
School of Computer Science

CS 343

Concurrent and Parallel Programming

Course Notes* Fall 2022

https: //www.student.cs.uwaterloo.ca /∼cs343

µC++ download or Github (installation: sudo sh u++-7.0.0.sh)

September 5, 2022

Outline

An introduction to concurrent programming, with an emphasis on language constructs.

Major topics include: exceptions, coroutines, atomic operations, critical sections, mu-

tual exclusion, semaphores, high-level concurrency, deadlock, interprocess commu-

nication, process structuring on shared memory architectures. Students learn how to

structure, implement and debug complex control-flow.

*Permission is granted to make copies for personal or educational use.

https://www.student.cs.uwaterloo.ca/~cs343
http://plg.uwaterloo.ca/~usystem/pub/uSystem/u++-7.0.0.sh
https://github.com/pabuhr/uCPP

Contents

1 Advanced Control Flow (Review) 1

1.1 Static multi-level exit . 2

1.2 Dynamic Memory Allocation . 4

2 Nonlocal Transfer 7

2.1 Traditional Approaches . 9

2.2 Dynamic Multi-level Exit . 11

2.3 Exception Handling . 13

2.4 Terminology . 14

2.5 Execution Environment . 15

2.6 Implementation . 16

2.7 Static/Dynamic Call/Return . 17

2.8 Static Propagation . 17

2.9 Dynamic Propagation . 18

2.9.1 Termination . 19

2.9.2 Resumption . 21

2.10 Exceptional Example . 22

3 Coroutine 23

3.1 Semi-Coroutine . 24

3.1.1 Fibonacci Sequence . 24

3.1.1.1 Direct . 24

3.1.1.2 Routine . 25

3.1.1.3 Class . 26

3.1.1.4 Coroutine . 26

3.1.2 Format Output . 28

3.1.2.1 Direct . 28

3.1.2.2 Routine . 29

3.1.2.3 Class . 29

3.1.2.4 Coroutine . 30

3.1.3 Correct Coroutine Usage . 31

3.1.4 Coroutine Construction . 32

3.2 µC++ EHM . 33

3.3 Exception Type . 33

3.4 Inherited Members . 33

iii

iv CONTENTS

3.5 Raising . 34

3.6 Handler . 35

3.6.1 Termination . 35

3.6.2 Resumption . 35

3.6.3 Termination/Resumption . 36

3.7 Nonlocal Exceptions . 37

3.8 Memory Management . 40

3.9 Semi-Coroutine Examples . 41

3.9.1 Same Fringe . 41

3.9.2 Device Driver . 42

3.9.2.1 Direct . 42

3.9.2.2 Coroutine . 42

3.9.3 Producer-Consumer . 44

3.10 Full Coroutines . 46

3.10.1 Ping/Pong . 48

3.10.2 Producer-Consumer . 49

3.11 Coroutine Languages . 51

3.11.1 Python 3.5 . 51

3.11.2 JavaScript . 52

3.11.3 C++20 Coroutines . 54

4 More Exceptions 55

4.1 Derived Exception-Type . 55

4.2 Catch-Any . 56

4.3 Exception Parameters . 56

4.4 Exception List . 57

4.5 Destructor . 58

4.6 Multiple Exceptions . 59

5 Concurrency 61

5.1 Why Write Concurrent Programs . 61

5.2 Why Concurrency is Difficult . 61

5.3 Concurrent Hardware . 62

5.4 Execution States . 64

5.5 Threading Model . 65

5.6 Concurrent Systems . 66

5.7 Speedup . 67

5.8 Thread Creation . 69

5.8.1 COBEGIN/COEND . 69

5.8.2 START/WAIT . 70

5.8.3 Thread Object . 71

5.8.4 Actor . 72

5.9 Termination Synchronization . 74

5.10 Divide-and-Conquer . 75

5.11 Exceptions . 77

CONTENTS v

5.12 Synchronization and Communication During Execution 79

5.13 Communication . 79

5.14 Critical Section . 80

5.15 Static Variables . 80

