Lecture 23: Intractability III

Rafael Oliveira

University of Waterloo
Cheriton School of Computer Science

rafael.oliveira.teaching@gmail.com

November 30, 2023
Overview

- Intractability
 - Scheduling Problems
 - Algebraic Problems
 - Mathematical Programming Problems
 - Taxonomy of Hard Problems

- Further Explorations
 - Computational view of the world
 - Courses
 - Research
 - AMA

- Acknowledgements
A job will be a tuple \((r, d, t)\) where
- \(r\) is the release time
- \(d\) is the deadline by which the job must be completed
- \(t\) is the duration it takes to complete the job, once you started it
Scheduling with Release Times and Deadlines

- A job will be a tuple \((r, d, t)\) where
 - \(r\) is the release time
 - \(d\) is the deadline by which the job must be completed
 - \(t\) is the duration it takes to complete the job, once you started it

- Allocate jobs to one machine. Our machine
 - can only run one job at a time,
 - once started on job, must finish it before taking on another job.
A job will be a tuple \((r, d, t)\) where
- \(r\) is the release time
- \(d\) is the deadline by which the job must be completed
- \(t\) is the duration it takes to complete the job, once you started it

Allocate jobs to one machine. Our machine
- can only run one job at a time,
- once started on job, must finish it before taking on another job.

Input: Set of jobs \(\{(r_i, d_i, t_i)\}_{i=1}^{n} \subset \mathbb{N}^3\)

Output: can we schedule all jobs so that each is completed by its deadline?
Scheduling with Release Times and Deadlines

- A job will be a tuple \((r, d, t)\) where
 - \(r\) is the release time
 - \(d\) is the deadline by which the job must be completed
 - \(t\) is the duration it takes to complete the job, once you started it

- Allocate jobs to one machine. Our machine
 - can only run one job at a time,
 - once started on job, must finish it before taking on another job.

- **Input:** Set of jobs \(\{ (r_i, d_i, t_i) \}_{i=1}^{n} \subset \mathbb{N}^3\)

- **Output:** can we schedule all jobs so that each is completed by its deadline?

- We will show this problem is \(NP\)-complete
A job will be a tuple \((r, d, t)\) where
- \(r\) is the release time
- \(d\) is the deadline by which the job must be completed
- \(t\) is the duration it takes to complete the job, once you started it

Allocate jobs to one machine. Our machine
- can only run one job at a time,
- once started on job, must finish it before taking on another job.

Input: Set of jobs \(\{(r_i, d_i, t_i)\}_{i=1}^n \subset \mathbb{N}^3\)

Output: can we schedule all jobs so that each is completed by its deadline?

We will show this problem is **NP-complete**

Membership in NP:
- **Proof/witness:** the proof/witness is a scheduling (linear size)
- **verification algorithm:** check that the scheduling satisfies the resease time and deadline (linear time)
Proof of Hardness

- Polynomial transformation from SUBSET-SUM to our problem
Proof of Hardness

- Polynomial transformation from SUBSET-SUM to our problem
- Let $X = \{x_1, \ldots, x_n\} \subset \mathbb{N}$ and $T \in \mathbb{N}$ be an instance of the SUBSET-SUM problem.
Proof of Hardness

- Polynomial transformation from SUBSET-SUM to our problem
- Let $X = \{x_1, \ldots, x_n\} \subset \mathbb{N}$ and $T \in \mathbb{N}$ be an instance of the SUBSET-SUM problem.
- Let $S := \sum_{i=1}^{n} x_i$, and consider the following jobs:
 - $(0, S + 1, w_i)$, for $i \in [n]$
 - $(T, T + 1, 1)$
Proof of Hardness

- Polynomial transformation from SUBSET-SUM to our problem
- Let $X = \{x_1, \ldots, x_n\} \subset \mathbb{N}$ and $T \in \mathbb{N}$ be an instance of the SUBSET-SUM problem.
- Let $S := \sum_{i=1}^{n} x_i$, and consider the following jobs:
 - $(0, S + 1, w_i)$, for $i \in [n]$
 - $(T, T + 1, 1)$
- Note that there is a good scheduling iff the job $(T, T + 1, 1)$ gets scheduled at time T, which can only happen if there is a subset of the other jobs that can be scheduled exactly between $[0, T]$.
Solving System of Equations

- **0-1 QUADEQ** (quadratic equations problem)
 - **Input:** System of quadratic equations
 \[\{ Q_i(x_1, \ldots, x_n) = 0 \}_{i \in [m]} \cup \{ x_i^2 - x_i = 0 \}_{i=1}^n \]
 - **Output:** YES \(\iff \) there is a solution to the system above.
Solving System of Equations

- **0-1 QUAD Eq** (quadratic equations problem)
 - **Input:** System of quadratic equations
 \[\{Q_i(x_1, \ldots, x_n) = 0\}_{i \in [m]} \cup \{x_i^2 - x_i = 0\}_{i=1}^n \]
 - **Output:** YES if there is a solution to the system above.

