CS 341: Algorithms

Lecture 21: NP-completeness

Éric Schost

based on lecture notes by many other CS341 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Fall 2024

Aside: the rock's statement

$NP \cap co-NP$

These are the problems where we can certify **both** yes and no instances efficiently.

MaxFlowDecision:

- input: integer-weighted graph G, source s, sink t, K
- **output:** is there a flow of value **at least** K?

MinCutDecision:

- input: integer-weighted graph G, source s, sink t, K
- **output:** is there a cut of capacity **at most** K?

Claim: \max flow = \min cut \Longrightarrow both problems in $NP \cap co-NP$

- MAXFLOWDECISION is NP certificate that there is flow of value at least K: a flow of value at least K
- MaxFlowDecision is **co-NP** certificate that there is no flow of value at least K: a cut of capacity at most K-1

$NP \cap co-NP = P$?

Flow and cuts

• in **P**! (Edmonds-Karp)

Linear programming

- optimize a linear function while satisfying linear inequalities
- also have a max (something) = min (something else), so $NP \cap co-NP$
- in **P**!! (ellipsoid)

Primality

- certificates for non primes (easy) and for primes (not so easy), so $NP \cap co-NP$
- in **P**!!! (AKS)

Factoring

- HasFactor is in $NP \cap co-NP$
- ?

NP-completeness

NP-complete problems

Definition

A decision problem Prob is NP-complete if

- Prob is in **NP**
- for any Prob' in **NP**, Prob' \leq_P Prob

polynomial time for Prob would give **P=NP** (so polynomial time for SAT, INDEPENDENTSET, VERTEXCOVER, CLIQUE, ...)

Remark: NP-hard problems = the second part of the definition

• decision problem Prob such that for any Prob' in **NP**, Prob' \leq_P Prob

Exercise

find an NP-hard problem that is provably not in **NP**

The Cook-Levin theorem

Claim

CIRCUITSAT is NP-complete

Remark 1: we already know it is in NP

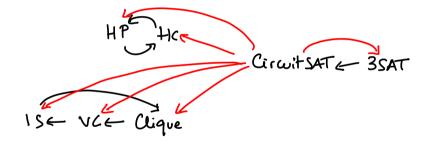
Remark 2:

- we proved CIRCUITSAT $\leq_P 3SAT$
- so 3SAT is NP-complete (it is in NP)
- we won't use CIRCUITSAT too much after that

World map

ISE VCE Clique

World map



Sketch of proof

take Prob in **NP** (so there is a certifying algorithm B), want Prob \leq CircuitSAT \sim must transform an instance x of Prob into a circuit

Idea

- given x, verification algorithm B(x,y) can be turned into a circuit with y as input
- we call CircuitSAT to find y

Example

- problem Prob: IndependentSet
- instance x: complete graph with 3 vertices (aka a triangle), K=2
- **certificate** y: 3 bits y_1, y_2, y_3 (yes/no for each vertex)
- circuit for B(x,y) computes the "formula"

$$(y_1 + y_2 + y_3 \ge 2) \land \overline{y_1 \land y_2} \land \overline{y_1 \land y_3} \land \overline{y_2 \land y_3}$$

Sketch of proof

Turing machines

- RAM model too complicated, use Turing machines instead
- have a **pointer** to memory and a **state** (\simeq line in the source code)
- each step, pointer can write a new symbol, move left / right and change state

From machine to circuit

- on input bit vector x of size n, introduce a large table T of size $n^k \times n^k$ (k=exponent in runtime of B)
- cell (i, j) records contents of jth memory cell at time i, whether the pointer was there, and the machine state
- cells at row i+1 are given by a boolean circuit taking row i as input (big, but polynomial size)
- output of the circuit = output of the Turing machine at the last time step

Some NP-complete problems

- CircuitSAT
- 3SAT, SAT
- independent set, vertex cover, clique
- (directed) Hamiltonian cycle, Hamiltonian path
- traveling salesman
- subset sum, 0/1 knapsack

(2SAT is polynomial time)

IndependentSet, VertexCover, Clique are NP-complete

We already know they are in **NP**

Claim

 $3SAT <_P INDEPENDENTSET$

Reduction (transform an instance F of 3SAT with s clauses into an independent set instance)

- build a graph G with one vertex per literal
- connect all literals in any given clause
- connect all pairs x_i , $\overline{x_i}$

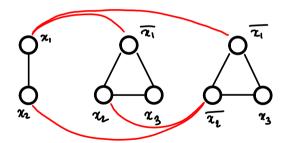
Remark: reduction takes polynomial time

World map

Example

A 3CNF formula with s=3

$$F = (x_1 \vee x_2) \wedge (x_2 \vee x_3 \vee \overline{x_1}) \wedge (\overline{x_1} \vee x_3 \vee \overline{x_2}).$$



Proof

Claim

F satisfiable iff G has an independent set of size at least s

If F satisfiable

- pick one true literal in each clause as set S, so |S| = s
- no edge within clauses
- no edge $\{x_i, \overline{x_i}\}$ either

