max-Flow & Min-Cut
- Maximum Bipartite Matching
- Minimum Vertex Cover
- Edge-disjoint Paths
- Vertex-disjoint Paths

Further Remarks

Acknowledgements
It may at first seem a little magic that vertex cover and matching are dual problems.

In fact several combinatorial optimization problems have very natural dual problems, and the knowledge of such duality is a powerful algorithmic tool!

Most (efficient) combinatorial optimization problems captured by *Linear Programming*

one of the most powerful framework for efficient computation.

Most of the dual statements seen here can be derived from *Linear Program Duality*

For more on this topic we encourage you all to take some courses in C&O about it.
Acknowledgement

Based on

- Prof. Lau’s Lecture 16
- Jeff Erickson’s book, Chapter 11
Cormen, Thomas and Leiserson, Charles and Rivest, Ronald and Stein, Clifford. (2009)
MIT Press

Kleinberg, Jon and Tardos, Eva (2006)
Algorithm Design.
Addison Wesley