CS 341: Algorithms

Lecture 19: Reductions

Éric Schost

based on lecture notes by many other CS341 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Fall 2024

Goals for this chapter

- polynomial-time reductions
- P, NP, NP-complete problems
- Cook-Levin: CIRCUITSAT is **NP**-complete
- many more examples of **NP**-complete problems

Framework

Computational model

So far,

- we used the word RAM all the time (CPU has registers that are as large as needed)
- we only counted how many word operations we did (unit cost)

This is not well-suited to discuss **P**, **NP**, ...

- use a bit-model instead, where words have **fixed** size (e.g., 1 bit) (Cook-Levin's theorem proved for **Turing machines**)
 - main difference: should account for the size of integers we represent (the size of the representation of an integer N is $\lceil \log(N) \rceil + 1 \in \Theta(\log N)$)
 - in most cases, runtimes now involve a few extra log terms

does not matter: when talking about P, NP, \ldots , we care about polynomial-time-ness, but **not** about precise exponents, log factors, \ldots

Input size?

when talking about P, NP, ..., we care about polynomial-time-ness, but **not** about precise exponents, log factors, ...

Example 1: input is an integer M

• size $sz(M) = \lceil \log(M) \rceil + 1 \in \Theta(\log M)$

Example 2: input is an array A[1..n] of integers

- size $S = \sum_i \operatorname{sz}(A[i])$
- might as well consider $S' = n \max \log(\mathbf{A}[i])$: $T \in S^{O(1)} \iff T \in S'^{O(1)}$ 1. $S \in O(S')$
 - 2. $S \ge n$ and $S \ge \max \log(A[i])$ so $S \ge \sqrt{S'}$

Input size?

when talking about P, NP, ..., we care about polynomial-time-ness, but **not** about precise exponents, log factors, ...

Example 3: graph G = (V, E) with *n* vertices and *m* edges

- array A[1..n], each A[i] a list of indices $v_{i,j}$, $j = 1, \ldots, degree(i)$
- size $S = n + \sum_{i,j} \mathbf{sz}(v_{i,j})$
- might as well consider S' = n + m

Example 4: directed graph G = (V, E) with n vertices and m edges, with integer weights w:

- array A of size n
- each A[i] a list of pairs $(v_{i,j}, w_{i,j}), j = 1, \dots, \text{out-degree}(i)$
- size $S = n + \sum_{i,j} \operatorname{sz}(v_{i,j}) + \operatorname{sz}(w_{i,j})$
- might as well consider $S' = n + m \max \log(w)$

What problems do we consider?

Definition.

- a decision problem is a problem to which the answer is yes or no
- write $x \in PROB$ if x is a yes-instance

formally, PROB is a language (a set of strings over e.g. $\{0,1\}$)

Examples

- is graph G a tree?
- is graph G colorable with 3 colors?

$G \in \text{Tree}$ $G \in 3\text{-Colorable}$

Non-examples

- what is the maximum flow through this graph?
- find an assignment of variables that makes a boolean formula true

Optimization vs decision

Optimization problems

- find the maximal flow value in G
- find a minimal spanning tree in G
- optimize a linear function ...

Decision versions of optimization problems:

- given G and K, is there a flow of value $\geq K$?
- given G and K, is there a spanning tree of weight $\leq K$?
- etc.

Remark

- optimization problem solvable in polynomial time \implies decision version solvable in polynomial time
- converse true if the optimum is an integer that fits into a polynomial number of bits

Reductions

Definition

formalizes the idea that you can use **subroutines** to solve new problems.

Key idea:

- if you can solve a problem PROB2 in polynomial time,
- you may use it to solve PROB1 in polynomial time.

Definition

 $\operatorname{PROB1}$ can be polynomial-time reduced to $\operatorname{PROB2}$ if

- there exists an algorithm C that runs in polynomial time,
- such that $x \in \text{PROB1}$ if and only if $C(x) \in \text{PROB2}$.

Notation: PROB1 \leq_P PROB2.

