Lecture 21: Intractability - NP and coNP

Rafael Oliveira

University of Waterloo
Cheriton School of Computer Science
rafael.oliveira.teaching@gmail.com

November 23, 2023
Overview

- Complexity Classes & Complete Problems
 - NP
 - coNP
 - Completeness for NP

- Completing Karp Reductions/Polynomial Transformations
 - NP-completeness of 3SAT
 - Current Worldview

- Acknowledgements
Let Π be a decision problem and let L_Π be the set of all YES instances of Π. Then $L_\Pi \subseteq \{0, 1\}^*$

decision problems \leftrightarrow subsets of all boolean strings
Let Π be a decision problem and let L_Π be the set of all YES instances of Π. Then $L_\Pi \subseteq \{0, 1\}^*$

decision problems \leftrightarrow subsets of all boolean strings

$\text{NP} :=$ class of decision problems Π with following property:

- There is a poly-time algorithm V_Π and a constant $c > 0$ such that
 - For any $x \in L_\Pi$ (i.e., YES instance) of size n, there is a proof/witness y of size n^c such that $V_\Pi(x, y) = 1$.
 - For any $x' \not\in L_\Pi$ (i.e., NO instance) there is no such proof z of size n^c such that $V_\Pi(x', z) = 1$.

NP
Let Π be a decision problem and let L_Π be the set of all YES instances of Π. Then $L_\Pi \subseteq \{0, 1\}^*$

decision problems \leftrightarrow subsets of all boolean strings

NP := class of decision problems Π with following property:
- There is a poly-time algorithm V_Π and a constant $c > 0$ such that
 - For any $x \in L_\Pi$ (i.e., YES instance) of size n, there is a proof/witness y of size n^c such that $V_\Pi(x, y) = 1$
 - For any $x' \notin L_\Pi$ (i.e., NO instance) there is no such proof z of size n^c such that $V_\Pi(x', z) = 1$.

In other words, NP is the class of decision problems where the YES instances have a small proof that can be verified in poly-time
Problems in NP

- Clique
- Independent Set
- SAT (and 3SAT)
- TSP
- Hamilton cycle (and Hamilton path)
- Subset Sum
- Vertex Cover
- 3COLOR (and the graph coloring problem)
- *every* problem in P
Complexity Classes & Complete Problems
- NP
- coNP
 - Completeness for NP

Completing Karp Reductions/Polynomial Transformations
- NP-completeness of 3SAT
- Current Worldview

Acknowledgements
The class coNP is essentially the opposite of NP.

For a decision problem Π, let $\overline{\Pi}$ be the \textit{opposite} problem to Π, that is,

$$x \in L_{\Pi} \iff x \notin L_{\overline{\Pi}}$$

equivalently, $L_{\overline{\Pi}} = \overline{L_{\Pi}}$.

In simpler terms, every YES instance of Π is a NO instance of $\overline{\Pi}$ (and vice-versa).
The class coNP is essentially the opposite of NP.

For a decision problem \(\Pi \), let \(\bar{\Pi} \) be the opposite problem to \(\Pi \), that is,

\[
x \in L_{\Pi} \iff x \notin L_{\bar{\Pi}}
\]

Equivalently, \(L_{\bar{\Pi}} = \overline{L_{\Pi}} \).

In simpler terms, every YES instance of \(\Pi \) is a NO instance of \(\bar{\Pi} \) (and vice-versa).

coNP := class of decision problems \(\Pi \) such that \(\bar{\Pi} \in \text{NP} \).
Relation between P, NP and $coNP$

Unknown:

1) is $P = NP \cap coNP$?

2) is $NP = coNP$?

3) is $P = NP$?
- Complexity Classes & Complete Problems
 - NP
 - coNP
 - Completeness for NP

- Completing Karp Reductions/Polynomial Transformations
 - NP-completeness of 3SAT
 - Current Worldview

- Acknowledgements
A remark about reductions

- Given a particular reduction \(\leq \) (Turing, Karp), we can define a complete problem for a complexity class \(C \) as follows:
 - **Hardness**: \(\Pi \) is \(C \)-hard if for every problem \(\Gamma \in C \), we have \(\Gamma \leq \Pi \)
 - **Membership in** \(C \): \(\Pi \in C \)
A remark about reductions

- Given a particular reduction \leq (Turing, Karp), we can define a complete problem for a complexity class C as follows:
 - **Hardness**: Π is C-hard if for every problem $\Gamma \in C$, we have $\Gamma \leq \Pi$
 - **Membership in C**: $\Pi \in C$

Complexity theorists prefer to define NP-completeness under *Karp reductions* (or polynomial transformations) because, as we will see, NP is closed under such reductions
 - Note that we *do not know* whether NP is closed under Turing reductions
 - The above would imply $NP = coNP$, which is considered unlikely