- QUAD Eq is NP-complete
0-1 QUADEQ (quadratic equations problem)

- **Input:** System of quadratic equations
 \[\{Q_i(x_1, \ldots, x_n) = 0\}_{i \in [m]} \cup \{x_i^2 - x_i = 0\}_{i=1}^n \]
- **Output:** YES \(\iff\) there is a solution to the system above.

QUADEQ is NP-complete

Membership in NP: proof/witness is a solution to the equations.
Solving System of Equations

0-1 QUADEQ (quadratic equations problem)

- **Input:** System of quadratic equations
 \[\{ Q_i(x_1, \ldots, x_n) = 0 \}_{i \in [m]} \cup \{ x_i^2 - x_i = 0 \}_{i=1}^n \]
- **Output:** YES ⇔ there is a solution to the system above.

QUADEQ is NP-complete

- Membership in NP: proof/witness is a solution to the equations.
- Completeness for NP: reduction from 3SAT
 Encode each clause as a quadratic equation.
Integer Programming

- **IPROG**
 - **Input:** System of linear inequalities \(\{ \sum_{j=1}^{n} a_{ij}x_j \geq b_i \}_{i \in [m]} \), where \(x_i \in \mathbb{Z} \)
 - **Output:** YES \(\iff \) there is a solution to the system above.

- **IPROG** is NP-complete
- **Membership in NP:** proof/witness is a solution to the inequalities.
- **Completeness for NP:** reduction from 3SAT
 - Encode each clause as a linear inequality.
 - Enforce boolean constraint by adding linear inequalities.
Integer Programming

- **IPROG**
 - **Input:** System of linear inequalities \(\{ \sum_{j=1}^{n} a_{ij} x_j \geq b_i \}_{i \in [m]} \), where \(x_i \in \mathbb{Z} \)
 - **Output:** YES \(\iff \) there is a solution to the system above.

- IPROG is NP-complete
Integer Programming

- **IPROG**
 - **Input:** System of linear inequalities \(\{ \sum_{j=1}^{n} a_{ij} x_j \geq b_i \}_{i \in [m]} \), where \(x_i \in \mathbb{Z} \)
 - **Output:** YES \(\iff\) there is a solution to the system above.

- IPROG is NP-complete

- Membership in NP: proof/witness is a solution to the inequalities.
Integer Programming

- **IPROG**
 - **Input:** System of linear inequalities \(\{ \sum_{j=1}^{n} a_{ij} x_j \geq b_i \}_{i \in [m]} \), where \(x_i \in \mathbb{Z} \)
 - **Output:** YES \(\Leftrightarrow \) there is a solution to the system above.

- IPROG is NP-complete
- Membership in NP: proof/witness is a solution to the inequalities.
- Completeness for NP: reduction from 3SAT

 Encode each clause as a linear inequality.

 Enforce boolean constraint by adding linear inequalities.
Integer Programming

- IPROG
 - **Input:** System of linear inequalities \(\{ \sum_{j=1}^{n} a_{ij} x_j \geq b_i \}_{i \in [m]} \), where \(x_i \in \mathbb{Z} \)
 - **Output:** YES \(\iff \) there is a solution to the system above.
- IPROG is NP-complete
- Membership in NP: proof/witness is a solution to the inequalities.
- Completeness for NP: reduction from 3SAT

 Encode each clause as a linear inequality.

 Enforce boolean constraint by adding linear inequalities.

 - \(x_1 \lor \overline{x}_2 \lor x_3 \iff x_1 + (1 - x_2) + x_3 \geq 1 \)
 - \(0 \leq x_i \leq 1 \)
Intractability

- Scheduling Problems
- Algebraic Problems
- Mathematical Programming Problems
- Taxonomy of Hard Problems

Further Explorations

- Computational view of the world
- Courses
- Research
- AMA

Acknowledgements
Packing Problems

Packing problems: given a collection of objects (with certain conflicts between them), want to choose at least k of them.