Remark: also called Karp reductions. Alternative: use PROB2 as an oracle, allowing multiple calls (Cook reductions).

Complexity

Assume

• C runs in time c(n), n = size(input)

in particular, the output has size at most c(n)

• we have an algorithm A_2 that solves PROB2 in time a(m), m = size(input)

Consequence

- we get algorithm A_1 that solves PROB1 in time c(n) + a(c(n))(because size of $C(x) \le c(n)$)
- so polynomial time for PROB2 \implies polynomial time for PROB1

Contrapositive

no polynomial time algorithm for PROB1 \implies no polynomial time algorithm for PROB2

Examples

Prob1	Prob2
subset sum	decision version of $0/1$ knapsack
	(is there a choice of items with value $\geq K$?)
longest increasing subsequence	longest common subsequence
(decision version)	(decision version)
vertex-disjoint paths	edge-disjoint paths
(decision version)	(decision version)

(all reductions take polynomial time)

Some graph problems

${\bf IndependentSet}$

• given a graph G and K, is there an independent set of size at least K in G? independent set: vertices S with $\{u, v\}$ not an edge for all u, v in S

VertexCover

• given a graph G and K, is there a vertex cover of size **at most** K in G? **vertex cover**: vertices S s.t. any edge has an extremity in S

Clique

given a graph G and K, is there a clique of size at least K in G?
clique: vertices S with {u, v} edge for all u, v in S (u ≠ v)

Some easy reductions

Let $\overline{G} = (S, \overline{E})$ be the complement graph of $G: e \in E \iff e \notin \overline{E}$

$Claim \ 1$

S is an independent set in G iff S is a clique in \overline{G}

Some easy reductions

Claim 2

S is an independent set in G iff V - S is vertex cover in G

Some easy reductions

Claims give

- IndependentSet \leq_P Clique \leq_P IndependentSet
- INDEPENDENTSET \leq_P VERTEXCOVER \leq_P INDEPENDENTSET

Transitivity: if $A \leq_P B$ and $B \leq_P C$, then $A \leq_P C$

Consequence

INDEPENDENTSET \leq_P VERTEXCOVER \leq_P CLIQUE \leq_P INDEPENDENTSET

(they are polynomial-time equivalent)

Hamiltonian paths and cycles

HamiltonianPath

• given a (symmetric) graph G with n vertices, is there a path v_1, \ldots, v_n that visits all vertices?

HamiltonianCycle

• given a (symmetric) graph G with n vertices, is there a cycle v_1, \ldots, v_n, v_1 that visits all vertices?

Remark:

- if there is a Hamiltonian cycle, there is a Hamiltonian path
- but converse may not hold

HamiltonianPath \leq_P HamiltonianCycle

Given G, create G' by adding a **new vertex** s connected to all other vertices

Claim

 $G \in \operatorname{HamiltonianPath} \iff G' \in \operatorname{HamiltonianCycle}$

- v_1, \ldots, v_n Hamiltonian path in $G \implies s, v_1, \ldots, v_n, s$ Hamiltonian cycle in G'
- if there is a Hamiltonian cycle in G', we can write it s, v_1, \ldots, v_n, s then v_1, \ldots, v_n Hamiltonian path in G

Remark: reduction takes polynomial time

HamiltonianCycle \leq_P HamiltonianPath

Given G, create G' by choosing **one vertex** s and using a gadget:

Remark: reduction in polynomial time.

HamiltonianCycle \leq_P HamiltonianPath

Claim

 $G \in \operatorname{HamiltonianCycle} \iff G' \in \operatorname{HamiltonianPath}$

- if there is a Hamiltonian cycle in G, we can write it s, u, \ldots, w, s $\implies t', s', u, \ldots, s'', t''$ Hamiltonian path in G'
- if there is a Hamiltonian path in G', we can write it $t', s', u, \ldots, w, s'', t''$ or $t'', s'', u, \ldots, w, s', t'$

 $\implies s, u, \dots, s$ Hamiltonian cycle in G