5.16 Mutual Exclusion Game . 81

5.17 Self-Testing Critical Section . 82

5.18 Software Solutions . 82

5.18.1 Lock . 82

5.18.2 Alternation . 83

5.18.3 Declare Intent . 83

5.18.4 Retract Intent . 84

5.18.5 Prioritized Retract Intent . 84

5.18.6 Dekker (modified retract intent) . 85

5.18.7 Peterson (modified declare intent) . 87

5.18.8 N-Thread Prioritized Entry . 88

5.18.9 N-Thread Bakery (Tickets) . 89

5.18.10 Tournament . 90

5.18.11 Arbiter . 91

5.19 Hardware Solutions . 92

5.19.1 Test/Set Instruction . 93

5.19.2 Swap Instruction . 93

5.19.3 Fetch and Increment Instruction . 94

6 Locks 95

6.1 Lock Taxonomy . 95

6.2 Spin Lock . 95

6.2.1 Implementation . 96

6.3 Blocking Locks . 97

6.3.1 Mutex Lock . 98

6.3.1.1 Implementation . 98

6.3.1.2 uOwnerLock . 101

6.3.1.3 Mutex-Lock Release-Pattern 102

6.3.1.4 Stream Locks . 103

6.3.2 Synchronization Lock . 103

6.3.2.1 Implementation . 104

6.3.2.2 uCondLock . 107

6.3.2.3 Programming Pattern . 108

6.3.3 Barrier . 108

6.3.3.1 uBarrier . 110

6.3.4 Binary Semaphore . 111

6.3.4.1 Implementation . 112

6.3.5 Counting Semaphore . 113

6.3.5.1 Implementation . 114

6.4 Lock Programming . 116

6.4.1 Precedence Graph . 116

vi CONTENTS

6.4.2 Buffering . 117

6.4.2.1 Unbounded Buffer . 117

6.4.2.2 Bounded Buffer . 118

6.4.3 Lock Techniques . 119

6.4.4 Readers and Writer Problem . 120

6.4.4.1 Solution 1 . 121

6.4.4.2 Solution 2 . 122

6.4.4.3 Solution 3 . 123

6.4.4.4 Solution 4 . 123

6.4.4.5 Solution 5 . 125

6.4.4.6 Solution 6 . 127

6.4.4.7 Solution 7 . 129

7 Concurrent Errors 133

7.1 Race Condition . 133

7.2 No Progress . 133

7.2.1 Live-lock . 133

7.2.2 Starvation . 134

7.2.3 Deadlock . 134

7.2.3.1 Synchronization Deadlock . 134

7.2.3.2 Mutual Exclusion Deadlock . 135

7.3 Deadlock Prevention . 135

7.3.1 Synchronization Prevention . 135

7.3.2 Mutual Exclusion Prevention . 136

7.4 Deadlock Avoidance . 137

7.4.1 Banker’s Algorithm . 137

7.4.2 Allocation Graphs . 138

7.5 Detection and Recovery . 140

7.6 Which Method To Chose? . 140

8 Indirect Communication 141

8.1 Critical Regions . 141

8.2 Conditional Critical Regions . 142

8.3 Monitor . 142

8.4 Scheduling (Synchronization) . 143

8.4.1 External Scheduling . 144

8.4.2 Internal Scheduling . 144

8.5 Readers/Writer . 147

8.6 Exceptions . 150

8.7 Nested Monitor Calls . 151

8.8 Intrusive Lists . 152

8.9 Counting Semaphore, V, P vs. Condition, Signal, Wait 153

8.10 Monitor Types . 154

8.11 Java Monitor . 157

CONTENTS vii

9 Direct Communication 161

9.1 Task . 161

9.2 Scheduling . 162

9.2.1 External Scheduling . 162

9.2.2 Internal Scheduling . 165

9.2.3 Accepting the Destructor . 168

9.3 Increasing Concurrency . 169

9.3.1 Server Side . 169

9.3.1.1 Internal Buffer . 170

9.3.1.2 Administrator . 171

9.3.2 Client Side . 172

9.3.2.1 Returning Values . 172

9.3.2.2 Tickets . 173

9.3.2.3 Call-Back Routine . 173

9.3.2.4 Futures . 174

10 Optimization 181

10.1 Sequential Optimizations . 181

10.2 Memory Hierarchy . 182

10.2.1 Cache Review . 183