Under Turing reductions, $UNSAT \equiv SAT$
A boolean circuit is a DAG with:

- input gates
- AND/OR/NOT gates,
- and a special gate (the output gate)
CIRCUIT-SAT

- A *boolean circuit* is a DAG with:
 - input gates
 - AND/OR/NOT gates,
 - and a special gate (the output gate)

- **CIRCUIT-SAT** problem:
 - **Input:** a boolean circuit Φ
 - **Output:** YES, if there is a truth assignment α such that $\Phi(\alpha) = 1$, NO otherwise.
Cook-Levin Theorem: CIRCUIT-SAT is NP-complete

Theorem (Cook-Levin)

CIRCUIT-SAT is NP-complete under polynomial transformations.
Cook-Levin Theorem: CIRCUIT-SAT is NP-complete

Theorem (Cook-Levin)

CIRCUIT-SAT is NP-complete under polynomial transformations.

- Want to prove that for any $\Pi \in \text{NP}$, we have $\Pi \leq_m \text{CIRCUIT-SAT}$

Proof sketch: computation is local

- $\Pi \in \text{NP} \Rightarrow \exists$ poly-time verification algorithm V_Π and $c > 0$ such that for any instance $x \in \{0, 1\}^n$,

 $$x \in L_\Pi \iff \exists y \in \{0, 1\}^{nc} \text{ s.t. } V_\Pi(x, y) = 1$$
Cook-Levin Theorem: CIRCUIT-SAT is NP-complete

Theorem (Cook-Levin)

CIRCUIT-SAT is NP-complete under polynomial transformations.

- Want to prove that for any $\Pi \in \text{NP}$, we have $\Pi \leq_m \text{CIRCUIT-SAT}$
- **Proof sketch:** computation is local
 - $\Pi \in \text{NP} \Rightarrow \exists$ poly-time verification algorithm V_Π and $c > 0$ such that for any instance $x \in \{0,1\}^n$,

 $$x \in L_\Pi \iff \exists y \in \{0,1\}^{nc} \text{ s.t. } V_\Pi(x, y) = 1$$

 - If $V_\Pi(x, y)$ runs in time $O(n^\gamma)$ (since it is polynomial in terms of the input size), there is circuit of size $O(n^\gamma)$ simulating computation of V_Π

 Can construct this circuit (from description of V_Π) in $\text{poly}(n)$-time!
Cook-Levin Theorem: CIRCUIT-SAT is NP-complete

Theorem (Cook-Levin)

CIRCUIT-SAT is NP-complete under polynomial transformations.

- Want to prove that for any \(\Pi \in \mathbb{NP} \), we have \(\Pi \leq_m \text{CIRCUIT-SAT} \)
- **Proof sketch:** *computation is local*
 - \(\Pi \in \mathbb{NP} \Rightarrow \exists \text{ poly-time verification algorithm } V_{\Pi} \text{ and } c > 0 \text{ such that for any instance } x \in \{0,1\}^n, \)

\[
x \in L_{\Pi} \iff \exists y \in \{0,1\}^{nc} \text{ s.t. } V_{\Pi}(x,y) = 1
\]

- If \(V_{\Pi}(x,y) \) runs in time \(O(n^\gamma) \) (since it is polynomial in terms of the input size), there is circuit of size \(O(n^\gamma) \) simulating computation of \(V_{\Pi} \)
- So, we get a poly\((n)\)-sized circuit \(\Phi_x(y) \) which is satisfiable iff \(x \in L_{\Pi} \)!
Cook-Levin Theorem: CIRCUIT-SAT is NP-complete

Theorem (Cook-Levin)

CIRCUIT-SAT is NP-complete under polynomial transformations.

Want to prove that for any \(\Pi \in \text{NP} \), we have \(\Pi \leq_m \text{CIRCUIT-SAT} \)

Proof sketch: *computation is local*

- \(\Pi \in \text{NP} \Rightarrow \exists \) poly-time verification algorithm \(V_\Pi \) and \(c > 0 \) such that for any instance \(x \in \{0,1\}^n \),

\[
x \in L_\Pi \iff \exists y \in \{0,1\}^{nc} \text{ s.t. } V_\Pi(x, y) = 1
\]

- If \(V_\Pi(x, y) \) runs in time \(O(n^\gamma) \) (since it is polynomial in terms of the input size), there is circuit of size \(O(n^\gamma) \) simulating computation of \(V_\Pi \)

So, we get a poly\((n) \)-sized circuit \(\Phi_x(y) \) which is satisfiable iff \(x \in L_\Pi \)!

