
CS 341: Algorithms

Lecture 20: Reductions, P, NP, co-NP

Éric Schost
based on lecture notes by many other CS341 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Fall 2024

1 / 19

More examples of Karp reductions

2 / 19

Circuit satisfiability
CircuitSAT.

• instance: a circuit = DAG with labels on the vertices
• inputs labelled by boolean variables x1, . . . , xn or 0, 1
• internal vertices labelled by and, or, not
• there is a marked vertex v for the output
• problem: is there a choice of boolean xi that makes v true?

3 / 19

k-terms conjonctive formula satisfiability
kSAT.

• instance: a boolean formula in n variables x1, . . . , xn in CNF

(y1,1 ∨ · · · ∨ y1,k1) ∧ · · · ∧ (yℓ,1 ∨ · · · ∨ yℓ,kℓ
)

with literals yi,j of the form xm, xm, 1 or 0 and ki ≤ k

• problem: is there a choice of the variables that makes it true?

Remark 1: in clause i, can have repeated yi,j (then we only write them once)

(z ∨ x) ∧ (z ∨ y) ∧ (z ∨ x ∨ y) k = 3

Remark 2: can assume there are no constants 1 or 0
• if yi,j = 0, remove the literal, if yi,j = 1 remove the clause

Remark 3: key cases are k = 2 and k = 3
4 / 19

CircuitSAT ≤P 3SAT
Reduction:

• given: circuit C with s gates, variables x1, . . . , xn, output v

• build: 3-CNF formula F with O(s) clauses
• ensure: C satisfiable ⇐⇒ F satisfiable

Remark:
• easy to build a formula: do it for all vertices bottom-up
• not polynomial, not 3CNF

((x1 ∧ x2) ∧ (x1 ∧ x2)) ∧ ((x1 ∧ x2) ∧ (x1 ∧ x2))

5 / 19

CircuitSAT ≤P 3SAT
Reduction:

• given: circuit C with s gates, variables x1, . . . , xn, output v

• build: 3-CNF formula F with O(s) clauses
• ensure: C satisfiable ⇐⇒ F satisfiable

Key idea: introduce one new variable yi per non-input gate and use

yi = z ⇐⇒ (z =⇒ yi) ∧ (yi =⇒ z) ⇐⇒ (yi ∨ z) ∧ (yi ∨ z)

• and gate: z = t ∧ u, and so z = t ∨ u

(yi ∨ t ∨ u) ∧ (yi ∨ (t ∧ u)) = (yi ∨ t ∨ u) ∧ (yi ∨ t) ∧ (yi ∨ u)

• or gate: z = t ∨ u gives (yi ∨ t) ∧ (yi ∨ u) ∧ (yi ∨ t ∨ u)
• not gate: z = t gives (yi ∨ t) ∧ (yi ∨ t)

5 / 19

CircuitSAT ≤P 3SAT

gives
(y1 = (x1 ∧ x2)) ∧ (y2 = (x2 ∨ x3)) ∧ (v = (y1 ∧ y2)) ∧ v

and

(y1 ∨ x1 ∧ x2) ∧ (y1 ∨ (x1 ∧ x2)) ∧
(y2 ∨ x2 ∨ x3) ∧ (y2 ∨ (x2 ∨ x3)) ∧
(v ∨ y1 ∧ y2) ∧ (v ∨ (y1 ∧ y2)) ∧ v

given C, F can be constructed in polynomial time 6 / 19

CircuitSAT ≤P 3SAT

gives
(y1 = (x1 ∧ x2)) ∧ (y2 = (x2 ∨ x3)) ∧ (v = (y1 ∧ y2)) ∧ v

and

F =(y1 ∨ x1 ∨ x2) ∧ (y1 ∨ x1) ∧ (y1 ∨ x2) ∧
(y2 ∨ x2) ∧ (y2 ∨ x3) ∧ (y2 ∨ x2 ∨ x3) ∧
(v ∨ y1 ∨ y2) ∧ (v ∨ y1) ∧ (v ∨ y2) ∧ v

given C, F can be constructed in polynomial time 6 / 19

Aside: polynomial-time Turing reductions

7 / 19

A stronger form of reduction
Consider two problems Prob1, Prob2, not necessarily decision problems

Definition

Prob1 is polynomial-time Turing reducible to Prob2 if there is an algorithm that
solves Prob1 using

