CS 341 W22 Lecture 21
NP-Hardness of Subset-Sum and Circuit SAT

R. Peng, University of Waterloo
Summary of Lecture 20

• NP-Completeness of
 • Independent Set
 • Vertex Cover
 • Hamiltonian Cycle
 • TSP

• What you should know: proving a problem is NP-complete using a polynomial time many-one reduction
Today

- These are the harder proofs
- Goals:
 - Formally establish NP-completeness
 - Example of more involved proofs
Subset Sum

• Input: n numbers $w_1...w_n$, goal W
• Output: is there a subset $S \subseteq \{1...n\}$ such that $\Sigma_{i \in S} w_i = W$?

Theorem: Subset Sum is NP-complete

• Subset sum is in NP: certificate is subset ... (rest exercise)
• 3-SAT \leq_p Subset sum: assume access to a polynomial time algorithm for Subset sum, use it to give a polynomial time algorithm for 3-SAT

Alternatively: given a 3-SAT instance, output an instance of Subset Sum that’s true iff the 3-SAT instance is satisfiable

We have seen how to turn 3-SAT into graph problems, now we turn it into a number problem.
3-SAT \leq_P Subset Sum

Recall construction of a 3-SAT formula F: m clauses $C_1 \ldots C_m$, each the or of 3 literals on variables $x_1 \ldots x_n$.

Idea of conversion / reduction:

- Each digit of the sum encodes one clause
- Build a number corresponding to the effect of setting x_i true

<table>
<thead>
<tr>
<th></th>
<th>C_1</th>
<th>C_2</th>
<th>...</th>
<th>C_m</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\neg x_1$</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>x_2</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\neg x_2$</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Assume no carries,

general rule: want ≥ 1 in each clause/digit

So if C_j contains x_i, $M[x_i, C_j] = 1$,

if C_j contains $\neg x_i$, $M[\neg x_i, C_j] = 1$,

e.g. $C_1 = (x_1 \lor \neg x_2 \ldots)$
Issues

• How to enforce ≥ 1, instead of $= 1$:
 allow extra term of 1 & 2, require sum = 4

• How to ensure that we don’t pick both x_i and $\neg x_i$
 create an extra digit where both x_i and $\neg x_i$ are 1s on, and require a sum of 1 on that digit
Larger Matrix

- 4 numbers per variable
- \(m + n \) digits
- Goal: \(m \) digits 4, \(n \) digit of 1
- Work in base 10 so there is no possibilities of carries

Slack rows to allow either 1, 2, 3 from sums of rows correspond to \(x_i \) / \(\neg x_i \)

To ensure we don’t pick both \(x_i \) and \(\neg x_i \)
Correctness

• Poly-time: resulting instance has $O(n + m)$ numbers, each with $O(n + m)$ digits.

• If F is satisfiable, then the Subset Sum instance has solution: if x_i true, pick row x_i, else pick row $\neg x_i$. The last n digits are good. For the first m digits, if the sum is 1, add both ja and jb, if 2, add in jb, if 3 add in ja.

• If there is a subset with sum W, then F has solution:
 • first, note that because each digit sum is at most 6, and we work in base 10 there are no carries.
 • Last m digits give that we pick exactly one of x_i or $\neg x_i$
 • Claim: that corresponding assignment to x_i satisfies F: for each clause j, the digit has sum 4, but the extra sum to at most 3, so one of the literals in the clause must be satisfied
Summary of Lecture 21, Part 1

We showed:
• Subset Sum is NP-complete

What you should know from Lecture 21 Part 1:
• NP-completeness proofs can be tricky
• Numbers can encode a lot of things
The First NP-Completeness Proofs

Circuit Satisfiability
A circuit is a directed acyclic graph with:
• Edges passing values on as inputs
• Sources (no edges entering) / inputs labeled with True/False
• One sink (no edges leaving), output
• Internal nodes labeled \(\land \) “AND”, \(\lor \) “OR”, \(\neg \) “NOT”

Given inputs, a circuit computes an output by having all nodes evaluate their values in topological order.

\[
(x_1 \land x_2) \lor (\neg x_1 \land \neg x_2):
\]

True iff \(x_1 = x_2 \)
Circuit Satisfiability

Input: a circuit C

Output: is the circuit satisfiable, aka. is there an assignment of values to the inputs such that the output is True

Theorem: Circuit SAT is NP-complete

1. Circuit SAT is in NP: certificate is the input, simulate circuit
2. This is the first NP-completeness proof, so we must prove for every Y in NP, $Y \leq_p$ Circuit SAT.