Thus, we have a transformation

\[
x \mapsto \Phi_x
\]

such that \(x \in L_\Pi \iff \Phi_x \in \text{CIRCUIT-SAT} \).
Complexity Classes & Complete Problems
- NP
- coNP
- Completeness for NP

Completing Karp Reductions/Polynomial Transformations
- NP-completeness of 3SAT
- Current Worldview

Acknowledgements
3SAT is NP-complete

To prove this, by Cook-Levin theorem, need to show that
\[\text{CIRCUIT-SAT} \leq_m \text{3SAT} \]
3SAT is NP-complete

- To prove this, by Cook-Levin theorem, need to show that
 \[\text{CIRCUIT-SAT} \leq_m 3\text{SAT} \]
- By transitivity of polynomial transformations, enough to show
 \[\text{CIRCUIT-SAT} \leq_m \text{SAT} \]
3SAT is NP-complete

- To prove this, by Cook-Levin theorem, need to show that
 \[\text{CIRCUIT-SAT} \leq_m 3\text{SAT} \]
- By transitivity of polynomial transformations, enough to show
 \[\text{CIRCUIT-SAT} \leq_m \text{SAT} \]
- Let \(\Phi \in \text{CIRCUIT-SAT} \) of size \(n \) (i.e., \(n \) gates and wires). We will construct CNF \(\Psi \) with \(O(n) \) clauses such that
 \[\Phi \text{ is satisfiable } \iff \Psi \text{ is satisfiable.} \]
3SAT is NP-complete

- To prove this, by Cook-Levin theorem, need to show that
 \[\text{CIRCUIT-SAT} \leq_m 3\text{SAT} \]
- By transitivity of polynomial transformations, enough to show
 \[\text{CIRCUIT-SAT} \leq_m \text{SAT} \]
- Let \(\Phi \in \text{CIRCUIT-SAT} \) of size \(n \) (i.e., \(n \) gates and wires). We will construct CNF \(\Psi \) with \(O(n) \) clauses such that
 \[\Phi \text{ is satisfiable } \iff \Psi \text{ is satisfiable.} \]
- Can do the above simulating gate-by-gate (wire-by-wire):
 - each gate has a new variable, which will tell us the value of the gate
 - Simulate each gate operation (AND/OR/NOT) as a CNF
 - ensure that output gate variable should be true
Gate Simulations

- AND: CNF

\[(\bar{g} \lor u_1) \land (\bar{g} \lor u_2) \land (g \lor \bar{u}_1 \lor \bar{u}_2)\]

If \(u_1 \) or \(u_2 = 0 \) then must have \(g = 0 \) to satisfy above

\[(\bar{g} \lor \bar{u}_1, \lor \bar{u}_2)\]

If both \(u_1 = u_2 = 1 \) then \(g = 1 \)
Gate Simulations

OR: CNF

\[(g \lor \overline{u_1}) \land (g \lor \overline{u_2}) \land (\overline{g} \lor u_1 \lor u_2)\]

The diagram illustrates the logic gates and the corresponding CNF expression. The expression is split into two clauses:

1. \((g \lor \overline{u_1}) \land (g \lor \overline{u_2})\) - This clause is satisfied if either \(g\) is 1 or both \(u_1\) and \(u_2\) are 0.

2. \((\overline{g} \lor u_1 \lor u_2)\) - This clause is satisfied if \(u_1 = u_2 = 0\) and \(g\) is 0, or if any of the variables are 1.

For the diagram:
- If \(u_1 = u_2 = 1\), then \(g\) must be 1 to satisfy the above clause.
- If \(u_1 = u_2 = 0\), then \(g\) must be 0 to satisfy the above clauses.
NOT: CNF

\[(\overline{g} \lor \overline{u}) \land (g \lor u)\]

\[\begin{align*}
\overline{g} \lor \overline{u} \\
\text{if } u = 1 \text{ then } g = 0 \text{ to satisfy above clause}
\end{align*}\]

\[g \lor u \]

\[\text{if } u = 0 \text{ then } g = 1 \text{ to satisfy above clause}\]
Gate Simulations

1: CNF is simply literal g
Gate Simulations

- 0: CNF is simply literal \overline{g}
All NP-complete problems!
Where do we go next?

- CS 360/365
 Formalization of Algorithms, full proof of Cook-Levin & much more!
 (Prof. Blais teaching it next term)
- Are there harder problems?
 For sure! See CS 360/365 or more advanced courses
Acknowledgement

Based on

- [Erickson 2019, Chapter 12]
- Prof. Lau’s Lecture 18 notes
 https://cs.uwaterloo.ca/~lapchi/cs341/notes/L18.pdf
References

Cormen, Thomas and Leiserson, Charles and Rivest, Ronald and Stein, Clifford (2009)
MIT Press

Dasgupta, Sanjay and Papadimitriou, Christos and Vazirani, Umesh (2006)
Algorithms

Erickson, Jeff (2019)
Algorithms
https://jeffe.cs.illinois.edu/teaching/algorithms/

Kleinberg, Jon and Tardos, Eva (2006)
Algorithm Design.
Addison Wesley