Lecture 20: Reductions II

Rafael Oliveira

University of Waterloo
Cheriton School of Computer Science
rafael.oliveira.teaching@gmail.com

November 20, 2023
Overview

- **More Reductions**
 - Hamiltonian Cycle and Traveling Salesman Problem (TSP)
 - SAT, 3SAT & Independent Set
 - Graph Coloring & 3SAT
 - Subset Sum & Vertex Cover

- **Web of Reductions**

- **Acknowledgements**
Claim 1: hamiltonian cycle \leq_m TSP

Reduction: different edge weights (for edges in graph vs edges not in graph)
More Reductions

- Hamiltonian Cycle and Traveling Salesman Problem (TSP)
- SAT, 3SAT & Independent Set
- Graph Coloring & 3SAT
- Subset Sum & Vertex Cover

Web of Reductions

Acknowledgements
- x_1, \ldots, x_n are boolean variables (i.e., take values in $\{0, 1\}$)
- a *literal* is a variable, or its negation (i.e., $x_i, \overline{x_i}$)
x_1, \ldots, x_n \text{ are boolean variables (i.e., take values in } \{0, 1\}\text{)}

a \textit{ literal} is a variable, or its negation (i.e., } x_i, \overline{x_i} \text{)

\textbf{CNF:} a boolean formula is in conjunctive normal form (CNF) if:
- it is the (conjunction) AND of a number of \textit{clauses},
- each clause being an (disjunction) OR of some \textit{literals}

Example:

\[(x_1 \lor x_3 \lor \overline{x_4}) \land (x_1 \lor x_2 \lor \overline{x_5} \lor x_6) \land (x_2 \lor x_4)\]
SAT

- x_1, \ldots, x_n are boolean variables (i.e., take values in \{0, 1\})
- a \textit{literal} is a variable, or its negation (i.e., $x_i, \overline{x_i}$)
- **CNF**: a boolean formula is in conjunctive normal form (CNF) if:
 - it is the (conjunction) AND of a number of \textit{clauses},
 - each clause being an (disjunction) OR of some \textit{literals}

Example:

$$(x_1 \lor x_3 \lor \overline{x_4}) \land (\overline{x_1} \lor x_2 \lor \overline{x_5} \lor x_6) \land (\overline{x_2} \lor x_4)$$

- **SAT** problem
 - **Input**: a CNF formula
 - **Output**: YES, if it has a satisfying assignment; NO otherwise
3SAT

- a 3CNF formula is a CNF formula with exactly 3 literals per clause

Example:

\[(x_1 \lor x_3 \lor \overline{x_4}) \land (\overline{x_1} \lor x_2 \lor x_5) \land (\overline{x}_2 \lor x_4 \lor x_5)\]
3SAT

- a **3CNF** formula is a CNF formula with *exactly 3 literals* per clause

 Example:

 \[(x_1 \lor x_3 \lor \overline{x_4}) \land (\overline{x_1} \lor x_2 \lor \overline{x_5}) \land (x_2 \lor x_4 \lor x_5)\]

- **3SAT** problem
 - **Input:** a 3CNF formula
 - **Output:** YES, if it has a satisfying assignment; NO otherwise
3SAT

- a 3CNF formula is a CNF formula with *exactly 3 literals* per clause
 Example:

\[
(x_1 \lor x_3 \lor \overline{x_4}) \land (\overline{x_1} \lor x_2 \lor \overline{x_5}) \land (\overline{x_2} \lor x_4 \lor x_5)
\]

- 3SAT problem
 - Input: a 3CNF formula
 - Output: YES, if it has a satisfying assignment; NO otherwise

Why are we talking about this problem?

Exercise: prove that SAT \leq_m 3SAT.
Claim 2: $\text{3SAT} \leq_m \text{IS}$
Claim 2: $3\text{SAT} \leq_m \text{IS}$

Proof: construct “conflict graph.”