10.2.2 Cache Coherence . 184

10.3 Concurrent Optimizations . 186

10.3.1 Disjoint Reordering . 187

10.3.2 Eliding . 188

10.3.3 Replication . 188

10.4 Memory Model . 189

10.5 Preventing Optimization Problems . 189

11 Other Approaches 193

11.1 Atomic (Lock-Free) Data-Structure . 193

11.1.1 Compare and Set Instruction . 193

11.1.2 Lock-Free Stack . 194

11.1.3 ABA problem . 195

11.1.4 Hardware Fix . 196

11.1.5 Hardware/Software Fix . 198

11.2 Exotic Atomic Instruction . 198

11.3 General-Purpose GPU (GPGPU) . 200

11.4 Concurrency Languages . 203

11.4.1 Ada 95 . 203

11.4.2 SR/Concurrent C++ . 204

11.4.3 Java . 205

11.4.4 Go . 207

11.4.5 C++11 Concurrency . 209

11.5 Threads & Locks Library . 212

11.5.1 java.util.concurrent . 212

viii CONTENTS

11.5.2 Pthreads . 215

11.6 OpenMP . 217

Index 221

1 Advanced Control Flow (Review)

• Within a routine, basic and advanced control structures allow virtually any control flow.

• For predicate only, while and for are interchangeable.

GOOD GOOD

while (predicate) {
S1

}

for (; predicate ;) {
S1

}

for allows adding/removing loop index for debugging.

• Do not use while to simulate for.

BAD GOOD

int i = 0;
while (i < 10) {

S1
i += 1;

}

for (int i = 0; i < 10; i +=1) {
S1

}

• Multi-exit loop (or mid-test loop) has one or more exit locations occurring within the body

of the loop, not just top (while) or bottom (do-while).

for (;;) { // infinite loop, while (true)
. . .

if (. . .) break; // middle exit
. . .

}

• Exit condition reversed from while and outdented (eye-candy) for readability

• Eliminates priming (duplicated) code necessary with while.

cin >> d; // priming
while (! cin.fail()) {

. . .
cin >> d;

}

for (;;) {
cin >> d;

if (cin.fail()) break;
. . .

}

• Do not use multi-exit to simulate while/for, especially for loop index.

BAD GOOD

for (int i = 0; ; i += 1) {
if (i == 10) break;

S1
}

for (int i = 0; i < 10; i += 1) {

S1
}

• A loop exit NEVER needs an else clause.

1

2 CHAPTER 1. ADVANCED CONTROL FLOW (REVIEW)

BAD GOOD

for (;;) {
S1
if (C1) {

S2
} else {

break;
}
S3

}

for (;;) {
S1

if (! C1) break;
S2

S3
}

BAD GOOD

for (;;) {
S1
if (C1) {

break;
} else {

S2
}
S3

}

for (;;) {
S1

if (C1) break;

S2

S3
}

S2 is logically part of loop body not part of an if.

• Allow multiple exit conditions.

for (;;) {
S1

if (i >= 10) { E1; break; }

S2
if (j >= 10) { E2; break; }

S3
}

bool flag1 = false, flag2 = false;
while (! flag1 & ! flag2) {

S1
if (C1) flag1 = true;
} else {

S2
if (C2) flag2 = true;
} else {

S3
}

}
}
if (flag1) E1;
else E2;

• Eliminate flag variables used solely to affect control flow, i.e., variable does not contain data

associated with computation.

• Flag variables are the variable equivalent to a goto because they can be set/reset/tested at

arbitrary locations in a program.

1.1 Static multi-level exit

• Static multi-level exit exits multiple control structures where exit point is known at compile

time.

• Labelled exit (break/continue) provides this capability.

