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the Traveling Salesman Problem

2 /24



Traveling salesman is NP-complete
Definition: TSP
® input: n, nonnegative integer “distances” d, ,, 1 <u < v < n, integer K

® output: is there a Hamiltonian cycle C' in the complete graph G,, on n vertices with
Z{U,U}EC du,v <K
® NP (certificate? certifier? runtime? correctness?)

Claim

HAMILTONIANCYCLE <p TSP

Proof: given G = (V, E), set n = |V/|
® reduction: dy, =1 if {u,v} in E, d,, = 2 otherwise, and K =n
e Hamiltonian cycle in G,, with Z{u,U}EC’ dyy <n <= dy, =1 forall {u,v} on C
<= all {u,v} on C arein E
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Remark: Euclidean traveling salesman

Definition: EUCLIDEANTSP
® input: (T, Yy)1<u<n integers
® output: same as above, with dy , = /(@4 — 24)% + (Yu

— 4y)? (not necessarily integers)

Unknown if NP
® open: how to test efficiently if a sum of square roots of integers is < K

NP-hard
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Colorability
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kColorable

Definition:
® input: symmetric graph G, integer k
® output: can we color all vertices of G with k colors, with adjacent vertices having
different colors?

° NP

Remark
e k= 1: G 1-colorable iff no edge
e k = 2: G 2-colorable iff bipartite
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kColorable is NP-complete
Claim

3SAT <p KCOLORABLE

Starting the construction
¢ given a formula in 3CNF, e.g. (21 V22V T3) A (T1 V x2)
® build a graph with vertices x; and T;, T, F', and a base
e 3-coloring <= variable assigments (z; true if the same color as T')
T F
O\—/O
Do

8\
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3-colorability gadget

For any clause y1 V y2 V ys, attach graph below to the previous construction

~O

OF
y T %
Claim
Assuming we can use colors T or F' for y1, 12, ys3, this graph is 3-colorable iff at least

one of y1, s, ys is colored T'

= new graph 3-coloriable iff all clauses can simultaneously be satisfied
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Case discussion 1/2

N, N2,

) T Ys Y T Ys
Y Ya
NSO
oF OF
Y T Y Y T Y
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Case discussion 2/2

N, N,

) T Ys Y T Ys
Y Ya
NSRS
oF OF
Y T Y Y T Y
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Perfect 3D matchings
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Definition
3D matching
® input: 3 sets X, Y, Z of size n and a family of hyperedges ¥ C X x Y x Z
(don’t require |E| = n)
® output: is there a perfect matching (n hyperedges that cover X, Y and Z)?
each z;, and each y;, and each 2, is in a unique hyperedge
* NP

Examples
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Definition
3D matching
® input: 3 sets X, Y, Z of size n and a family of hyperedges £ C X xY x Z
(don’t require |E| = n)
® output: is there a perfect matching (n hyperedges that cover X, Y and Z)?
each z;, and each y;, and each z, is in a unique hyperedge
°* NP

Remark: 2D version
® input: 2 sets X,Y of size n and a family of edges £ C X x Y
® output: is there a perfect matching (n edges that cover X, Y)?
e this is testing if a bipartite graph has a perfect matching

® in P via max-flow
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3DMatchings is NP-complete

(this is yet another question where 2 is easy and 3 looks hard)

3SAT <p 3DMATCHING

® given: a formula F' in 3CNF, with s clauses C1,...,C;

e want: an instance H = (X,Y, Z, E) of 3DMATCHING such that F satisfiable iff H
admits a perfect 3D matching

® reduction must be polynomial time
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The variable gadget
build one fidget-spinner-thing per variable x;, i =1, ...

