CS 341: Algorithms

Lecture 22: NP-completeness, continued

Éric Schost

based on lecture notes by many other CS341 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Fall 2024

the Traveling Salesman Problem

Traveling salesman is NP-complete

Definition: TSP

- input: n, nonnegative integer "distances" $d_{u,v}$, $1 \le u < v \le n$, integer K
- output: is there a Hamiltonian cycle C in the complete graph G_n on n vertices with $\sum_{\{u,v\}\in C} d_{u,v} \leq K$
- NP (certificate? certifier? runtime? correctness?)

Claim

HAMILTONIANCYCLE $\leq_P TSP$

Proof: given G = (V, E), set n = |V|

- reduction: $d_{u,v} = 1$ if $\{u, v\}$ in E, $d_{u,v} = 2$ otherwise, and K = n
- Hamiltonian cycle in G_n with $\sum_{\{u,v\}\in C} d_{u,v} \le n \iff d_{u,v} = 1$ for all $\{u,v\}$ on C \iff all $\{u,v\}$ on C are in E

Remark: Euclidean traveling salesman

Definition: EUCLIDEANTSP

- input: $(x_u, y_u)_{1 \le u \le n}$ integers
- output: same as above, with $d_{u,v} = \sqrt{(x_u x_v)^2 + (y_u y_v)^2}$ (not necessarily integers)

Unknown if NP

• open: how to test efficiently if a sum of square roots of integers is $\leq K$

NP-hard

Colorability

kColorable

Definition:

- input: symmetric graph G, integer k
- output: can we color all vertices of G with k colors, with adjacent vertices having different colors?
- NP

Remark

- k = 1: G 1-colorable iff no edge
- k = 2: G 2-colorable iff bipartite

kColorable is NP-complete

Claim

 $3SAT \leq_P KCOLORABLE$

Starting the construction

- given a formula in 3CNF, e.g. $(x_1 \lor x_2 \lor \overline{x_3}) \land (\overline{x_1} \lor x_2)$
- build a graph with vertices x_i and $\overline{x_i}$, T, F, and a base
- 3-coloring \iff variable assignments $(x_i \text{ true if the same color as } T)$

3-colorability gadget

For any clause $y_1 \vee y_2 \vee y_3$, attach graph below to the previous construction

Claim

Assuming we can use colors T or F for y_1, y_2, y_3 , this graph is 3-colorable **iff** at least one of y_1, y_2, y_3 is colored T

⇒ new graph 3-coloriable iff all clauses can simultaneously be satisfied

Case discussion 1/2

Case discussion 2/2

Perfect 3D matchings

Definition

3D matching

- input: 3 sets X,Y,Z of size n and a family of hyperedges $E\subset X\times Y\times Z$ (don't require |E|=n)
- output: is there a perfect matching (n hyperedges that cover X, Y and Z)? each x_i , and each y_i , and each z_k , is in a unique hyperedge
- NP

Examples

Definition

3D matching

- input: 3 sets X, Y, Z of size n and a family of hyperedges $E \subset X \times Y \times Z$ (don't require |E| = n)
- output: is there a perfect matching (n hyperedges that cover X, Y and Z)? each x_i , and each y_j , and each z_k , is in a unique hyperedge
- NP

Remark: 2D version

- input: 2 sets X, Y of size n and a family of edges $E \subset X \times Y$
- output: is there a perfect matching (n edges that cover X, Y)?
- this is testing if a bipartite graph has a perfect matching
- in **P** via max-flow

3DMatchings is NP-complete

(this is yet another question where 2 is easy and 3 looks hard)

Claim

 $3SAT \leq_P 3DMATCHING$

- given: a formula F in 3CNF, with s clauses C_1, \ldots, C_s
- want: an instance H = (X, Y, Z, E) of 3DMATCHING such that F satisfiable iff H admits a perfect 3D matching
- reduction must be polynomial time

The variable gadget

build one fidget-spinner-thing per variable x_i , $i = 1, \ldots, n$.

Vertices (not done)

• 2s core vertices $v_{i,1}, \ldots, v_{i,2s}$

• 2s tip vertices $z_{i_1}^T, z_{i_1}^F, \ldots, z_{i_s}^T, z_{i_s}^F$

Partition

• $v_{i,1}, v_{i,3}, v_{i,5}, \ldots$ in X

• $v_{i,2}, v_{i,4}, v_{i,6}, \ldots$ in Y

 \bullet all tips in Z

Hyperedges: for $i = 1, \ldots, n, j = 1, \ldots, s$

• $\{v_{i,2i-1}, v_{i,2i}, z_{i,i}^T\}$

• $\{v_{i,2i+1}, v_{i,2i}, z_{i,i}^F\}$

(not done)

only used in the gadget

ns so far

ns so far

2ns (done)

will connect to clause vertices

The variable gadget

build one fidget-spinner-thing per variable x_i , i = 1, ..., n.

