CS 341: Algorithms

Lecture 23: Misc

Eric Schost

based on lecture notes by many other CS341 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Fall 2024

1/24

EXP and beyond

2 /24

Exponential time

Definition
EXP is the set of decision problems that can be solved in exponential time 90 (size()")
for some k.

Observation: NP C EXP so problems in NP cannot be extraordinarily bad

Idea: brute-force, try all possible certificates
e for a given x, we look for a certificate of size size(z)¥, for some constant k
e if we work with binary symbols, there are 2size(2)" cortificates

e cach of them takes polynomial time

3/24

Bounded halting

Definition
e instance: program / Turing maching P, input x to P, integer ¢
® output: does P(z) stop on input z within ¢ steps?

® remark: input size = size(P) + size(z) + logt

Claim
BOUNDEDHALTING is in EXP
Proof (sketch)
® use a universal Turing machine, run the simulation for ¢ steps

¢ runtime polynomial can be made polynomial in size(P), ¢

® which is exponential in the input size

4/24

EXP-completeness

Claim

BOUNDEDHALTING is EXP-complete

Proof
¢ take decision problem PROB in EXP
® so there is a program / Turing machine P that decides PROB(z) using at most
9¢size(@)" operations (¢, k constants)
e modify P to make it run forever if input no-instance, call P’ the result
® reduction: on instance x, call BOUNDEDHALTING with input P/, x and ¢t = gesize(x)*

e P'is fixed, z is « and logt = csize(z)"

, so this is polynomial in size(z)
Remark: because NP C EXP, this shows BOUNDEDHALTING is NP-hard

5/ 24

Time hierarchy

P # EXP

Proof: take CS360

BOUNDEDHALTING is not in P

Proof:

e if it was, using EXP <p BOUNDEDHALTING, we would get P=EXP

6/24

Even worse

HALTING
® instance: program / Turing maching P, input z to P
® output: does P(z) stop on input z?

® remark: input size = size(P) + size(x)
1. Undecidable (CS245, CS360), so in particular not in NP

2. RE-hard (so in particular NP-hard, and not NP-complete)
® take a recursively enumerable problem PROB

® meaning: there is a program / Turing machine P st PROB(x) returns true for
yes-instances, and either loops or returns false for no-instances

® modify P to make it run forever if input no-instance, call P’ the result
® reduction: on instance x, call HALTING with input P/, z
e P’ is fixed, x is x, so this is polynomial in size(x)

7/24

Variants of kSAT

8 /24

Definitions
KSAT

® instance: a boolean formula in n variables x1,...,z, in CNF

(Y1aV---Vyik) A - A (e VeV Yek,)

with literals y; ; of the form x,,, T, and k; <k

® problem: is there a choice of the variables that makes it true?

EXACT-kSAT

® same as above, but with exactly k literals (repetitions OK)

UNIQUE-KSAT
® same as above, but with exactly k literals and no repeated variable
e fork=3,2VyVvVzOK,zVzVznot OK, VTV 2z not OK

9/24

Equivalence

EXACT-KSAT <p KSAT <p EXACT-KSAT

Proof:
1. an EXACT-KSAT instance is a KSAT instance

2. transform x V y intox Va Vy

UNIQUE-KSAT <p KSAT <p UNIQUE-KSAT

Proof:
1. a UNIQUE-KSAT instance is a KSAT instance
2. transform x V y into (z V y V dummy) A (z V y V dummy)
10/24

2SAT and MAX-2SAT

11/24

2SAT isin P

Remark: any KSAT is in NP
® instance: formula F' in kCNF
e certificate y: boolean values for the variables that appear in F'
e algorithm B(F,y): test if F(y) is true (i.e. if all clauses are true)

® NP? yes! B runs in polynomial time, and F' is satisfiable iff there exists a certificate
of size < size(F')

We know: 3SAT NP-complete (and so KSAT as well, for k > 3)

Claim:

2SAT in P

Proof: we start from a formula F' in 2CNF that has s clauses

assume all clauses have 2 literals

12 /24

Introducing a graph

Idea: x; V z; is equivalent to
T; = x; andto T; = z;

® we can chain these implications to eventually find out a satisfiable solution
® so we put them in a directed graph G (with vertices labeled z; and 77)

Example
(561 vV CIZQ) A (.TQ \/Tl) VAN (5173 \/TQ)

OO
(—@m<—E)

gives

13 /24

How to use the graph

Observation: suppose booleans yi, ..., y, satisfy F
® assigns boolean values to all vertices
e if vertex v is true and v — w edge, w true because ¥ V w clause in F

® 5o if v is true and v ~ w path, w true

Consequence: if some x;, T; are in the same SCC of GG, F not satisfiable

Decision algorithm:
e construct G (at most 2s vertices and 2s edges)
find the SCCs of G' (= put indices on vertices)

e if any x;,T; that appear in F' have the same index, return false

else, return true

Runtime: O(s) in the word RAM model, polynomial in slogn in the bit model

14 /24

Proof + finding satisfying assignments

Algorithm, cont. (assuming true)
¢ contract the SCCs of G to obtain a DAG G’
e find a topological order o on G’
e fori=1,...,n
- if o(z;) < o(T7), take y; = false
- if o(7;) < o(w;), take y; = true
- if o(z;) undefined, y; arbitrary
(still polynomial time)
Claim: F(yi1,...,yn) = true