1.1. STATIC MULTI-LEVEL EXIT 3

µC++ / Java C / C++

L1: { // good eye-candy
. . . declarations . . .
L2: switch (. . .) {

L3: for (. . .) {
. . . break L1; . . . // exit block
. . . break L2; . . . // exit switch
. . . break L3; . . . // exit loop

}
. . .

}
. . .

}

{
. . . declarations . . .
switch (. . .) {

for (. . .) {
. . . goto L1; . . .
. . . goto L2; . . .
. . . goto L3; . . . // or break

} L3: ;
. . .

} L2: ; // bad eye-candy
. . .

} L1: ;

• Why is it good practice to label all exits?

• Eliminate all flag variables with multi-level exit!

B1: for (i = 0; i < 10; i += 1) {

B2: for (j = 0; j < 10; j += 1) {

. . .
if (. . .) break B2; // outdent

. . . // rest of loop
if (. . .) break B1; // outdent

. . . // rest of loop

} // for

. . . // rest of loop

} // for

bool flag1 = false;
for (i = 0; i < 10 && ! flag1; i += 1) {

bool flag2 = false;
for (j = 0; j < 10 &&

! flag1 && ! flag2; j += 1) {
. . .
if (. . .) flag2 = true;
else {

. . . // rest of loop
if (. . .) flag1 = true;
else {

. . . // rest of loop
} // if

} // if
} // for
if (! flag1) {

. . . // rest of loop
} // if

} // for

• Occasionally a flag variable is necessary!

// Retain state from one inner lexical (static) scope to another.
int val; bool valDefault = false;
switch (argv) {

. . .
case 3:

if (strcmp(argc[4], "d")) valDefault = true; // default ?
else val = stoi(argc[4]); // value

. . .
} // switch

http://proxy.lib.uwaterloo.ca/login?url=http://portal.acm.org/ft_gateway.cfm?id=362337&type=pdf&coll=ACM&dl=ACM&CFID=19394860&CFTOKEN=33044646

4 CHAPTER 1. ADVANCED CONTROL FLOW (REVIEW)

for (;;) {
. . .
if (valDefault) // do something
else // do another
. . .

} // for

• Other uses of multi-level exit to remove duplicate code.

duplication no duplication

if (C1) {
S1;
if (C2) {

S2;
if (C3) {

S3;
} else

S4;
} else

S4;
} else

S4;

C: {
if (C1) {

S1;
if (C2) {

S2;
if (C3) {

S3;
break C;

}
}

}
S4; // only once

}

{
if (C1) {

S1;
if (C2) {

S2;
if (C3) {

S3;
goto C;

}
}

}
S4; // only once

} C: ;

• Normal and labelled break are a goto with limitations.

1. Cannot loop (only forward branch) ⇒ only loop constructs branch back.

2. Cannot branch into a control structure.

• Only use goto to perform static multi-level exit, e.g., simulate labelled break and continue.

1.2 Dynamic Memory Allocation

• Stack allocation eliminates explicit storage-management and is more efficient than heap al-

location — “Use the STACK, Luke Skywalker.”

{ // GOOD, use stack
cin >> size;
int arr[size]; // VLA, g++
. . . // use arr[i]

}

{ // BAD, unnecessary dynamic allocation
cin >> size;
int * arr = new int[size];
. . . // use arr[i]
delete [] arr; // why “[]”?

}

• These are the situations where dynamic allocation (heap) is necessary.

1. When storage must outlive the block in which it is allocated (ownership change).

Type * rtn(. . .) {
Type * tp = new Type; // MUST USE HEAP
. . . // initialize/compute using tp
return tp; // storage outlives block

} // tp deleted later

1.2. DYNAMIC MEMORY ALLOCATION 5

Similar to necessary flag variable: to retain state from a lower level.

2. When the amount of data read is unknown.

vector<int> input;
int temp;
for (;;) {

cin >> temp;
if (cin.fail()) break;

input.push_back(temp); // implicit dynamic allocation
}

Does switching to emplace_back help?

