CS 341: Algorithms

Lecture 21: NP-completeness

Eric Schost

based on lecture notes by many other CS341 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Fall 2024

1/23

Aside: the rock’s statement

2 /23

NP N co-NP

These are the problems where we can certify both yes and no instances efficiently.

MaxFlowDecision:
® input: integer-weighted graph G, source s, sink t, K

® output: is there a flow of value at least K7

MinCutDecision:
® input: integer-weighted graph G, source s, sink ¢, K

® output: is there a cut of capacity at most K7

Claim: max flow = min cut = both problems in NP N co-NP
® MAXFLOWDECISION is NP
certificate that there is flow of value at least K: a flow of value at least K
® MAXFLOWDECISION is co-NP
certificate that there is no flow of value at least K: a cut of capacity at most K — 1

3/23

NP N co-NP = P?
Flow and cuts
¢ in P! (Edmonds-Karp)

Linear programming
® optimize a linear function while satisfying linear inequalities
® also have a max (something) = min (something else), so NP N co-NP
e in P!l (ellipsoid)

Primality
e certificates for non primes (easy) and for primes (not so easy), so NP N co-NP
e in P!l (AKS)

Factoring
e HASFACTOR is in NP N co-NP
° ?
4 / 23

NP-completeness

5/23

NP-complete problems
Definition

A decision problem PROB is NP-complete if
® PROB is in NP
e for any PROB’ in NP, PROB’ <p PROB

polynomial time for PROB would give P=NP (so polynomial time for SAT,
INDEPENDENTSET, VERTEXCOVER, CLIQUE, ...)

Remark: NP-hard problems = the second part of the definition
e decision problem PROB such that for any PROB’ in NP, PROB’ <p PROB

Exercise

find an NP-hard problem that is provably not in NP

6/23

The Cook-Levin theorem

CIRCUITSAT is NP-complete

Remark 1: we already know it is in NP

Remark 2:
e we proved CIRCUITSAT <p 3SAT
® s0 3SAT is NP-complete (it is in NP)
e we won’t use CIRCUITSAT too much after that

7/23

World map
Hff:;Hc
Ciecotr SAT e— 3SAT

V8¢ Vle C’U‘l"‘

8/23

World map

H? He S~
O
~ Cieeoth SAT — -3J§m’

8/23

Sketch of proof

take PROB in NP (so there is a certifying algorithm B), want PROB < CIRCUITSAT
~» must transform an instance x of PROB into a circuit
Idea

e given x, verification algorithm B(z,y) can be turned into a circuit with y as input

e we call CIRCUITSAT to find y

Example
® problem PROB: INDEPENDENTSET
® instance z: complete graph with 3 vertices (aka a triangle), K = 2

e certificate y: 3 bits y1, y2, y3 (yes/no for each vertex)

circuit for B(x,y) computes the “formula”

(f1+ye+ys>2) AT Aya A yiAys A Y2 Ays

9/23

Sketch of proof

Turing machines
¢ RAM model too complicated, use Turing machines instead
® have a pointer to memory and a state (~ line in the source code)

e cach step, pointer can write a new symbol, move left / right and change state

From machine to circuit

k

® on input bit vector z of size n, introduce a large table T of size n* x n* (k=exponent

in runtime of B)

e cell (7, 7) records contents of jth memory cell at time i, whether the pointer was
there, and the machine state

e cells at row i + 1 are given by a boolean circuit taking row ¢ as input (big, but
polynomial size)

® output of the circuit = output of the Turing machine at the last time step

10/ 23

Some NP-complete problems

CircuitSAT
3SAT, SAT

independent set, vertex cover, clique

(directed) Hamiltonian cycle, Hamiltonian path
® traveling salesman

® subset sum, 0/1 knapsack

(2SAT is polynomial time)

11/23

IndependentSet, VertexCover, Clique are NP-complete

We already know they are in NP

3SAT <p INDEPENDENTSET

Reduction (transform an instance F' of 3SAT with s clauses into an independent set
instance)

® build a graph G with one vertex per literal
® connect all literals in any given clause

® connect all pairs z;, T;

Remark: reduction takes polynomial time

12/23

World map

HT -HC\
/_\
~ Ciceutt SAT & §|gm'

\@

1323

Example

A 3CNF formula with s = 3

F:(xl\/xg) VAN (.%'2\/1'3\/1‘71) A (1‘71\/1'3\/72).

