Overview

- Navigating the world of P and NP
 - 2SAT

- Beyond decision problems: NP-hardness
 - NP-hard reductions

- Acknowledgements
Subtleties

Similar looking problems, wildly different complexity:

- **Hamilton Cycle:**
 - **Input:** undirected graph $G(V, E)$
 - **Output:** YES, iff there is a cycle that visits every vertex exactly once
Subtleties

Similar looking problems, wildly different complexity:

- **Hamilton Cycle:**
 - **Input:** undirected graph $G(V, E)$
 - **Output:** YES, iff there is a *cycle* that visits every *vertex* exactly once

- **Euler Tour:**
 - **Input:** undirected graph $G(V, E)$
 - **Output:** YES iff there is *closed walk* traversing every *edge* exactly once
Subtleties

Similar looking problems, wildly different complexity:

- **Hamilton Cycle:**
 - **Input:** undirected graph $G(V, E)$
 - **Output:** YES, iff there is a cycle that visits every vertex exactly once

- **Euler Tour:**
 - **Input:** undirected graph $G(V, E)$
 - **Output:** YES iff there is closed walk traversing every edge exactly once

- Hamilton Cycle is NP-complete, whereas Euler tour has a linear time algorithm (depth-first search).

Theorem (Euler’s theorem)

- G has eulerian tour iff every vertex has even degree.
- G has eulerian path iff exactly 2 vertices have odd degree.
Subtleties

Similar looking problems, wildly different complexity:

- **Hamilton Cycle:**
 - **Input:** undirected graph $G(V, E)$
 - **Output:** YES, iff there is a *cycle* that visits every *vertex* exactly once

- **Euler Tour:**
 - **Input:** undirected graph $G(V, E)$
 - **Output:** YES iff there is *closed walk* traversing every *edge* exactly once

- Hamilton Cycle is NP-complete, whereas Euler tour has a linear time algorithm (depth-first search).

Theorem (Euler’s theorem)

G has eulerian tour iff every vertex has even degree.

G has eulerian path iff exactly 2 vertices have odd degree.

- Similar situation for hamiltonian path vs eulerian path!
Subtleties

Similar looking problems, wildly different complexity:

- **Hamilton Cycle:**
 - **Input:** undirected graph $G(V, E)$
 - **Output:** YES, iff there is a *cycle* that visits every *vertex* exactly once

- **Euler Tour:**
 - **Input:** undirected graph $G(V, E)$
 - **Output:** YES iff there is *closed walk* traversing every *edge* exactly once

- Hamilton Cycle is NP-complete, whereas Euler tour has a linear time algorithm (depth-first search).

Theorem (Euler’s theorem)

- G has eulerian tour iff every vertex has even degree.
- G has eulerian path iff exactly 2 vertices have odd degree.

- Similar situation for hamiltonian path vs eulerian path!
- In general, we need to be careful when distinguishing or making reductions between problems.
Navigating the world of P and NP
 - 2SAT

Beyond decision problems: NP-hardness
 - NP-hard reductions

Acknowledgements
2SAT

- **2SAT**
 - **Input:** 2CNF $\varphi(x_1, \ldots, x_n)$
 - **Output:** YES $\iff \varphi$ is satisfiable
2SAT

- **2SAT**
 - **Input:** 2CNF $\varphi(x_1, \ldots, x_n)$
 - **Output:** YES \iff φ is satisfiable

Theorem

2SAT is in P
2SAT

- **2SAT**
 - **Input:** 2CNF $\varphi(x_1, \ldots, x_n)$
 - **Output:** YES $\iff \varphi$ is satisfiable

Theorem

2SAT is in P

Proof: “implication graph”

Example: $(x_1 \lor \overline{x_2}) \land (\overline{x_1} \lor x_3) \land (x_2 \lor \overline{x_3}) \land (x_1 \lor x_2)$
2SAT

- **2SAT**
 - **Input:** 2CNF $\varphi(x_1, \ldots, x_n)$
 - **Output:** YES \iff φ is satisfiable