3. When an array of objects must be initialized via the object’s constructor and each ele-

ment has a different value.

struct Obj {
const int id; . . .
Obj(int id) : id(id) { . . . }

}
cin >> size;
Obj * objs[size];
for (int id = 0; id < size; id += 1)

objs[id] = new Obj(id);
. . .
for (int id = 0; id < size; id += 1)

delete objs[id];

#include <memory>

{
unique_ptr<Obj> objs[size];
for (int id = 0; id < size; id += 1)

objs[id] = make_unique<Obj>(id);
. . .

} // automatically delete objs

µC++ alternative using uNoCtor (uses placement new like emplace_back).

cin >> size;
uNoCtor<Obj> objs[size]; // objs on stack and no constructor calls
for (int id = 0; id < size; id += 1)

objs[id].ctor(id); // placement allocation & call initialization constructor

As for new and unique_ptr, fields accessed using ->

for (int id = 0; id < size; id += 1)
cout << objs[id]->id << endl; // MUST USE -> NOT . FOR FIELD ACCESS

4. When large local variables are allocated on a small stack.

_Coroutine C {
void main() { // 64K stack

int arr[100000]; // overflow
. . .

}
};

_Coroutine C {
void main() {

int * arr = new int[100000];
. . .

}
};

Alternatives are large stacks (waste virtual space) or dynamic stack growth (complex

and pauses).

6 CHAPTER 1. ADVANCED CONTROL FLOW (REVIEW)

2 Nonlocal Transfer

• Routine activation (call/invocation) introduces complex control flow.

• Among routines, control flow is controlled by call/return mechanism.

g

h

f stack

◦ routine h calls g calls f

◦ cannot return from f to h, terminating g’s activation

• Modularization: from software engineering, any contiguous code block can be factored into

a (helper) routine and called in the program (modulo scoping rules).

• Modularization fails when factoring exits, e.g., multi-level exits:

B1: for (i = 0; i < 10; i += 1) {
. . .

B2: for (j = 0; j < 10; j += 1) {
. . .
if (. . .) break B1;
. . .

}

. . .
}

int rtn(. . .) {

B2: for (j = 0; j < 10; j += 1) {
. . .
if (. . .) break B1;
. . .

}

}
B1: for (i = 0; i < 10; i += 1) {

. . . w = rtn(. . .) . . .
}

Does this compile?

• Software pattern: many routines have multiple outcomes.

◦ normal: return normal result and transfer after call

◦ exceptional: return alternative result and not transfer after call

• Nonlocal transfer allows a routine to transfer back to its caller but not after the call.

C Two alternate return parameters, denoted by * and implicitly named 1 and 2
subroutine AltRet(c, *, *)

integer c

if (c == 0) return ! normal return
if (c == 1) return 1 ! alternate return

if (c == 2) return 2 ! alternate return
end

7

8 CHAPTER 2. NONLOCAL TRANSFER

C Statements labelled 10 and 20 are alternate return points
call AltRet(0, *10, *20)
print *, "normal return 1"
call AltRet(1, *10, *20)
print *, "normal return 2"
return

10 print *, "alternate return 1"
call AltRet(2, *10, *20)
print *, "normal return 3"
return

20 print *, "alternate return 2"
stop
end

$ gfortran AltRtn.for
$ a.out
normal return 1
alternate return 1
alternate return 2

• Generalization of multi-exit loop and multi-level exit.

◦ Control structures ends normally or with an exceptional transfer.

• Pattern acknowledges:

◦ algorithms can have multiple outcomes

◦ separating outcomes makes it easy to read and maintain a program

• Pattern does not handle multiple levels of nested modularization.

• If AltRet is further modularized, new routine has an alternate return to AltRet, which retains

its alternate return to its caller.

C Two alternate return parameters, denoted by * and implicitly named 1 and 2
subroutine AltRet2(c, *, *)

integer c

if (c == 0) return ! normal return
if (c == 1) return 1 ! alternate return

return 2
end

C Two alternate return parameters, denoted by * and implicitly named 1 and 2
subroutine AltRet(c, *, *)

integer c
call AltRet2(c, *30, *40)
return

30 return 1
40 if (c == 2) return 2 ! alternate return

end

• Why not call AltRet2(c, *10, *20)?