If G has an independent set S of size at least s

- S has (exactly) one vertex per clause
- make these literals true (for any variable we did not assign, arbitrary choice)
- no conflict, because any $x_i, \overline{x_i}$ cannot be both in S

DirectedHamiltonianCycle, HamiltonianCycle, HamiltonianPath are NP-complete

Definition: DIRECTEDHAMILTONIANCYCLE

- input: directed graph G
- **output:** does G have a directed cycle that visits each vertex once?
- NP

Claim

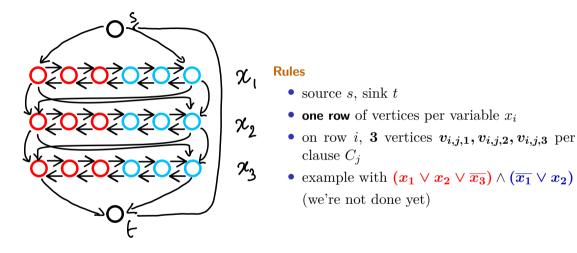
3SAT \leq_P DIRECTEDHAMILTONIANCYCLE \leq_P HAMILTONIANCYCLE

start with 3SAT \leq_P DIRECTEDHAMILTONIANCYCLE, so we are given a formula in 3CNF

(Remark: almost the same construction works for DIRECTEDHAMILTONIANPATH)

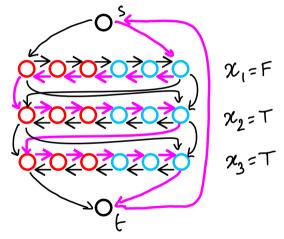
World map

Starting the construction



Hamiltonian cycles = variable assignments

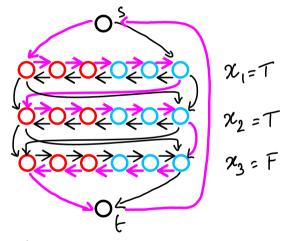
convention: T = left to right, F = right to left



so far, 2^n Hamiltonian cycles

Hamiltonian cycles = variable assignments

convention: T = left to right, F = right to left

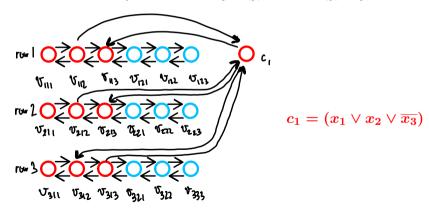


so far, 2^n Hamiltonian cycles

Using the clauses to finish the graph

For any clause C_i

- add a new vertex, also called c_j
- for any literal x_i in C_j , add edges $(v_{i,j,2}, c_j)$ and $(c_j, v_{i,j,3})$
- for any literal $\overline{x_i}$ in C_j , add edges $(c_j, v_{i,j,2})$ and $(v_{i,j,3}, c_j)$



3SAT \leq_P **DirectedHamiltonianCycle**

Claim

if formula sastisfiable, there is a directed Hamiltonian cycle in G

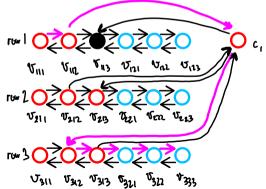
- variable assignment \implies direction (LtoR for true or RtoL for false) on each row
- choose **one** literal x or \bar{x} set to true per clause C_i
- detour to visit c_j when we go through the corresponding row (if x true we go LtoR, if x false we go RtoL)

3SAT \leq_P **DirectedHamiltonianCycle**

Claim

if directed Hamiltonian cycle in G, formula sastisfiable

Key Observation: if cycle goes from $v_{i,j,2}$ to c_j , must come back to $v_{i,j,3}$ (else, cannot put $v_{i,j,3}$ on the cycle), same with $v_{i,j,3} \to c_j \to v_{i,j,2}$



3SAT \leq_P **DirectedHamiltonianCycle**

Claim

if directed Hamiltonian cycle in G, formula sastisfiable

Key Observation: if cycle goes from $v_{i,j,2}$ to c_j , must come back to $v_{i,j,3}$ (else, cannot put $v_{i,j,3}$ on the cycle), same with $v_{i,j,3} \to c_j \to v_{i,j,2}$

Consequences

- each row is visited LtoR or RtoL
- gives an assignment for x_1, \ldots, x_n
- by design, it satisfies all clauses

DirectedHamiltonianCycle \leq_P **HamiltonianCycle**

Reduction

- given: a directed graph G
- build: an undirected graph G'
- ensure: directed Hamiltonian cycle in $G \iff$ Hamiltonian cycle in G'

Gadget:

- replace each vertex v by $v_{\rm in}, v_{\rm mid}, v_{\rm out}$
- make all edges undirected

DirectedHamiltonianCycle \leq_P **HamiltonianCycle**

Claim

directed Hamiltonian cycle in $G \iff$ Hamiltonian cycle in G'

Proof

- if directed Hamiltonian cycle in G, Hamiltonian cycle in G' (follow the cycle)
- suppose Hamiltonian cycle in G'. Can only have

 $(v_{\text{mid}} \text{ would be isolated})$ gives a directed Hamiltonian cycle in G