CS 341 W22 Lecture 20
NP-Complete Problems

R. Peng, University of Waterloo
From Last Time

• To show a decision problem Z is NP-complete:
 • Prove Z is in NP
 • Prove $X \leq_p Z$ for a known NP-complete problem X
• A many-one reduction $X \leq Y$ uses the algorithm for Y once and outputs its answer
• NP-Complete Problems: 3-SAT, Independent Set
• Today: show NP-completeness of
 • Clique
 • Vertex Cover
 • Hamiltonian Cycle / TSP
Clique

- **Input**: undirected graph $G = (V, E)$, number k
- **Output**: does G have a clique (set of vertices that’s pairwise joined by edges) of size $\geq k$

Observe: C is a clique if and only if C is an independent set in G^C (complement of G, edges \leftrightarrow non-edge)

Theorem: Clique is NP-Complete

1. Clique is in NP: certificate is the set C, verification is to check $|C| \geq k$, and all pairs in C are in E, $O(n^2)$ time
2. Will show Independent Set \leq_p Clique
Independent Set \leq_p Clique

• Assume we have a polynomial time algorithm for Clique
• Invoke it to give a polynomial time algorithm for independent set

Independent Set
• **Input:** undirected graph \(G = (V, E) \), number \(k \)
• **Output:** does \(G \) have an independent set (set of pairwise disjoint vertices) of size \(\geq k \)

Reduction: set \(G' = G^c \), and \(k' = k \)

• **Runtime:** \(O(n^2) \)
• **Correctness:** \(G \) has an clique of size \(\geq k \) if and only if \(G^c \) has an independent set of size \(\geq k \). \(S \subseteq V \) is a clique in \(G \) if and only if \(S \) (the same set) is an independent set in \(G^c \)
Vertex Cover

- **Input**: undirected graph $G = (V, E)$, number k
- **Output**: does G have a vertex cover of size $\leq k$

Vertex cover: $S \subseteq V$ such that every edge (u, v) has at least one of u or v (or both) in S

Observe: S is a vertex cover if and only if $V \setminus S$ is an independent set

Theorem: Vertex Cover is NP-complete
- Vertex Cover is in NP: certificate $= S$
- Will show Independent Set \leq_p Vertex Cover
Independent Set \leq_p Vertex Cover

• Assume we have a polynomial time algorithm for Vertex Cover
• Given inputs G and k, construct G’ and k’ such that G’ has a vertex cover of size at most k’ if and only if G has an independent set of size at least k.
• Return the result of the Vertex Cover algorithm on (G’, k’)
 Reduction: set G’ = G, and k’ = |V| - k

• Runtime: exercise.

• Correctness:
 • \(\Rightarrow \) Let S be the vertex cover of size \(\leq k’ = |V| - k \) in G’, then \(V \setminus S \) is an independent set in G, and it has size \(|V| - |S| \geq |V| - k’ = |V| - (|V| - k) = k \)
 • \(\Leftarrow \) Let I be an independent set of size \(\geq k \) in G, then \(V \setminus I \) is a vertex cover of size at most \(|V| - k = k’ \).
Roadmap to NP-Completeness

Clique

\[\text{Ind. Set} \leq_p \text{Vertex Cover} \leq_p \text{Set Cover} \]

\[\text{Circuit SAT} \leq_p \text{3-SAT} \leq_p \text{Ham. Cycle} \leq_p \text{TSP} \]

\[\text{Subset Sum} \]
History of NP Completeness

• 3-SAT is NP Completeness:
 • Cook 1971
 • Independently Levin

• [Karp `72] “Reducibility Among Combinatorial Problems”: first 21 NP-Complete problems:
 https://en.wikipedia.org/wiki/Karp%27s_21_NP-complete_problems

Why Many-One Reductions

• Special case of Turing reduction (invoke the algorithm for Y arbitrarily many times), so it’s a stronger result

• More structured, so easier to prove correctness, as well as finding the proof

• Convention

Open, but holds for all known cases:

Is there always a many-one reduction to prove that a problem is NP-complete?
Lecture 20 Part 1 Summary

• Clique and Vertex Cover are NP-complete
• There are many NP-complete problems, many-one reductions suffice to all ones we know of thus far
• What you should know from lecture 20 part 1
 • How to prove a problem is NP-complete using a polynomial time many-one reduction
• Next: a more intricate NP-completeness proof, to show that Hamiltonian cycle is NP-complete
Directed Hamiltonian Cycle

- Input: directed graph $G = (V, E)$
- Output: does G have a directed Hamiltonian Cycle?
 (recall: Hamiltonian cycle is a cycle that visits each vertex exactly once)

Theorem: Directed Hamiltonian Cycle is NP-Complete

1. Directed Hamiltonian Cycle is in NP: exercise
2. 3-SAT \leq_p Directed Hamiltonian Cycle: assume we have a polynomial time algorithm for Directed Hamiltonian Cycle, use it to solve 3-SAT.