Example: $(x \land y \land \bar{z}) \land (\bar{x} \land y \land z) \land (x \land \bar{y} \land z) \land (x \land y \land z) \land (\bar{x} \land y \land z) \land (x \land \bar{y} \land z)$
More Reductions
- Hamiltonian Cycle and Traveling Salesman Problem (TSP)
- SAT, 3SAT & Independent Set
- Graph Coloring & 3SAT
- Subset Sum & Vertex Cover

Web of Reductions

Acknowledgements
Given graph $G(V, E)$ and $k \in \mathbb{N}$, a proper k-coloring of G is a function $C : V \rightarrow \{1, 2, \ldots, k\}$ such that

For all $\{u, v\} \in E$ we have $C(u) \neq C(v)$.
Graph Coloring

- Given graph $G(V, E)$ and $k \in \mathbb{N}$, a proper k-coloring of G is a function $C : V \rightarrow \{1, 2, \ldots, k\}$ such that

 For all $\{u, v\} \in E$ we have $C(u) \neq C(v)$.

- **Graph Coloring** problem
 - **Input:** graph $G(V, E)$, $k \in \mathbb{N}$
 - **Output:** does G admit a proper k-coloring?
Graph Coloring

- Given graph $G(V, E)$ and $k \in \mathbb{N}$, a **proper k-coloring** of G is a function $C : V \rightarrow \{1, 2, \ldots, k\}$ such that

 For all $\{u, v\} \in E$ we have $C(u) \neq C(v)$.

- **Graph Coloring** problem
 - **Input**: graph $G(V, E)$, $k \in \mathbb{N}$
 - **Output**: does G admit a proper k-coloring?

- **3 Coloring** (3COLOR) problem
 - **Input**: graph $G(V, E)$
 - **Output**: does G admit a proper 3-coloring?
3SAT & 3COLOR

- **Claim 3:** \(3SAT \leq_m 3COLOR\)
3SAT & 3COLOR

- **Claim 3:** \(3\text{SAT} \leq_m 3\text{COLOR}\)
- **Proof:** let \(\varphi = C_1 \land \cdots \land C_m\) be a 3CNF
Claim 3: $3\text{SAT} \leq_m 3\text{COLOR}$

Proof: let $\varphi = C_1 \land \cdots \land C_m$ be a 3CNF

we use gadgets - subgraphs enforcing semantics of input formula φ

- Truth gadget: triangle with 3 vertices T, F, X (standing for True, False, Other)

 Enforces that T will be assigned color True, F will be assigned color False and X will be assigned the third color
Claim 3: 3SAT \leq_m 3COLOR

Proof: let $\varphi = C_1 \land \cdots \land C_m$ be a 3CNF

we use gadgets - subgraphs enforcing semantics of input formula φ

- **Truth gadget**: triangle with 3 vertices T, F, X (standing for True, False, Other)

 Enforces that T will be assigned color True, F will be assigned color False and X will be assigned the third color

- **Literal gadget**: for each $x_i, \overline{x_i}$, we have a triangle with vertices $X, x_i, \overline{x_i}$

 Enforces x_i and $\overline{x_i}$ get a proper assignment.

3SAT & 3COLOR

- **Claim 3:** \(3\text{SAT} \leq_m 3\text{COLOR}\)
- **Proof:** let \(\varphi = C_1 \land \cdots \land C_m\) be a 3CNF
 - we use gadgets - subgraphs enforcing semantics of input formula \(\varphi\)
 - **Truth gadget:** triangle with 3 vertices \(T, F, X\) (standing for True, False, Other)
 - Enforces that \(T\) will be assigned color True, \(F\) will be assigned color False and \(X\) will be assigned the third color
 - **Literal gadget:** for each \(x_i, \overline{x}_i\), we have a triangle with vertices \(X, x_i, \overline{x}_i\)
 - Enforces \(x_i\) and \(\overline{x}_i\) get a proper assignment.
 - **Clause gadget:** enforces each clause that becomes true under assignment will have a 3 coloring (iff) \(\text{Clause: } a \lor \overline{b} \lor \overline{c}\)
3SAT & 3COLOR - correctness

Need to prove following claims:

- Literal gadget enforces every variable is properly assigned in a coloring
- Clause gadget enforces that every valid 3-coloring of the graph corresponds to a variable assignment which makes corresponding clause true
More Reductions
- Hamiltonian Cycle and Traveling Salesman Problem (TSP)
- SAT, 3SAT & Independent Set
- Graph Coloring & 3SAT
- Subset Sum & Vertex Cover