Theorem

2SAT is in P

Proof: “implication graph”

Example: $(x_1 \lor \overline{x_2}) \land (\overline{x_1} \lor x_3) \land (x_2 \lor \overline{x_3}) \land (x_1 \lor x_2)$

Let $G_\varphi([2n], E)$ be the directed graph generated by the implication graph process.
2SAT

- **2SAT**
 - **Input:** 2CNF $\varphi(x_1, \ldots, x_n)$
 - **Output:** YES $\iff \varphi$ is satisfiable

Theorem

2SAT is in P

Proof: “implication graph”

Example: $(x_1 \lor \overline{x}_2) \land (\overline{x}_1 \lor x_3) \land (x_2 \lor \overline{x}_3) \land (x_1 \lor x_2)$

Let $G_\varphi([2n], E)$ be the directed graph generated by the implication graph process.

Run BFS or DFS from each literal y, and call it bad if for some $i \in [n]$, the BFS from y visits both x_i, \overline{x}_i
2SAT

- **2SAT**
 - **Input**: 2CNF \(\varphi(x_1, \ldots, x_n) \)
 - **Output**: YES \(\iff \varphi \) is satisfiable

Theorem

2SAT is in P

- **Proof**: “implication graph”

 Example: \((x_1 \lor \overline{x_2}) \land (\overline{x_1} \lor x_3) \land (x_2 \lor \overline{x_3}) \land (x_1 \lor x_2)\)

Let \(G_\varphi([2n], E) \) be the directed graph generated by the implication graph process.

Run BFS or DFS from each literal \(y \), and call it *bad* if for some \(i \in [n] \), the BFS from \(y \) visits both \(x_i, \overline{x_i} \)

If for some \(i \in [n] \), both \(x_i \) and \(\overline{x_i} \) are bad, then return NO. Otherwise, return YES.
Navigating the world of P and NP
 - 2SAT

Beyond decision problems: NP-hardness
 - NP-hard reductions

Acknowledgements
NP-hardness

- Often times we want to know whether a non-decision problem (say optimization problem or search problem) is hard
NP-hardness

- Often times we want to know whether a non-decision problem (say optimization problem or search problem) is hard.
- In these cases, since the problems are not decision problems, they will not belong to NP.
NP-hardness

- Often times we want to know whether a *non-decision problem* (say optimization problem or search problem) is hard.
- In these cases, since the problems are not decision problems, they will not belong to NP.
- However, can still apply our original reasoning:
 - want to prove that problem B (non-decision problem) is hard.
 - Can select an NP-complete problem A and show that “if we can solve B efficiently, then we can solve A efficiently”.
 - In other words:

$$A \leq_T B$$
NP-hardness

- Often times we want to know whether a *non-decision problem* (say optimization problem or search problem) is hard.
- In these cases, since the problems are not decision problems, they will not belong to NP.
- However, can still apply our original reasoning:
 - want to prove that problem B (non-decision problem) is hard.
 - Can select an NP-complete problem A and show that “if we can solve B efficiently, then we can solve A efficiently”
 - In other words:
 \[A \leq_T B \]
- The above is our definition of **NP-hardness**:
 Problem B is *NP-hard* if there is NP-complete problem A such that $A \leq_T B$.
Examples of NP-hard problems

- MAX-CLIQUE
 - **Input:** graph $G(V, E)$
 - **Output:** maximum size of a clique in G
Examples of NP-hard problems

- **MAX-CLIQUE**
 - **Input**: graph $G(V, E)$
 - **Output**: maximum size of a clique in G

- **MIS**:
 - **Input**: graph $G(V, E)$
 - **Output**: maximum independent set in G
Examples of NP-hard problems

- MAX-CLIQUE
 - **Input:** graph $G(V, E)$
 - **Output:** maximum size of a clique in G

