Dynamic Programming II

Recall the maximum common subsequence problem from last day:

T A R M A C

C A T A M A R A N

More sophisticated: count # changes

E.g.,

You : Pythagorus

You : recurrence

Google : Pythagoras ?

Google : recurrence ?

A change is:
- add a letter
- delete a letter
- replace a letter

This is called edit distance.

The problem comes up in bioinformatics for DNA strings.
DNA is a sequence of chromosomes, i.e., a string over the alphabet A, C, T, G.

Two strings can be aligned in different ways:

E.g. A A C A T

A A A A G

3 changes
(2 gaps, 1 mismatch)

E.g. A A C A T

A A A A G

2 changes
(2 mismatches)
Problem: Given two strings $x_1 \ldots x_m$ and $y_1 \ldots y_n$, compute their edit distance. I.e., find the alignment that gives the minimum number of changes.

Dynamic Programming Algorithm

Subproblem: $M(i, j) = \text{minimum number of changes to match } x_1 \ldots x_{i-1}x_i \text{ and } y_1 \ldots y_{j-1}y_j$.

Choices: - match x_i to y_j, pay replacement cost if they differ
 - match x_i to blank (delete x_i)
 - match y_j to blank (add y_j)

$$M(i, j) = \min \begin{cases}
M(i-1, j-1) & \text{if } x_i = y_j \\
r + M(i-1, j-1) & \text{if } x_i \neq y_j \\
d + M(i-1, j) & \text{match } x_i \text{ to blank} \\
a + M(i, j-1) & \text{match } y_j \text{ to blank}
\end{cases}$$

where:

- r = replacement cost
- d = delete cost
- a = add cost

So far, we used $r = d = a = 1$ (i.e., count # changes).

More sophisticated: $r(x_i, y_j)$ - replacement cost depends on the letters.

E.g., $r(a, s) = 1$ because these keys are close on typewriter

$r(a, c) = 2$... not too close
In what order do we solve subproblems? Same as last day.

\[
M[0 \ldots m, 0 \ldots n]
\]

for \(i\) from 0 to \(m\) do \(M(i, 0) = id\)

for \(j\) from 0 to \(n\) do \(M(0, j) = ja\)

for \(i\) from 1 to \(m\) do

for \(j\) from 1 to \(n\) do

\(M(i, j) := \ldots\)

\[
\begin{bmatrix}
 \hline
 \hline
 \hline
\end{bmatrix}
\]

Analysis: \(O(nm)\) time and \(O(nm)\) space

\((nm\) subproblems, constant time each\)
Recall Interval Scheduling aka Activity Selection: Given a set of intervals I, find a maximum size subset of disjoint intervals:

Weighted Interval Scheduling

Weighted Interval Scheduling: Given I and weight $w(i)$ for each $i \in I$, find set $S \subseteq I$ such that no two intervals overlap and maximize $\sum_{i \in S} w(i)$.

E.g., you have preferences for certain activities.

A more general problem:

- I is a set of element ("items")
- $w(i) =$ weight of item i
- some pairs (i, j) conflict

Find a maximum weight subset $S \subset I$ with no conflicting pairs.

Can be modeled as a graph: vertex = item edge = conflict

Problem is Max Weight Independent Set and we will see later that it is NP-complete.
A general approach to finding max weight independent set.
Consider one item \(i \). Either we choose it or not.

\[
\text{OPT}(I) = \max \{ \text{OPT}(I - \{i\}), w(i) + \text{OPT}(I') \} \quad \text{where} \quad I' = \text{intervals disjoint from } i
\]

In general this recursive solution does not give polynomial time.

\[
T(n) = 2T(n - 1) + O(1) \quad \implies T(n) \in \Theta(2^n)
\]

Essentially, we may end up solving subproblems for each of the \(2^n \) subsets of \(I \).

When \(I = \text{set of intervals} \), we can do better with dynamic programming.

Order intervals \(1 \ldots n \) by right endpoint.

something nice happens

Intervals disjoint from interval \(i \) are \(1 \ldots j \) for some \(j \).

For each \(i \), let \(p(i) = \text{largest index } j < i \) s.t. interval \(j \) is disjoint from interval \(i \).

Now we can solve subproblems.

Let \(M(i) = \max \{ M(i - 1), w(i) + M(p(i)) \} \)

\[
M(i) = \max \{ M(i - 1), w(i) + M(p(i)) \}
\]
A Dynamic Programming algorithm – computes the actual set, not just weight

Sort intervals 1...n by right endpoint.

\[M(0) := 0 \]
\[S(0) := \emptyset \]

for \(i \) from 1 to \(n \) do

\[p(i) := i - 1 \]

while \(p(i) \neq 0 \) and intervals \(i \) and \(p(i) \) overlap do \(p(i) := p(i) - 1 \)

if \(M(i - 1) \geq w(i) + M(p(i)) \) then

\[M(i) := M(i - 1) \]
\[S(i) := S(i - 1) \]

else

\[M(i) := w(i) + M(p(i)) \]
\[S(i) := \{i\} \cup S(p(i)) \]

End of algorithm

Final answer: weight \(M(n) \), set \(S(n) \)

Time: \(n \) subproblems, each \(O(n) \)

so total of \(O(n^2) + O(n \log n) \) to sort.

Space: \(O(n^2) \) - storing \(n \) sets, each \(O(n) \)

Next:

1. computing all \(p(i) \) values before-hand to save time
2. computing \(S \) by backtracking to save space
How to compute $p(i)$: We use sorted order $1 \ldots n$ by right endpoint
and sorted order $\ell_1 \ldots \ell_n$ by left endpoint

$$j := n$$

$$\text{for } k \text{ from } n \text{ downto } 1 \text{ do}$$

$$\text{while } \ell_k \text{ overlaps } j \text{ do } j := j - 1$$

$$p(\ell_k) := j$$

Run-time: $\Theta(n)$ after sorting

Final algorithm:

Sort intervals $1 \ldots n$ by right endpoint.
Sort intervals by left endpoint.
Compute $p(i)$ for all i.
$M(0) := 0$

$$\text{for } i \text{ from } 1 \text{ to } n \text{ do}$$

$$M(i) := \max\{M(i - 1), w(i) + M(p(i))\}$$

Run-time: $O(n \log n) + O(n) + O(n \cdot c)$
Backtracking to compute S: Use recursive routine to S-OPT

```plaintext
S-OPT(i)
    if $i = 0$ then
        return $\emptyset$
    elif $M(i - 1) \geq w(i) + M(p(i))$ then
        return S-OPT(i - 1)
    else
        return $\{i\} \cup S$-OPT($p(i)$)
```

The set we want is S-OPT(n).

Time: $O(n)$

Space: $O(n)$

Summary

- A general idea to find an optimal subset is to solve subproblems
 where one element is in or out

 Exponential in general; can sometimes be efficient

- Key ideas of dynamic programming:

 - Identify subproblems (not too many) together with

 - an order of solving them such that each subproblem can be solved by combining a
 few previously solved subproblems.