- **NP-complete packing problems:**
 1. Clique
 2. Independent Set
 3. Set packing

 Input: collection of subsets S_1, S_2, \ldots, S_m of $[n]$, number $k \in \mathbb{N}$

 Output: YES \iff there is collection of k sets with empty pairwise intersection
Covering Problems

Covering Problems: given collection of objects and a particular goal, want to choose a subset of objects of size \(\text{at most} \ k \) that achieve this goal

- NP-complete covering problems:
 1. Vertex Cover
 2. Set Cover

- **Input:** subsets \(S_1, \ldots, S_m \) of \([n]\), \(k \in \mathbb{N} \)
- **Output:** YES \(\iff \) there are at most \(k \) subsets \(S_i \) whose union is all of \([n]\)
Partitioning Problems: dividing collection of objects into subsets such that each object appears in exactly one of these subsets

- NP-complete partitioning problems
 - Graph Coloring
 - 3-dimensional matching

Input: given disjoint sets X, Y, Z each of size n, and subset $T \subset X \times Y \times Z$

Output: YES \iff there are n triple such that every element of $X \cup Y \cup Z$ is contained in exactly one of the triples
Sequencing Problems

- NP-complete sequencing problems
 - directed Hamiltonian cycle
 - directed Hamiltonian path
 - TSP
Numerical & Mathematical Programming Problems

- NP-complete numerical & mathematical programming problems
 - Subset-Sum
 - Integer Programming
 - 0-1 Quadratic Programming
Constraint Satisfaction Problems

- NP-complete constraint satisfaction problems
 - SAT
 - 3SAT
 - Circuit SAT
Intractability
- Scheduling Problems
- Algebraic Problems
- Mathematical Programming Problems
- Taxonomy of Hard Problems

Further Explorations
- Computational view of the world
- Courses
- Research
- AMA

Acknowledgements
What have we learned

- Decision problems are not very restrictive - thus good to build theory upon
- Reductions between problems
 - allows us to put partial order on hardness of problems
 - classify problems according to their difficulty
- Three important classes of decision problems: P, NP and coNP
- Completeness for NP
- Problems that are NP-hard but not in NP
What else is there?

- this is just the tip of the iceberg
 - parallel computation
 - non-uniform computation

 What if we could give a different algorithm for each input size?
 - randomized computation
 - What about space requirements?
 - What about problems with more quantifiers (\exists, \forall)?
 - distributed
 - streaming (low memory, few passes through data)
 - online algorithms
 - algebraic algorithms
 - approximation algorithms
 - numerical methods
 - parallel algorithms
Algorithmic Side

- Courses being offered in Winter 2024
 - Prof Assadi’s CS 860: modern topics in graph algorithms
 - Prof Khanna’s CS 860: algorithmic gems
Courses being offered in Winter 2024

- Prof Blais CS 365: undergraduate complexity
- Prof Blais CS 764: graduate complexity
Research Opportunities at UW!

Consider doing a URA, URF or USRA with a U Waterloo faculty!
See research openings at:

- **Undergraduate Research Assistanship (URA):**

 https://cs.uwaterloo.ca/computer-science/current-undergraduate-students/research-opportunities/undergraduate-research-assistantship-ura-program

- **Undergraduate Research Fellowship (URF):**

 https://cs.uwaterloo.ca/current-undergraduate-students/research-opportunities/undergraduate-research-fellowship-urf

- **Mathematics Undergraduate Research Assistanship (MURA):**

 https://uwaterloo.ca/math/undergraduate-research-assistantships-faculty-mathematics

- **For Canadians, please check out NSERC’s USRA:**

 https://cs.uwaterloo.ca/usra
Ask me anything!
Acknowledgement

Based on

- [Kleinberg Tardos 2006, Chapter 8]
References I

Cormen, Thomas and Leiserson, Charles and Rivest, Ronald and Stein, Clifford (2009)
MIT Press

Dasgupta, Sanjay and Papadimitriou, Christos and Vazirani, Umesh (2006)
Algorithms

Erickson, Jeff (2019)
Algorithms
https://jeffe.cs.illinois.edu/teaching/algorithms/

Kleinberg, Jon and Tardos, Eva (2006)
Algorithm Design.
Addison Wesley