Recall: DFS to find 2-connected components

This graph is connected but removing one vertex \(b \) or \(e \) disconnects it.

\(v \) is a cut vertex if removing \(v \) makes \(G \) disconnected. Cut vertices are bad in networks.

DFS from \(e \)

Characterizing cut vertices:

Claim The root is a cut vertex iff it has \(> 1 \) child.

Lemma A non-root \(v \) is a cut vertex iff \(v \) has a subtree \(T \) with no non-tree edge going to a proper ancestor of \(v \).

Proof \(\Leftarrow \) removing \(v \) separates \(T \) from rest of graph.

\(\Rightarrow \) since removing \(v \) disconnects \(G \), some subtree must get disconnected
Recall: DFS to find 2-connected components

This graph is connected but removing one vertex b or e disconnects it.

v is a cut vertex if removing v makes G disconnected. Cut vertices are bad in networks.

DFS from e

Characterizing cut vertices:

Claim The root is a cut vertex iff it has > 1 child.

Lemma A non-root v is a cut vertex iff v has a subtree T with no non-tree edge going to a proper ancestor of v.

Proof \iff removing v separates T from rest of graph.
\Rightarrow since removing v disconnects G, some subtree must get disconnected
Making the lemma into an algorithm

Define: \(\text{low}(u) = \min \{ d(w) : x \text{ a descendant of } u \text{ and } (x, w) \text{ an edge} \} \)

Convention: \(u \) is a descendant of \(u \)

\(\text{low}(u) \) = how high in tree we can get to from \(u \) by going down (0 or more) and then up 1 edge

Note: it does not hurt to look at all edges, not just non-tree edges

Fact: non-root \(v \) is a cut vertex iff \(v \) has a child \(u \) with \(\text{low}(u) \geq d(v) \)

We can compute low recursively

\[
\text{low}(u) = \min \left\{ \min \{ d(w) : (u, w) \in E \} , \min \{ \text{low}(x) : x \text{ a child of } u \} \right\}
\]

(1)

Algorithm to compute all cut vertices

- Enhance DFS code to compute low, OR
- Run DFS to compute discover times \(d(\cdot) \).
 Then, for every vertex \(u \) in finish time order use (1) to compute \(\text{low}(u) \).

For every non-root \(v \): if \(v \) has a child \(u \) with \(\text{low}(u) \geq d(v) \) then \(v \) is a cut vertex.

Also handle the root.
Depth First Search on Directed Graphs

DFS(v)

- mark(v) := discovered
- d(v) := time; time := time + 1
- for u ∈ AdjacencyList(v) do
 - if u is undiscovered then
 - DFS(u); (v, u) is a tree edge
 - else
 - # label back, forward, cross edges
 - if u not finished then
 - (v, u) is a back edge
 - elif d(u) > d(v) then
 - (v, u) is a forward edge
 - else
 - # d(u) < d(v)
 - (v, u) is a cross edge
 - fi
 - fi
- od
- mark(v) := finished
- f(v) := time; time := time + 1

DFS takes $O(n + m)$

Note: result depends on vertex ordering.
Applications of DFS

(1) Detecting cycles in directed graphs.

Lemma A directed graph has a (directed) cycle iff DFS has a back edge.

Proof

\[\iff \]

\[\text{back edge gives directed cycle} \]

Suppose there is a directed cycle. Let \(v_1 \) be first vertex discovered in DFS. Number vertices of cycle \(v_1 \cdots v_k \).

Claim \((v_k, v_1)\) is a back edge.

Proof Because we must discover & explore all \(v_i \) before we finish \(v_1 \), when we test edge \((v_k, v_1)\) we label it a back edge.
Applications of DFS

(2) Topological sort of directed acyclic graph \((\text{acyclic} \equiv \text{no directed cycle})\)

Edge \((a, b)\) means \(a\) must come before \(b\) (e.g., job scheduling).

Find a linear order of vertices satisfying all edges (possible iff no directed cycle).

Example:

\[
\text{topological sort: } b \; c \; a \; d \; \text{or } c \; d \; b \; a \; \text{or } \ldots
\]

One solution: Find vertex \(v\) with no in-edge. Remove \(v\) and repeat.

Solution using DFS: \(O(n + m)\)

use reverse of finish order.

Example

(first example

without back edges)

\[
\begin{array}{c}
\text{finish order} \\
\text{reverse finish order } s, \; w, \; z, \; r, \; x, \; y, \; v, \; u
\end{array}
\]

This is a topological order.

Proof that this works.

Claim For every directed edge \((u, v)\), \(\text{finish}(u) > \text{finish}(v)\)

\[\text{case 1 } u \text{ discovered before } v. \text{ Then because of edge } (u, v), v \text{ is discovered and finished before } u \text{ is finished.}\]

\[\text{case 2 } v \text{ discovered before } u. \text{ Because } G \text{ has no directed cycle, we can't reach } u \text{ in } \text{DFS}(v). \text{ So } v \text{ finished before } u \text{ is discovered and finished.}\]
Applications of DFS

(3) Finding strongly connected components in a directed graph.

Strongly connected \(\equiv \) for all vertices \(u, v \) there is a path \(u \rightarrow v \)

Easy to test if \(G \) is strongly connected because we don’t need to test all pairs \(u, v \).

Here’s how: Let \(s \) be a vertex

Claim \(G \) is strongly connected iff for all vertices \(v \), there is a path \(s \rightarrow v \)

and a path \(v \rightarrow s \).

Proof \(\Rightarrow \) clear

\(\Leftarrow \) to get from \(u \rightarrow v \): \(u \rightarrow s \rightarrow v \)

To test if there’s a path \(s \rightarrow v \ \forall v \) — do \(\text{DFS}(s) \).

How can we test if there’s a path \(v \rightarrow s \ \forall v \)? Reverse edge directions and do \(\text{DFS}(s) \).

Neat!

More generally, the structure of a digraph is

Contracting strongly connected components gives an acyclic graph (think about why).