Algorithms

Outline

→ How to find the best algorithmic solutions to problems.

I. How to design algorithms

 • basic repertoire of algorithms
 – sorting (1st year), string algorithms (CS 240)
 – domain specific algorithms covered in other courses
 e.g., graph algorithms, linear programming (C&O); numerical algorithms (AM);
 algebraic algorithms in computer algebra (CS 487)
 • general paradigms: divide and conquer, greedy, dynamic programming, reductions

II. How to analyze algorithms → How good is this algorithm?

 • time, space, goodness of approximation
 • O-notation, worst/average case
 • models of computations

III. Lower bounds → Do we have the best algorithm?

 • basic lower bounds
 • NP-completeness and undecidability
Case Study: Convex Hull
Given \(n \) points in the plane, find their convex hull: the smallest convex set containing the points. (Like putting a rubber band around nails sticking out.) Why? Convex hull gives the “shape” of a set of points – better container than a minimal bounding box.

Equivalently (and more useful for thinking about algorithms) the convex hull is a polygon whose sides are formed by lines \(\ell \) that go through (at least) 2 points and have no points to one side of \(\ell \).
A. Straightforward algorithm

For all pairs of points \(r, s \) \(\leftarrow O(n^2) \)

1. Find line through \(r, s \)
2. If all other points \(t \) lie on or to one side of \(\ell \) \(\otimes \)
 Then \(\ell \) forms part of convex hull

Time for \(n \) points: \(O(n^3) \)

Note: this is high-level pseudo-code. How do we test \(\otimes \)?

Following approach avoids division by 0, overflow: Only uses +, −, ×, <.

\[
\begin{align*}
\bullet \ r &= (x_1, y_1) \\
\bullet \ s &= (x_2, y_2) \\
\bullet \ t &= (x_3, y_3) \\
\bullet \ S &= (x_2-x_1)(y_3-y_1)-(y_2-y_1)(x_3-x_1)
\end{align*}
\]

Then \(S \)

\[
\begin{cases}
< 0 & \text{if path } (r, s, t) \text{ is moving clockwise} \\
= 0 & \text{if path } (r, s, t) \text{ forms a line} \\
> 0 & \text{if path } (r, s, t) \text{ is moving counterclockwise}
\end{cases}
\]

Can we do better? Yes — several possibilities.
B. Jarvis’ march

Observe that once we have found one line \(\ell \), there is a natural “next” line \(\ell' \). Rotate \(\ell \) through \(s \) until it hits the next point \(t \).

How can we find \(\ell' \)? Look at all lines through \(s \) and another point, and find the “extreme” one in the sense of minimizing angle \(\alpha \).

Finding extreme is like finding the minimum element of a set: \(O(n) \)

Whole algorithm is: \(O(n^2) \)

[This algorithm is good to use when the convex hull has few points. It actually takes time \(O(nh) \), where \(h \) is the number of convex hull points.]

Can we do better? Yes
C. Reduction
Repeatedly finding the minimum should remind you of sorting.
Sort points by x-coordinate.
Exercise: Find convex hull with $O(n)$ further work.
Hint: Find upper and lower convex hull separately.

A reduction uses an algorithm you know (sorting) to solve a new problem.
D. Use divide and conquer

Divide in half by vertical.
Recursively find convex hull on each side.
Combine by finding upper & lower bridge.

Details: initial $e = $ edge from max x on left to min x on right. “walk e up” to get upper bridge, down to get lower bridge.

$O(n)$ to find median, upper and lower bridge

Get recurrence relation

$$T(n) = 2T(n/2) + O(n)$$

Like recurrence for merge sort, so $T(n) = O(n \log n)$.
Can we do better?
In some sense, NO.
If we could find convex hull faster, we could sort faster.

This is not rigorous - what is the model of computation?

Challenge Look up Timothy Chan’s
“output sensitive convex hull algorithm” \(O(n \log h)\)

[Note: we saw \(O(n \log n)\) and \(O(nh)\). Which is better? Neither — hence Chan’s algorithm.]