Vertices (not done)

® 2s core vertices v; 1,...,V;2s
® 25 tip vertices 27|, 20, ..., 2L, 2F,
Partition

® V1,V 3, Vi5y-- in X
® V;2,V;4,Vi6y.-. i Y
e all tipsin Z

Hyperedges: fori=1,...,n,,j=1,...,s
T
* {vi2j-1, vi2j, % ;

F
* {vi2j4+1, Vi,25 2
(not done)

only used in the gadget

will connect to clause vertices

ns so far
ns so far
2ns (done)
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The variable gadget
build one fidget-spinner-thing per variable x;, i = 1,... n.
Vertices (not done)

® 2s core vertices V; 1, ..., V;2s only used in the gadget

T F

® 2s tip vertices zii';l, zfl, cr % B will connect to clause vertices
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Covering the core vertices

® there will be no other hyperedge covering the core vertices v; ;

® 5o only two ways to cover a gadget

F

2" coverings (2 possibilities per gadget) <= boolean values for the z;’s
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Using the clauses to (almost) finish the graph

For each clause C)
® add two new vertices aj € X and b; € Y

e for any literal x; in C}, add hyperedge {a;, b;, 2T

i,J
e for any literal Z; in C}, add hyperedge {a;, bj, zfj
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Final adjustments

C': A V*;V"x—}

® we have 2ns = 12 tips, with ns matched in pink and ns left

® in a perfect matching, each clause covers a tip, so ns — s = 4 tips left

® add ns — s dummy vertices dy, € X, ex € Y

¢ add all hyperedges {d, e, zZTJ} and {dy, ex, 21} (that’s (ns — s)(2ns) of them)

i,
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F satisfiable iff perfect 3D matching

If F' is satisfiable

e cover gadgets for x1,...,x, according to their truth value

® pick exactly one true literal per clause C}
e if x;, take hyperedge {a;, b;, Z]} zZT] still free
e if 73, take hyperedge {a;, b;, Z]} leJ still free

® match all remaining tips with pairs of dummy vertices

If perfect 3D matching
® matching gives truth values
e for each clause C;, we picked a hyperedge {a;, b;, ”} resp. {a;,bj, Zj}

® the corresponding x; is T, resp. F'

this makes C; satisfied either way
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Subset sum and knapsack
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Subset sum and Knapsack are NP-complete

Subset sum

® given: positive integers ay,...,a, and K
® want: is there a subset S of {1,...,n} with };cga;, = K
° NP

Claim

3DMATCHING <p SUBSETSUM <p KNAPSACK (this is already known)

® given: sets X,Y, Z of size n, m hyperedges E C X XY x Z

® want: integers ai,...,as, K s.t. perfect 3D matching iff 3, g a; = K for some
Se{l,...,n}

® reduction must be polynomial time
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From 3D matchings to vectors

we define m 0/1 vectors (one per hyperedge) of size 3n.
e jth hyperedge = {zy, Yv, 2w}, ¥, v, w in {1,...,n}
® jth vector given by

vj = [0...010...0 0---010 --- 0 ()...()10...()]
T T T

u v+n w + 2n

there is a perfect 3D matching iff there is a subset of {v1,...,v,} that adds up to

P11111 --------- 11111q
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Example
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From vectors to numbers

we define m integers (one per hyperedge) of bit-size polynomial in n,m

¢ set b = m + 1 (large enough)

® given
v = {0 ... 010 ---00---010---00---010 ---
T T T
U v+n w + 2n
define

aj :bu+bv+n+bw+2n:’0j‘[bb2 v b3n]
(vector v; < digits of a; in base b)
® a; < (m+1)%*! s0 logy(a;) € (mn)°M)
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End of the proof
set K =b+b%+--- 4+ b" (so log(K) € (nm)°M)

for S subset of {1,...,m}, Dieqvi=[1 --- 1] <= Yicqa;i =K

1. we always have
E:CM:Z <§:Tﬁ
€S €S

2.8 Yieqvi=1[1 -+ 1], Yjegai = Y0 W = K

3. if Zies(li = K,

).[552 b =g ez ] [B0E 0] 0< ¢ <m

3n 3n
S =3 el
j=1 j=1

so ¢; = 1 for all j because ¢; < b, and > ;cqv; =[1 ---
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