X Yy %Ly . Yy

14 /23

Proof

F satisfiable iff G has an independent set of size at least s

If F satisfiable
® pick one true literal in each clause as set S, so |S| = s
® no edge within clauses

® no edge {x;,T;} either

If G has an independent set S of size at least s
® S has (exactly) one vertex per clause
® make these literals true (for any variable we did not assign, arbitrary choice)

® 1o conflict, because any x;,T; cannot be both in §

15/23

DirectedHamiltonianCycle, HamiltonianCycle, HamiltonianPath
are NP-complete

Definition: DIRECTEDHAMILTONIANCYCLE
® input: directed graph G
® output: does G have a directed cycle that visits each vertex once?
° NP

Claim

3SAT <p DIRECTEDHAMILTONIANCYCLE <p HAMILTONIANCYCLE

start with 3SAT <p DIRECTEDHAMILTONIANCYCLE, so we are given a formula in 3CNF
(Remark: almost the same construction works for DIRECTEDHAMILTONIANPATH)

16 /23

World map

“@‘76 Y

% Cier"SA-TZ/_) 3SAT
\ SW

1723

Starting the construction
S
O
D
QZOZ)Z(ZOED o, Rules

(3) ® source s, sink ¢
6%90909090 ® one row of vertices per variable z;
\é << 64% %2 ® on row 7, 3 vertices v; j 1, Vi j,2, Vi j,3 Per
N S > clause C;
5;)2060606 ¢3 e example with (z1 V z2 V @3) A (T1 V x2)

(we’re not done yet)

O

18 /23

Hamiltonian cycles = variable assignments

convention: T = left to right, F' = right to left
S

o+—\—‘s
o*o/éoéoéoéo %,=F

5569090 j) %y:T

L 20\2020206 %= T
O

E.

so far, 2" Hamiltonian cycles

1923

Hamiltonian cycles = variable assignments

convention: T = left to right, F' = right

/O

g

A

A
4
’Tbc

i

ki
N

to left
S

e
/¢
O

A\
'@/
N
~n O
N
M

so far, 2" Hamiltonian cycles

1923

Using the clauses to finish the graph

For any clause C;
® add a new vertex, also called ¢;
e for any literal «; in C}, add edges (v;,j,2, ¢j) and (cj, v;,j,3)
e for any literal Z; in C}, add edges (c;, vs,5,2) and (v;,5,3, ¢j)

! 02020202020
Yo Yo Y0 Ve Y Sum
w1 OZO20202020
Vi Ve Vzo Tgy Ve Vs

S VS
wO0Z020202020
VUsn Vag Vi Sy Vip ¥y

O,

01:(m1Va:2V:Tg)

20/23

3SAT <p DirectedHamiltonianCycle

Claim

if formula sastisfiable, there is a directed Hamiltonian cycle in G

e variable assignment = direction (LtoR for true or RtoL for false) on each row
® choose one literal z or T set to true per clause Cj
® detour to visit ¢; when we go through the corresponding row

(if = true we go LtoR, if z false we go RtoL)

21 /23

3SAT <p DirectedHamiltonianCycle

Claim

if directed Hamiltonian cycle in G, formula sastisfiable

Key Observation: if cycle goes from v; j2 to ¢;, must come back to v; ;3 (else, cannot put
v; ;,3 on the cycle), same with v; j3 — ¢; = v; 52

wl O202@202020
Yo Yo Y0 Vo Y S

wl O2CR0202020

Vo Yy Ve T Sen Vogn

>55
w2 Q020000
Van Vg Vi Oy, Yp T 22 / 23

O,

3SAT <p DirectedHamiltonianCycle

if directed Hamiltonian cycle in G, formula sastisfiable

Key Observation: if cycle goes from v; j2 to ¢;, must come back to v; ;3 (else, cannot put
Vi 4,3 O the cycle), same with Vi 4,3 = Cj =7 Vi 42

Consequences
® each row is visited LtoR or RtoL
® gives an assignment for x1,...,x,

® by design, it satisfies all clauses

22 /23

DirectedHamiltonianCycle <p HamiltonianCycle

Reduction
® given: a directed graph G
® build: an undirected graph G’

e ensure: directed Hamiltonian cycle in G <= Hamiltonian cycle in G’

Gadget:
e replace each vertex v by vin, YUmid, Vout

® make all edges undirected

N oD /

—0——0—-o0

e \ Vi Tk th\

23/23

DirectedHamiltonianCycle <p HamiltonianCycle
Claim

directed Hamiltonian cycle in G <= Hamiltonian cycle in G’

Proof

e if directed Hamiltonian cycle in G, Hamiltonian cycle in G’ (follow the cycle)

e suppose Hamiltonian cycle in G’. Can only have

N\ / N /

_0—0—0 tumt _—O—O—0O
Vi Vil th\ Vi Vonid w\

(vmiq would be isolated)

gives a directed Hamiltonian cycle in G

24 /23