- MIS:
 - **Input:** graph $G(V, E)$
 - **Output:** maximum independent set in G

- MIN-Vertex-Cover:
 - **Input:** graph $G(V, E)$
 - **Output:** size of minimum vertex cover in G
Examples of NP-hard problems

- **MAX-CLIQUE**
 - **Input:** graph $G(V, E)$
 - **Output:** maximum size of a clique in G

- **MIS:**
 - **Input:** graph $G(V, E)$
 - **Output:** maximum independent set in G

- **MIN-Vertex-Cover:**
 - **Input:** graph $G(V, E)$
 - **Output:** size of minimum vertex cover in G

- **TSP-OPT:**
 - **Input:** complete graph $G(V, E, d)$ where $d : E \rightarrow \mathbb{R}_{\geq 0}$
 - **Output:** hamiltonian cycle in G of minimum total distance
Navigating the world of P and NP
 - 2SAT

Beyond decision problems: NP-hardness
 - NP-hard reductions

Acknowledgements
Non-Trivial NP-hardness reduction

- (unweighted) **MAX-CUT**
 - **Input:** graph $G(V, E)$
 - **Output:** a cut $S \subseteq V$ with maximum $|\delta(S)|$
Non-Trivial NP-hardness reduction

- (unweighted) **MAX-CUT**
 - **Input:** graph $G(V, E)$
 - **Output:** a cut $S \subseteq V$ with maximum $|\delta(S)|$

Theorem

MAX-CUT is NP-hard
Non-Trivial NP-hardness reduction

Theorem

\[\text{MAX-CUT is NP-hard} \]

Proof: reduction from MIS. Let \(G(V, E) \) be the input graph.
Non-Trivial NP-hardness reduction

Theorem

MAX-CUT is NP-hard

Proof: reduction from MIS. Let $G(V, E)$ be the input graph.

- **Vertex gadget:**
 - add vertex x
 - for each $v \in V$, add edge $\{x, v\}$
Non-Trivial NP-hardness reduction

Theorem

MAX-CUT is NP-hard

Proof: reduction from MIS. Let $G(V, E)$ be the input graph.

- **Vertex gadget:**
 - add vertex x
 - for each $v \in V$, add edge $\{x, v\}$

- **Edge gadget:** for each edge $e = \{u, v\}$
 - add vertices u_e, v_e,
 - and edges: $\{x, u_e\}, \{x, v_e\}, \{u, u_e\}, \{v, v_e\}, \{u_e, v_e\}$,
Theorem

MAX-CUT is NP-hard

Proof: reduction from MIS. Let $G(V, E)$ be the input graph.

- **Vertex gadget:**
 - add vertex x
 - for each $v \in V$, add edge $\{x, v\}$

- **Edge gadget:** for each edge $e = \{u, v\}$
 - add vertices u_e, v_e,
 - and edges: $\{x, u_e\}, \{x, v_e\}, \{u, u_e\}, \{v, v_e\}, \{u_e, v_e\}$,

Edge gadget H_e:
Non-Trivial NP-hardness reduction

Theorem

MAX-CUT is NP-hard

Proof: reduction from MIS. Let \(G(V, E) \) be the input graph.

- **Vertex gadget:**
 - add vertex \(x \)
 - for each \(v \in V \), add edge \(\{x, v\} \)

- **Edge gadget:** for each edge \(e = \{u, v\} \)
 - add vertices \(u_e, v_e \),
 - and edges: \(\{x, u_e\}, \{x, v_e\}, \{u, u_e\}, \{v, v_e\}, \{u_e, v_e\}, \)

- Edge gadget \(H_e \):
 - Let \(H(U, F) \) be graph given by:
 - \(U = V \uplus \{x\} \uplus \{u_e, v_e\}_{u,v}=:e\in E \)
 - \(F = \{\{x, w\}\}_{w\in U\setminus\{x\}} \uplus \{\{u_e, v_e\}\}_{e\in E} \uplus \{\{u, u_e\}, \{v, v_e\}\}_{u,v}=:e\in E \)