Proof: suppose that x; V x; clause not satisfied, so z; and x; assigned false
® 50 o(z;) < o(z;) and o(z;) < o(Z7)
o (#7,2;) edge, s0 o(F7) < olx;) and o(FF) < o(7)
* (Tj,x;) edge, so o(T;) < o(x;) and o(Z;) < o(Z;)

contradiction

15 /24

MAX-kSAT

k-terms conjonctive formula satisfiability, optimization version:
® instance: a boolean formula F' in n variables x1,...,x, in KCNF

® problem: find the maximal number of clauses that can be satisfied simultaneously

Decision version: MAX-KSAT
® instance: I’ as above, and an integer K
® problem: is there a choice of the variables that satisfies at least K clauses?
e certificate: boolean values for the variables that appear in F

® algorithm B: count if at least K clauses in F(y) are true
We prove: MAX-2SAT NP-complete

Exercise

we already could tell that MAX-KSAT NP-complete for & > 3

16/ 24

3SAT <p MAX-2SAT

Preliminaries:
e consider a clause C' =z Vy V z (repeated variables OK)

® introduce a new variable ¢, and the 10 clauses
x,y, 2z, t, TVY, yVZ, ZVT, xVt, yVt, zVt

Claim

® you cannot satisfy more than 7 of these new clauses
® a boolean assignment of x, v, z,t that satisfies 7 clauses makes C' true

® given a boolean assignment for z,y, z that makes C' true, you can find a value
for ¢ that satisfies 7 clauses

case discussion (discuss whether 0, 1,2 or 3 of z,y, z are true)

17 /24

3SAT <p MAX-2SAT

Reduction. Given a family F of k clauses that form a 3SAT problem, introduce
® one new variable ¢; per clause in F',
® the 10 clauses as seen before (per clause in F)
e K =Tk

(takes polynomial time)

Correctness:
¢ you cannot satisfy more than 7k of these new clauses

¢ you satisfy 7k of them simultaneously if and only if you can satisfy all k input clauses
simultaneously

Conclusion: MAX-2SAT is NP-complete

18 /24

Randomization and approximation

19 /24

Using randomization (for the optimization problem)

MAX-UNIQUE-3SAT
e input: F' in 3CNF, with 3 distinct variables per clause (works for any k)
® problem: find the maximal number of clauses that can be satisfied simultaneously
® decision version NP-complete

Claim

using in expected polynomial time in n, s, we can find an assignment that satisfies
at least 87.5% of the clauses

RandomAssignment(F)

1. F formula in 3CNF, 3 distinct variables per clause, s clauses
2. repeat

3. pick 1, ..., z, uniformly at random in {0, 1}

4. until at least 7s/8 clauses are satisfied

5. return zy,...,%,

20 /24

Analysing a single assignment

Definition: for i = 1,...,s, let X; be the indicator random variable
e X, = 0 if ith clause is not satisfied

e X, =1 if ith clause is satisfied

Analysis:
e clause ¢ has 3 variables and out of the 8 possibilities, only 1 makes it false
* sop(X;=1)="7/8
® so E[X;]=17/8

Looking at all clauses:
® the number N of satisfied clauses is >, X;
® so E[N|="7s/8

21 /24

Overall runtime
Defining p
® let p be the probability that a random assignment satisfies at least 7s/8 clauses

® then the expected number of attempts is
p+2p(1=p) +3p(l —p)* +-- = —

e and the expected runtime is O((n 4+ s)/p) (in the word RAM model)

Introducing po,...,ps and s’
e for j =0,...,s, let p; be the probability that we satisfy j clauses
e let s’ be the largest integer less than 7s/8

Consequences
e ' <7s/8—1/8
*p=>2i>s+1Pj
22 /24

Overall runtime

zSZE[N]

=D ip;
F
= Jpi+ > ipi

j<s' j>s'+1
< Z s'p; + Z Spj
i<s’ j>5+1
=s'(1—p)+sp
<s +sp
< Zs ! + sp
-8 8

Finally: 1/8 < spso1/p < 8s

j<s,j<s

previous slide
1-p<1

previous slide

23 /24

Bonus

Medium: derandomize the algorithm
® assign one variable at a time

® at the beginning,

1 1
<5 = BIN] = S E[N|a1 = 0] + S E[N|ay = 1]

so one of E[N|z; = 0] and E[N|z1 = 1] must be at least £s

® both can be computed in polynomial time, choose the better one and continue

Extra hard: beat 7/8

e if there is a polynomial-time algorithm that finds a fraction 7/8 + € of the optimal,
then P=NP

24 /24

