Graph Algorithms

Graph \(G = (V, E) \)
- \(V \) - vertices (nodes) \(|V| = n \)
- \(E \subseteq V \times V \) - edges \(|E| = m \)
edges can be undirected (unordered pairs) or directed (ordered pairs)

Basic Notions
- \(u, v \in V \) are \underline{adjacent} or \underline{neighbours} if \((u, v) \in E \)
- \(v \in V \) is incident to \(e \in E \) if \(v \) \underline{incident} (ordered pairs)
 - \(\text{deg}(v) = \# \) incident edges
 - for directed graph \underline{indegree}(v), \underline{outdegree}(v)
• a **path** is a sequence of vertices \(v_1, v_2, \ldots, v_k \) s.t. \((v_i, v_{i+1}) \in E, i = 1, \ldots, k - 1\)

a **simple** path does not repeat vertices

• a **cycle** is a path that starts and ends at the same vertex. **simple cycle** − no repeats

CAUTION: Some sources use “path” to mean a simple path

• a **tree** is a connected (undirected) graph without cycles

• an undirected graph is **connected** if every \(u, v \in V \) are joined by a path

• connected component of a graph = maximal connected subgraph

\[
\begin{array}{c}
\bullet & \bullet & \bullet \\
\begin{array}{c}
\bullet \\
\end{array}
\end{array}
\]

3 connected components

History: Euler, Königsberg bridge problem 1735: **Seven Bridges of Königsberg**

Applications — many!

• networks: wireless, transportation, social

• web pages, game configurations etc.

• **Graph Theory**
Storing Graphs

In practice, vertices and edges may have names or other associated information, but our algorithms will be for abstract graphs.

Assume vertices are \{1, 2, \ldots, n\} (sometimes write \(v_1, \ldots, v_n\) or use letters)

Two basic ways to store a graph:

Adjacency matrix

- \(n \times n\) matrix
- space \(O(n^2)\)

\[
A[i, j] = \begin{cases}
1 & \text{if } (i, j) \in E \\
0 & \text{otherwise}
\end{cases}
\]

Adjacency lists for every vertex \(u\), store a linked list of its (forward) neighbours, i.e., vertices \(v\) such that \((u, v) \in E\)

- space \(O(n + m)\)

Examples

For an undirected graph, every edge “appears” twice, e.g., \((2, 3)\) is in 2’s list and 3’s list.

Ex. Do an example of a directed graph.
Basic operations:

<table>
<thead>
<tr>
<th>Operation</th>
<th>Adjacency Matrix</th>
<th>Adjacency Lists</th>
</tr>
</thead>
<tbody>
<tr>
<td>find (\text{deg } v)</td>
<td>(\Theta(n))</td>
<td>(\Theta(1 + \text{deg}(v)))</td>
</tr>
<tr>
<td>list (v)'s neighbours</td>
<td>(\Theta(n))</td>
<td>(\Theta(1 + \text{deg}(v)))</td>
</tr>
<tr>
<td>list all edges</td>
<td>(\Theta(n^2))</td>
<td>(\Theta(n + m))</td>
</tr>
<tr>
<td>((u, v) \in E)</td>
<td>(\Theta(1))</td>
<td>(O(1 + \text{deg}(u)))</td>
</tr>
<tr>
<td>space</td>
<td>(\Theta(n^2))</td>
<td>(\Theta(n + m))</td>
</tr>
</tbody>
</table>

For algorithms in this course, we’ll use adjacency lists.
Exploring Graphs – visit all nodes, or all nodes reachable from some “source” further – find shortest paths, connected components.

Breadth First / Depth First Search

BFS

Cautious search: check everything one edge away, then two, etc.

order in which vertices are discovered

Use a queue to store vertices that have been discovered but must still be explored. Vertices are marked: undiscovered → discovered.
Explore(v)

for each neighbour u of v do
 if mark(u) = undiscovered then
 mark(u) := discovered
 add u to Queue
 fi
od

BFS

initialize: mark all vertices undiscovered
pick initial vertex v_0
add v_0 to Queue
mark(v_0) := discovered
while Queue not empty do
 v := remove from Queue
 Explore(v)
od

Also useful to store parent and level.

BFS takes $O(n + m)$ time — we explore each vertex once and check all incident edges.

Time is $O(n + \sum_v \deg(v)) = O(n + m)$

Note: $\sum_v \deg(v) = 2m$ because we count each edge twice.
Properties of BFS

- the parent pointers create a directed tree (because each addition adds a new vertex \(u \), with parent \(v \) in the tree)

- \(u \) is connected to \(v_0 \) if and only if BFS from \(v_0 \) reaches \(u \).

Stronger: Lemma: The level of a vertex \(v = \) length of shortest path from \(v_0 \) to \(v \).

Proved via 2 claims:

Claim 1 \(v \) in level \(i \) \(\Rightarrow \) there is a path \(v_0 \) to \(v \) of \(i \) edges.

Claim 2 \(v \) in level \(i \) \(\Rightarrow \) every path \(v_0 \) to \(v \) has \(\geq i \) edges.

Proof of claim 1 by induction on \(i \), the level.

Basis \(i = 0 \): \(v = v_0 \), the root of the tree.

Induction step: \(v \) in level \(i \) \(\Rightarrow \) parent(\(v \)) in level \(i - 1 \) \(\Rightarrow \) there is a path \(v_0 \) to parent(\(v \)) of \(i - 1 \) edges. Adding edge (parent(\(v \)), \(v \)) gives path \(v_0 \) to \(v \) of \(i \) edges \(\square \)

To prove claim 2 we will prove: if there is a path \(v_0 \) to \(v \) of \(j \) edges then \(v \) is in level \(\leq j \).

Proof by induction on \(j \).

Basis \(j = 0 \): must have \(v = v_0 \), which is in level 0. Induction step. Let \(u \) be vertex before \(v \) in path. There is a path \(v_0 \) to \(u \) of \(j - 1 \) edges. By induction \(u \) is in level \(\leq j - 1 \). So one edge (\(u, v \)) goes to level \(\leq j \). \(\square \)
Consequences:

1. BFS from v_0 finds the connected component of v_0.
2. BFS finds shortest paths (# edges) from v_0

Exercises:

- Enhance BFS to find all connected components in time $O(n + m)$.
- Use BFS to find if a connected graph has a cycle.
- Prove that if $(u, v) \in E$ then level(u), level(v) differ by 0 or 1.