High level ideas only: only fact we can use is Y is in NP, i.e. that it has a poly-time verifier algorithm A
Y \leq P \text{ Circuit SAT for every } Y \in NP

Y \in NP: there is an algorithm A that takes two inputs y & g, and outputs YES/NO such that y is a YES instance of Y if and only if there exists a g of poly size such that A(y, g) outputs YES.

Idea: convert A to a circuit with input variables being g

How? A lot of handwaving for now:

- Code A, compile + assemble, look at things at hardware level
- Internal nodes of circuit: states of memory at each time step of running A
- \(|g|, \text{Time}(A)\) both \(\text{poly}(|y|)\), so C has polynomial size

Obtain a circuit C such that \(C(g) = A(y, g)\). Reduction algorithm is basically a compiler.
Summary of Lecture 21, Part 2

We showed:

• Circuit SAT is NP-complete --- the first NP-completeness proof, or at least the idea

What you should know from Lecture 21 Part 2:

• Checkers can be encoded as circuits, after which we ‘solve’ for an input.
Theorem: 3-SAT is NP-Complete

1. 3-SAT is in NP: previously covered, exercise

2. Circuit SAT \leq_p 3-SAT:
 • Assume we have a polynomial time algorithm for 3-SAT, use it to solve circuit SAT.
 • Given a circuit, construct a 3-SAT instance that’s satisfiable iff the circuit is satisfiable.
 • Intuitively (or from CS245): circuits and formulas are equivalent. Convert circuit to formula.
The Obvious Way

Chain together formulas of input nodes

\[(x_1 \land x_2) \lor (\neg x_1 \land \neg x_2)\]

This is not polynomial time / sized
One Variable Per Node

Local conditions become clauses with at most 3 literals

- \(x_u \) is true only if both \(x_v \) & \(x_w \) are true:
 - \(x_v \) false \(\rightarrow \) \(x_u \) false: cannot have \(x_v = F \) and \(x_u = T \): clause \(x_v \lor \neg x_u \)
 - Similarly, get \(x_w \lor \neg x_u \) so that \(xw = F \) forces \(x_u \) to be \(T \)
 - Finally, can’t have \(x_u = F \) when both \(x_v \) and \(x_w \) are \(T \), so a clause with three literals: \(\neg x_v \lor \neg x_w \lor x_u \)
One Variable Per Node

Local formulas become clauses with at most 3 literals

\[(x_v \lor \neg x_u) \land (x_w \lor \neg x_u) \land (\neg x_v \lor \neg x_w \lor x_u)\]

\[(-x_v \lor x_u) \land (-x_w \lor x_u) \land (x_v \lor x_w \lor \neg x_u)\]

\[(-x_v \lor x_u) \land (x_v \lor \neg x_u)\]
Circuit SAT \leq_p 3-SAT

Final Formula: F = \wedge \text{all clauses} \wedge x_{\text{output}}

- F is poly-sized and can be computed in poly-time.
- F is satisfiable iff C is satisfiable

\(\Leftarrow\) If C is satisfiable, then assigning T/F to the variables in F according to their values in C’s computation satisfies F.

\(\Rightarrow\) If F is satisfiable, then there is assignment of True/False to the variables that makes F true. Use the same values on input variables.

By construction, the values of the intermediate nodes are what we get from evaluating C on those inputs, and we also have the output is True from the extra clause in F.
Summary of Lecture 21

We showed:

• 3-SAT \leq_p Subset Sum
• Every problem in NP \leq_p Circuit SAT
• Circuit SAT \leq_p 3-SAT

What you should know from Lecture 21:

• NP-completeness proofs can get very interesting
• Everything in NP reduce to circuits, and SAT instances