Need: a routine that takes a 3-SAT instance F, outputs a graph that has a Hamiltonian Cycle if and only if F is satisfiable.
From Boolean Variables to Graphs

3-SAT

• Input: n variables $x_1 \ldots x_n$, m clauses $c_1 \ldots c_m$, each the OR of three literals of the form $x_i \lor \neg x_i$.

• Output: whether we can assign T/F to the x_i's so that each clause has a literal satisfied

Idea: create a part of the graph for each variable, so that how it gets traversed in the cycle corresponds to whether x_i is true or false

Going from s-to-t

• T: go left-to-right
• F: go right-to-left
From Boolean Variables to Graphs

Given 3-SAT formula F with n variables, m clauses

Create a graph that has a Hamiltonian cycle if and only if F is satisfiable

Stack these gadgets, One per variable

t→1 edge to force a cycle
Encoding a Clause

- Make a vertex, c_j (which must be traversed)
- If it has x_i, connect c_j to the `path’ of x_i in forward direction
- Otherwise (has $\neg x_i$), connect in reverse direction
‘Jumping around’ using Clauses

- Can go from row for x_i to row for x_j via two different literals in c_j

\[c_j = (x_1 \lor \neg x_2 \lor x_3) \]

Diagram:

- Nodes v_1, v_2, and t connected to c_j with arrows indicating the direction of 'jumping around'.
Fix: insert spare vertices

• Make sure different `detour edges` have at least one vertex between them

• Formally: for variable x_i:
 • path of $O(m)$ vertices $v_{i,1}v_{i,3j+3}$
 • If clause j contains x_i, add $v_{i,3j} \rightarrow c_j, c_j \rightarrow v_{i,3j+1}$
 • If clause j contains $\neg x_i$, add $v_{i,3j+1} \rightarrow c_j, c_j \rightarrow v_{i,3j}$
Correctness of Reduction

G has a Hamiltonian cycle iff F is satisfiable

- If F is satisfiable, traverse the variable paths in the True/False directions. For each clause, take a detour of one of its satisfied literals.
- Suppose G has a directed Hamiltonian path.
 Key claim: only way some c_i is visited is by a detour
 Need to show: if we take $a \rightarrow c_i$, must take $c_i \rightarrow b$:
 - we don’t use $a \rightarrow d$
 - so must use $d \rightarrow a$
 - so $b \rightarrow a$ is not used
 - so $b \rightarrow e$ must be used as 1 edge leaves b
 - so $e \rightarrow b$ can’t be used
 - so the edge into b must be $c_i \rightarrow b$

This means the path must traverse each x_i path in either T or F direction, so gives a satisfying assignment
Undirected Hamiltonian Cycle is NP-Complete

- Hamiltonian cycle is in NP.
- Directed Hamiltonian Cycle \(\leq_p\) Hamiltonian Cycle
 - Given directed graph \(G\), make undirected \(G'\) s.t. \(G\) has directed Hamiltonian cycle iff \(G'\) has undirected Hamiltonian cycle.
 - Plan: split vertices, \(v\) into \(v_{\text{in}}\) and \(v_{\text{out}}\), with a spare vertex in between to ensure path goes from \(v_{\text{in}}\) to \(v_{\text{out}}\)
Directed Hamiltonian Cycle \leq_p Hamiltonian Cycle

Form G' by:

- split vertices, v into v_{in} and v_{out}, with a spare vertex in between to ensure path goes from v_{in} to v_{out}
- Turn all $u \rightarrow v$ to (u_{out}, v_{in})

Runtime: $O(m)$
Correctness:

- Cycle in $G \rightarrow$ cycle in G'
- Cycle in G': cannot take both (a, v_{in}) and (b, v_{in}) because that would leave v_s with 1 neighbor
- So each vertex v must have v_{in}, v_s, v_{out} in order, with u_{out} before, and w_{in} after. This maps to directed edges in G.
Lecture 20 Summary

• NP-completeness of Independent Set, Clique, Vertex Cover, Hamiltonian Cycle, and TSP

• What you should know from Lecture 20: proving NP-completeness using many-one reductions

• Next: NP-completeness of subset sum, and circuit-SAT