Note that \(H \) does not have any edges from \(G \)
Claim 1: G contains independent set $I \subseteq V$ with $|I| = k \Rightarrow$ there is cut $S \subseteq U$ in H such that

$$|\delta(S)| \geq k + 4 \cdot |E|$$
Claim 1: \(G \) contains independent set \(I \subset V \) with \(|I| = k \Rightarrow \) there is cut \(S \subset U \) in \(H \) such that

\[
|\delta(S)| \geq k + 4 \cdot |E|
\]

1. Start with \(S = I \).
2. For each edge \(e = \{u, v\} \in E \) do
 - if \(u \in I, v \notin I \), then add \(v \) to \(S \)
 - if \(u \notin I, v \in I \), then add \(u \) to \(S \)
 - if \(u, v \notin I \), then add \(u, v \) to \(S \).

 In all above cases, add four of five edge gadget \(H_e \) edges
Proof of Correctness - Part 1

- **Claim 1:** G contains independent set $I \subset V$ with $|I| = k \Rightarrow$ there is cut $S \subset U$ in H such that

$$|\delta(S)| \geq k + 4 \cdot |E|$$

1. Start with $S = I$.
2. For each edge $e = \{u, v\} \in E$ do
 - if $u \in I$, $v \notin I$, then add v_e to S
 - if $u \notin I$, $v \in I$, then add u_e to S
 - if $u, v \notin I$, then add u_e, v_e to S.

 In all above cases, add four of five edge gadget H_e edges

Analyzing the cut given by S:
- For every $w \in I$, the edge $\{x, w\}$ is cut by S
Proof of Correctness - Part 1

- **Claim 1:** G contains independent set $I \subseteq V$ with $|I| = k \Rightarrow$ there is cut $S \subseteq U$ in H such that

\[|\delta(S)| \geq k + 4 \cdot |E| \]

1. Start with $S = I$.
2. For each edge $e = \{u, v\} \in E$ do
 - if $u \in I$, $v \notin I$, then add v_e to S
 - if $u \notin I$, $v \in I$, then add u_e to S
 - if $u, v \notin I$, then add u_e, v_e to S.

 In all above cases, add four of five edge gadget H_e edges

Analyzing the cut given by S:

- For every $w \in I$, the edge $\{x, w\}$ is cut by S
- For every edge $\{u, v\} =: e \in E$, exactly 4 edges of H_e are cut.
Proof of Correctness - Part 2

- **Claim 2:** Given cut $S \subset U$ in H with

 $$|\delta(S)| \geq k + 4 \cdot |E|$$

 then G contains independent set $I \subset V$ of size $\geq k$.
Claim 2: Given cut $S \subset U$ in H with
\[|\delta(S)| \geq k + 4 \cdot |E| \]
then G contains independent set $I \subset V$ of size $\geq k$.

W.l.o.g. can assume $x \notin S$ (otherwise take complement $V \setminus S$)
Claim 2: Given cut $S \subset U$ in H with

$$|\delta(S)| \geq k + 4 \cdot |E|$$

then G contains independent set $I \subset V$ of size $\geq k$.

- W.l.o.g. can assume $x \notin S$ (otherwise take complement $V \setminus S$)
- Let $I = S \cap V$ (vertices in G)
Proof of Correctness - Part 2

- **Claim 2:** Given cut $S \subset U$ in H with
 \[|\delta(S)| \geq k + 4 \cdot |E| \]
 then G contains independent set $I \subset V$ of size $\geq k$.
 - W.l.o.g. can assume $x \notin S$ (otherwise take complement $V \setminus S$)
 - Let $I = S \cap V$ (vertices in G)
 - If $u, v \in I$ are s.t. $\{u, v\} =: e \in E$, then S cuts at most 3 edges of H_e
Proof of Correctness - Part 2

Claim 2: Given cut $S \subset U$ in H with

$$|\delta(S)| \geq k + 4 \cdot |E|$$

then G contains independent set $I \subset V$ of size $\geq k$.