Vertices (not done)

- 2s core vertices $v_{i,1}, \ldots, v_{i,2s}$
- 2s tip vertices $z_{i,1}^T, z_{i,1}^F, \dots, z_{i,s}^T, z_{i,s}^F$

only used in the gadget will connect to clause vertices

Covering the core vertices

- there will be no other hyperedge covering the core vertices $v_{i,j}$
- so only **two** ways to cover a gadget

 2^n coverings (2 possibilities per gadget) \iff boolean values for the x_i 's

Using the clauses to (almost) finish the graph

For each clause C_i

- add two new vertices $a_j \in X$ and $b_j \in Y$
- for any literal x_i in C_j , add hyperedge $\{a_j, b_j, z_{i,j}^T\}$
- for any literal $\overline{x_i}$ in C_j , add hyperedge $\{a_j, b_j, z_{i,j}^F\}$

Final adjustments

- we have 2ns = 12 tips, with ns matched in pink and ns left
- in a perfect matching, each clause covers a tip, so ns s = 4 tips left
- add ns s dummy vertices $d_k \in X$, $e_k \in Y$
- add all hyperedges $\{d_k, e_k, z_{i,j}^T\}$ and $\{d_k, e_k, z_{i,j}^F\}$ (that's (ns-s)(2ns) of them)

F satisfiable iff perfect 3D matching

If F is satisfiable

- cover gadgets for x_1, \ldots, x_n according to their truth value
- pick exactly one true literal per clause C_j
 - if x_i , take hyperedge $\{a_j, b_j, z_{i,j}^T\}$
 - if $\overline{x_i}$, take hyperedge $\{a_j, b_j, z_{i,j}^F\}$
- match all remaining tips with pairs of dummy vertices

If perfect 3D matching

- matching gives truth values
- for each clause C_j , we picked a hyperedge $\{a_j, b_j, z_{i,j}^T\}$, resp. $\{a_j, b_j, z_{i,j}^F\}$
- the corresponding x_i is T, resp. F
- this makes C_j satisfied either way

 $z_{i,j}^T$ still free $z_{i,j}^F$ still free

Subset sum and knapsack

Subset sum and Knapsack are NP-complete

Subset sum

- given: positive integers a_1, \ldots, a_n and K
- want: is there a subset S of $\{1,\ldots,n\}$ with $\sum_{i\in S}a_i=K$
- NP

Claim

3DMATCHING \leq_P SUBSETSUM \leq_P KNAPSACK (this is already known)

- given: sets X, Y, Z of size n, m hyperedges $E \subset X \times Y \times Z$
- want: integers a_1, \ldots, a_s, K s.t. perfect 3D matching iff $\sum_{i \in S} a_i = K$ for some $S \in \{1, \ldots, n\}$
- reduction must be polynomial time

From 3D matchings to vectors

we define m 0/1 vectors (one per hyperedge) of size 3n.

- jth hyperedge = $\{x_{\boldsymbol{u}}, y_{\boldsymbol{v}}, z_{\boldsymbol{w}}\}, \boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w} \text{ in } \{1, \dots, n\}$
- jth vector given by

$$v_{j} = \begin{bmatrix} 0 & \cdots & 0 & 1 & 0 & \cdots & 0 & 0 & \cdots & 0 & 1 & 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \end{bmatrix}$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$

$$u \qquad \qquad \qquad v+n \qquad \qquad w+2n$$

Observation

there is a perfect 3D matching iff there is a subset of $\{v_1, \ldots, v_m\}$ that adds up to

Example


```
v_1 = [ \ 1 \ 0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 1 ]

v_2 = [ \ 0 \ 1 \ 0 \ 0 \ 1 \ 0 \ 0 \ 1 \ 0 ]

v_3 = [ \ 0 \ 0 \ 1 \ 1 \ 0 \ 0 \ 1 \ 0 \ 0 ]

v_4 = [ \ 0 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 0 ]
```

From vectors to numbers

we define m integers (one per hyperedge) of bit-size polynomial in n, m

- set b = m + 1 (large enough)
- given

define

$$a_j = b^u + b^{v+n} + b^{w+2n} = v_j \cdot [\ b\ b^2 \ \cdots \ b^{3n}\]$$

(vector $v_j \leftrightarrow \text{digits of } a_j \text{ in base } b$)

• $a_j \le (m+1)^{3n+1}$ so $\log_2(a_j) \in (mn)^{O(1)}$

End of the proof

set $K = b + b^2 + \dots + b^{3n}$ (so $\log(K) \in (nm)^{O(1)}$)

Claim

for S subset of $\{1,\ldots,m\}$, $\sum_{i\in S} v_i = [1 \cdots 1] \iff \sum_{i\in S} a_i = K$

1. we always have

$$\sum_{i \in S} a_i = \left(\sum_{i \in S} v_i\right) \cdot [b \ b^2 \ \cdots \ b^{3n}] = [c_1 \ c_2 \ \cdots \ c_{3n}] \cdot [b \ b^2 \ \cdots \ b^{3n}], \quad 0 \le c_j \le m$$

- **2.** if $\sum_{i \in S} v_i = [1 \cdots 1], \sum_{i \in S} a_i = \sum_{j=1}^{3n} b^j = K$
- 3. if $\sum_{i \in S} a_i = K$,

$$\sum_{j=1}^{3n} b^j = \sum_{j=1}^{3n} c_j b^j$$

so $c_j = 1$ for all j because $c_j < b$, and $\sum_{i \in S} v_i = [1 \cdots 1]$