Web of Reductions

Acknowledgements
Subset Sum & Vertex Cover

- **Claim 4:** Vertex Cover \leq_m Subset Sum
Claim 4: Vertex Cover \(\leq_m \) Subset Sum

Proof: given \(G(V, E) \) and \(k \), need to construct (in poly-time) a (multi)set \(X \) of integers and \(T \) such that:

\[X \text{ has a subset that sums to } T \iff G \text{ has a vertex cover of size } k. \]
Subset Sum & Vertex Cover

- **Claim 4:** Vertex Cover \(\leq_m \) Subset Sum

- **Proof:** given \(G(V, E) \) and \(k \), need to construct (in poly-time) a (multi)set \(X \) of integers and \(T \) such that:

 \(X \) has a subset that sums to \(T \) \(\iff \) \(G \) has a vertex cover of size \(k \).

- **Reduction:**
 - Number edges (arbitrarily) from 0 to \(m - 1 \). Edge \(i \) will correspond to integer \(b_i := 4^i \)
 - For each vertex \(u \in V \) assign number

 \[a_u := 4^m + \sum_{i \in \delta(u)} 4^i \]

 where \(\delta(u) \) is the set of edges with \(u \) as one endpoint.
 - Let

 \[T := k \cdot 4^m + \sum_{i=0}^{m-1} 2 \cdot 4^i \]
 - Let \(X = \{a_u, b_i\}_{u \in V, 0 \leq i < m} \)
Subset Sum & Vertex Cover - proof of reduction

- Need to prove that $\langle G, k \rangle$ has a vertex cover of size k iff X has a subset of elements with sum T
Subset Sum & Vertex Cover - proof of reduction

- Need to prove that \(\langle G, k \rangle \) has a vertex cover of size \(k \) iff \(X \) has a subset of elements with sum \(T \)

- \((\Rightarrow) \) Let \(C \subseteq V \) be a vertex cover of size \(k \). Consider the subset

\[
Y := \{a_u \mid u \in C\} \cup \{b_i \mid \text{edge } i \text{ has exactly one endpoint in } C\}
\]

easy to check it has sum \(T \)
Subset Sum & Vertex Cover - proof of reduction

- Need to prove that \(\langle G, k \rangle \) has a vertex cover of size \(k \) iff \(X \) has a subset of elements with sum \(T \)

\((\Leftarrow)\) Let \(\{a_u\}_{u \in C} \cup \{b_i\}_{i \in F} =: Y \subset X \) be a subset with sum \(T \). Must have:

\[
\sum_{u \in C} a_u + \sum_{i \in F} b_i = T = k \cdot 4^m + \sum_{i=0}^{m-1} 2 \cdot 4^i
\]

since there are no carries from lower order base-4 digits (i.e., the \(b_i \)'s), it must be the case that \(|C| = k \). moreover, to each \(4^i \), there is at most one \(b_i \) on LHS that contributes with \(4^i \), so \(C \) must be a vertex cover.
More Reductions

- Hamiltonian Cycle and Traveling Salesman Problem (TSP)
- SAT, 3SAT & Independent Set
- Graph Coloring & 3SAT
- Subset Sum & Vertex Cover

Web of Reductions

Acknowledgements
Current algorithmic world view

- Wait, why haven’t we proved the missing arrows? Do they even hold?
Is there a way to organize our world view?

- Is there some property that unifies the problems we have seen so far?
- Why would any of these be considered “hard”?
- Can we “classify” problems according to their “difficulty”? How can we measure this?
Acknowledgement

Based on

- [Kleinberg Tardos 2006, Chapter 8]
- [Erickson 2019, Chapter 12]
References

Cormen, Thomas and Leiserson, Charles and Rivest, Ronald and Stein, Clifford (2009)
MIT Press

Dasgupta, Sanjay and Papadimitriou, Christos and Vazirani, Umesh (2006)
Algorithms

Erickson, Jeff (2019)
Algorithms
https://jeffe.cs.illinois.edu/teaching/algorithms/

Kleinberg, Jon and Tardos, Eva (2006)
Algorithm Design.
Addison Wesley