
CS 341 Lecture 6 1

Greedy Algorithms

A greedy algorithm you all know: Make change for $3.47.

1 × $2
1 × $1
1 × 25¢
2 × 10¢
2 × 1¢
7 coins

Claim: This is the minimum number of coins.

Exercise: (not easy) Prove that the greedy method of making
change works for the (old) Canadian coin system.

Does the greedy method work for every possible coin system?

1¢ 6¢ 7¢ coins. Make change for 12¢.
Greedy: 7¢ + 5 × 1¢ Better: 2 × 6¢

Claim: The greedy change algorithm can be implemented in
polynomial time using quotients and remainders.

CS 341 Lecture 6 2

Interval Scheduling or “Activity Selection”

Given a set of activities, each with a specified time interval,
select a maximum set of disjoint (= non-intersecting) intervals.

Greedy Approach:

• pick one activity greedily

• remove conflicts

• repeat

CS 341 Lecture 6 3

There are several possible greedy approaches.

1. select activity that starts earliest

2. select the shortest interval

3. select the interval with fewest conflicts

4. select the interval that ends earliest
for above, we get:

cs, seminar, lunch, science, soccer
Slick implementation of approach 4:

Sort activities 1..n by end time.
A := ∅
for i from 1 to n do

if activity i doesn’t overlap with any activities
need only check last!

in A then

A := A ∪ {i}

Analysis:

O(n log n) to sort.
O(n) for the loop.
Thus O(n log n) overall.

Correctness: We will see two basic ways to show greedy algorithms are correct:

1. greedy stays ahead all the time

2. “exchange” proof

CS 341 Lecture 6 4

Sketch of proof of correctness using method 1. (Formal proof by induction on next page.)
Suppose greedy algorithm returns

a1, a2, . . . , ak

sorted by endtime. Suppose an optimal solution is

b1, b2, . . . , bk, bk+1, bk+2, . . . , b`

sorted by endtime.

Claim: a1, b2, . . . , bk, bk+1, bk+2, . . . , b` is an optimal solution.

Why? end(a1) ≤ end(b1) so a1 doesn’t intersect with b1.

Claim: a1, a2, . . . , bk, bk+1, bk+2, . . . , b`, is an optimal solution.

Why? b2 does not intersect a1 so greedy algorithm could have chosen it.
Instead, it chose a2: so end(a2) ≤ end(b2), leaving intervals distinct.

...

Claim: a1, a2 . . . , ak, bk+1, . . . , b` is an optimal solution.

Claim: k = ` otherwise greedy algorithm would have continued to choose more intervals.

CS 341 Lecture 6 5

Here we use method 1.
Lemma: This algorithm returns a maximum size set A of disjoint intervals.
Proof: Let A = {a1, . . . , ak}, sorted by end time.
Compare to an optimum solution B = {b1, . . . , b`}, sorted by end time.
Thus ` ≥ k and we want to prove ` = k.
Idea: At every step we can do at least as good with the ai’s.
Claim: a1 . . . aibi+1 . . . b` is an optimal solutions for all i, 1 ≤ i ≤ k.
Proof: By induction on i.

basis i = 1. a1 had earliest end time of all intervals so end(a1) ≤ end(b1).
So replacing b1 by a1 gives disjoint intervals.

induction step Suppose a1 . . . ai−1bi . . . b` is an optimal solution, 1 < i ≤ k.
bi does not intersect ai−1 so the greedy algorithm could have chosen it.
Instead, it chose ai, so

end(ai) ≤ end(bi)

and replacing bi by ai leaves disjoint intervals.

This proves the claim. To finish proving the lemma:
If k < ` then a1 . . . akbk+1 . . . b` is an optimal solution.
But then the greedy algorithms had more choices after ak.

CS 341 Lecture 6 6

Another example of a greedy algorithm: Scheduling to minimize lateness.

assignments time required deadline
CS341 4 hrs in 9 hrs
Math 2 hrs in 6 hrs
Philosophy 3 hrs in 14 hrs
CS350 10 hrs in 25 hrs

Can you do everything by its dead-
line (ignoring sleep!)

How? (no parallel processing!)

Optimization Version (more general)

find a schedule, allowing some jobs to be late, but minimizing the maximum lateness

Note: this is different from minimizing sum of lateness
(= minimum average lateness)

Q: Why is the optimization problem more general?
A: A schedule completes all jobs on time if and only if its maximum lateness is 0.

Notation: Job i takes time ti and has deadline di

CS 341 Lecture 6 7

Observation 1. You might as well finish a job once you start.

This is at least as good: the other jobs finish earlier
and job i finished at same time.

Thus, each job should be done contiguously.

Observation 2. There’s never any value in taking a break.

What are some greedy approaches?

• do short jobs first

←− not correct

• do jobs with less slack first: slack = di − ti

←− not correct

• jobs in order of deadline
i.e., order jobs such that d1 ≤ d2 ≤ · · · ≤ dn and do them in that order

check that this works on above examples

CS 341 Lecture 6 8

Greedy algorithm: order job by deadline, so d1 ≤ d2 ≤ · · · ≤ dn.

We will show that the greedy algorithm minimizes lateness.

Advice about proofs:

Don’t be general at first! Try special cases!
What is a good special case here? Consider n = 2, d1 < d2.

O has job 2 before job 1 G has job 1 before job 2
`O(1) = lateness of job 1 in O, etc. for `O(2), `G(1), `G(2)
`G - maximum lateness of greedy schedule = max{`G(1), `G(2)}
`O - maximum lateness of other schedule = max{`O(1), `O(2)}
`G(1) ≤ `O(1) because we moved 1 earlier
`G(2) ≤ `O(1) because d1 ≤ d2
Therefore `G ≤ `O(1) ≤ `O

CS 341 Lecture 6 9

Can we generalize?
The idea allows us to swap a pair of consecutive jobs if their deadlines are out of
order, making the solution better (or at least not worse).
Next: a proof that greedy gives an optimal solution using an “exchange proof.”

Theorem: The greedy algorithm gives an optimal solution, i.e., one that minimizes the
maximum lateness.

Proof: – an “exchange proof” that converts any solution to the greedy one without increas-
ing the maximum lateness.

Let 1, . . . , n be ordering of jobs by greedy algorithm, i.e., d1 ≤ d2 ≤ · · · ≤ dn. Consider
an optimal ordering of jobs. If it matches greedy, fine. Otherwise there must be two jobs
that are consecutive in this ordering but in wrong order for greedy: i, j with dj ≤ di.

Claim: Swapping i and j gives a new optimal ordering. Furthermore, the new optimal
ordering has fewer inversions. So repeated swaps will eventually give us the greedy ordering,
which must then be optimal.

CS 341 Lecture 6 10

Aside: recall that an inversion is a pair out of order.

• Swapping two consecutive elements that are out of order decreses the number of inver-
sions.

• If there are no inversions the array is sorted.

• Thus, after a finite number of swaps the array will be sorted.

Proof of claim: In an optimal solution, consider swapping consecutive jobs i, j with dj ≤ di.

• `N(j) ≤ `O(j) because now we do j first

• `N(i) ≤ `O(j) because dj ≤ di

And all other jobs have same lateness.
Thus `N ≤ `O. But `O was minimum. So `N = `O.
So we can swap until we get the greedy solution, ` unchanged.