• a polynomial number of operations
• a polynomial number of calls to a solver (oracle) for Prob2

Remark:
• inputs/output transfers to/from the oracle count as “operations”
• so all inputs to the oracle have polynomial size

Notation:
• Prob1 ≤T

P Prob2
8 / 19

Examples and key property

Example 1
• reducing an optimization problem to its decision version (if optimal is an integer of

polynomial size)

Example 2
• Karp reductions for decision problems (only one oracle call, at the end)

Claim

if Prob1 ≤T
P Prob2 and Prob2 can be solved in polynomial time, then it’s also the

case for Prob1

Proof: same as for Karp reductions

9 / 19

Example: factoring
Effective version: Factor

• input: integer M input size Θ(log M)
• output: the prime factors of M

Decision version: HasFactor
• input: integers M and 0 ≤ k ≤ M input size Θ(log M)
• output: yes iff M has a prime factor ≤ k

Remark: polynomial time = log(M)O(1)

Claim 1:

HasFactor ≤T
P Factor

Proof: factor M and check
10 / 19

Example: factoring
Claim 2:

Factor ≤T
P HasFactor

1. Find the first ℓ such that M has a prime factor between 2ℓ and 2ℓ+1 − 1
• test all ℓ = 1, 2, 3, . . . , log(M) O(log M) calls to HasFactor with inputs ≤ M

• if all no, M is prime, done

2. Find the smallest factor between 2ℓ and 2ℓ+1 − 1
• binary search O(log M) calls to HasFactor with inputs ≤ M

3. We found one prime factor P . Repeat on M/P

• log M prime factors at most

Conclusion: if HasFactor can be solved in polynomial time, we can factor integers in
polynomial time.

11 / 19

P, NP, co-NP

12 / 19

The classes P and NP

Definition

P is the set of decision problems that can be solved in polynomial time
NP is the set of decision problems where yes-instances can be certified in polynomial
time.

Precisely, a decision problem Prob is in NP if
• there exists an algorithm B (a certifier) that takes as input an instance x and an extra

input y (a certificate) and outputs “yes” or “no” in polynomial time in size(x)+size(y)
• x yes-instance for Prob if and only if there exists y of size polynomial in size(x), such

that B(x, y) =“yes”

13 / 19

Remarks

1. if we can solve Prob in polynomial time, we can certify it as well (with an empty
certificate) so

P ⊂ NP

$1,000,000 question: P = NP?

2. NP means Non-deterministic Polynomial time
• nothing to do with randomized algorithms
• non-deterministic Turing machines have several transitions available each step
• existence of one accepting path ≃ existence of a certificate

14 / 19

Examples
Independent set

• instance: graph G, integer K

• certificate: a set S of vertices
• certification: test if |S| ≥ K and S independent

Vertex cover
• instance: graph G, integer K

• certificate: a set S of vertices
• certification: test if |S| ≤ K and S covers all edges

Clique
• instance: graph G, integer K

• certificate: a set S of vertices
• certification: test if |S| ≥ K and S clique

15 / 19

Examples
Circuit sat

• instance: boolean circuit C

• certificate: a sequence x of bits
• certification: test if C(x) = true

3SAT
• instance: a boolean formula F in 3CNF
• certificate: a sequence x of bits
• certification: test if F (x) is true

SAT
• instance: a boolean formula F

• certificate: a sequence x of bits
• certification: test if F (x) is true

16 / 19

Examples
Hamiltonian cycle

• instance: graph G

• certificate: a sequence S of vertices
• certification: test if S is a Hamiltonian cycle in G

Hamiltonian path
• instance: graph G

• certificate: a sequence S of vertices
• certification: test if S is a Hamiltonian path in G

Factors
• instance: integers M and 0 ≤ k ≤ M

• certificate: integer P

• certification: test if P is prime, P divides M and P ≤ k

17 / 19

co-NP
Definition

co-NP is the set of decision problems whose no-instances can be certified in polynomial
time.

Remark: most problems so far are thought to not be in co-NP
• certify that a formula not satisfiable?
• certify that a graph has no Hamiltonian path?
• but HasFactor is in co-NP (certificate = all prime factors)

Exercise (after we see NP-completeness)

If a single NP-complete problem is in co-NP, NP=co-NP
(so doubtful that HasFactor is NP-complete)

18 / 19

19 / 19