- W.l.o.g. can assume $x \notin S$ (otherwise take complement $V \setminus S$)
- Let $I = S \cap V$ (vertices in G)
- If $u, v \in I$ are s.t. $\{u, v\} =: e \in E$, then S cuts at most 3 edges of H_e
- Otherwise, we saw in part 1 how to get 4 edges of H_e across the cut.
Claim 2: Given cut $S \subset U$ in H with

$$|\delta(S)| \geq k + 4 \cdot |E|$$

then G contains independent set $I \subset V$ of size $\geq k$.

- W.l.o.g. can assume $x \not\in S$ (otherwise take complement $V \setminus S$)
- Let $I = S \cap V$ (vertices in G)
- If $u, v \in I$ are s.t. $\{u, v\} =: e \in E$, then S cuts at most 3 edges of H_e
- Otherwise, we saw in part 1 how to get 4 edges of H_e across the cut.
- Letting $e(I)$ be number of edges between elements of I in G:

$$|\delta(S)| = |I| + \sum_{e \in E} |\delta_{H_e}(S)| \leq |I| + 3e(I) + 4(|E| - e(I)) = |I| + 4|E| - e(I)$$
Proof of Correctness - Part 2

- **Claim 2:** Given cut $S \subset U$ in H with

$$|\delta(S)| \geq k + 4 \cdot |E|$$

then G contains independent set $I \subset V$ of size $\geq k$.

- W.l.o.g. can assume $x \notin S$ (otherwise take complement $V \setminus S$)
- Let $I = S \cap V$ (vertices in G)
- If $u, v \in I$ are s.t. $\{u, v\} = e \in E$, then S cuts at most 3 edges of H_e
- Otherwise, we saw in part 1 how to get 4 edges of H_e across the cut.
- Letting $e(I)$ be number of edges between elements of I in G:

$$|\delta(S)| = |I| + \sum_{e \in E} |\delta_{H_e}(S)| \leq |I| + 3e(I) + 4(|E| - e(I)) = |I| + 4|E| - e(I)$$

- As $|\delta(S)| \geq k + 4|E|$, we have

$$|I| \geq k + e(I)$$
Proof of Correctness - Part 2

- **Claim 2:** Given cut \(S \subset U \) in \(H \) with

\[
|\delta(S)| \geq k + 4 \cdot |E|
\]

then \(G \) contains independent set \(I \subset V \) of size \(\geq k \).

- W.l.o.g. can assume \(x \notin S \) (otherwise take complement \(V \setminus S \))
- Let \(I = S \cap V \) (vertices in \(G \))
- If \(u, v \in I \) are s.t. \(\{u, v\} =: e \in E \), then \(S \) cuts at most 3 edges of \(H_e \)
- Otherwise, we saw in part 1 how to get 4 edges of \(H_e \) across the cut.
- Letting \(e(I) \) be number of edges between elements of \(I \) in \(G \):

\[
|\delta(S)| = |I| + \sum_{e \in E} |\delta_{H_e}(S)| \leq |I| + 3e(I) + 4(|E| - e(I)) = |I| + 4|E| - e(I)
\]

- As \(|\delta(S)| \geq k + 4|E| \), we have

\[
|I| \geq k + e(I)
\]

- So for each \(u, v \in I \) with \(\{u, v\} \in E \), we can afford to remove one of the endpoints from \(S \), decreasing \(|I| \) by one. After \(e(I) \) removals, get our independent set.
Acknowledgement

Based on

- [Erickson 2019, Chapter 12]
- Debmalya’s Lecture 22

References I

Cormen, Thomas and Leiserson, Charles and Rivest, Ronald and Stein, Clifford (2009)
 MIT Press

Dasgupta, Sanjay and Papadimitriou, Christos and Vazirani, Umesh (2006)
Algorithms

Erickson, Jeff (2019)
Algorithms
https://jeffe.cs.illinois.edu/teaching/algorithms/

Kleinberg, Jon and Tardos, Eva (2006)
Algorithm Design.
 Addison Wesley