2.1. TRADITIONAL APPROACHES 9

2.1 Traditional Approaches

• What are the traditional approaches for handling the multiple-outcome pattern?

• return code: returns value indicating normal or exceptional execution. e.g., printf() returns

number of bytes transmitted or negative value.

• status flag: set shared (global) variable indicating normal or exceptional execution; the value

remains as long as it is not overwritten. e.g., errno variable in UNIX.

• fix-up routine: a global and/or local routine called for an exceptional event to fix-up and

return a corrective result so a computation can continue.

int fixup(int i, int j) { . . . } // local routine
rtn(a, b, fixup); // fixup called for exceptional event

e.g., C++ has global routine-pointer new_handler called when new fails.

• Techniques are often combined, e.g.:

if (printf(. . .) < 0) { // check return code for error
perror("printf:"); // errno describes specific error
abort(); // terminate program

}

• return union: modern approach combining result/return-code and requiring return-code

check on result access.

• ALL routines must return an appropriate union.

optional< int * > Malloc(size_t size) {
if (random() % 2) return (int *)malloc(sizeof(int));
return nullopt; // no storage

}
optional< int > rtn() {

optional< int * > p = Malloc(sizeof(int));
if (! p) return nullopt; // malloc successful (true/false) ?

**p = 7; // compute
if (random() % 2) return **p;
return nullopt; // bad computation

}
int main() {

srandom(getpid());
optional< int > ret = rtn();
if (ret) cout << *ret << endl; // rtn successful?
else cout << "no storage or bad computation" << endl;

}
$ repeat 5 a.out
no storage or bad computation
7
no storage or bad computation
7
7

10 CHAPTER 2. NONLOCAL TRANSFER

enum Alloc { NoStorage };
variant< int *, Alloc > Malloc(size_t size) {

if (random() % 2) return (int *)malloc(sizeof(int));
return NoStorage;

}
enum Comp { BadComp };
variant< int, Alloc, Comp > rtn() {

variant< int *, Alloc > p = Malloc(sizeof(int));
if (! holds_alternative<int *>(p)) return NoStorage; // malloc successful ?

*get<int *>(p) = 7;
if (random() % 2) return *get<int *>(p);
return BadComp;

}

int main() {
srandom(getpid());
variant< int, Alloc, Comp > ret = rtn();
if (holds_alternative<int>(ret)) cout << get<int>(ret) << endl;
else if (holds_alternative<Comp>(ret)) cout << "bad computation" << endl;
else cout << "no storage" << endl;

}
$ repeat 5 a.out
no storage
bad computation
no storage
bad computation
7

• Forces checking, unless explicitly access without holds_alternative.

• Like Fortran, only returns one level.

• Drawbacks of traditional techniques:

◦ checking return code or status flag is optional ⇒ can be delayed or omitted, i.e., passive

versus active

◦ return code mixes exceptional and normal values ⇒ enlarges type or value range; nor-

mal/exceptional type/values should be independent

• Testing and handling of return code or status flag is often done locally (inline), otherwise

information may be lost; but local testing/handling:

◦ makes code difficult to read; each call results in multiple statements

◦ can be inappropriate, e.g., library routines should not terminate program

• Nonlocal testing from nested routine calls is difficult as multiple codes are returned for anal-

ysis, compounding the mixing problem.

• Status flag can be overwritten before examined, and cannot be used in a concurrent environ-

ment because of sharing issues (e.g., save errno)

2.2. DYNAMIC MULTI-LEVEL EXIT 11

• Local fix-up routines increases the number of parameters.

◦ increase cost of each call

◦ must be passed through multiple levels enlarging parameter lists even when the fix-up

routine is not used

• Nonlocal (global) fix-up routines, implemented with global routine pointer, have identical

problems with status flags (e.g., new_handler).

2.2 Dynamic Multi-level Exit

• Rather than returning one level at a time, simpler for new modularized routine to bypass

intermediate steps and transfer directly to original caller.

◦ e.g., AltRet2 transfers directly to program main, instead of AltRet2 to AltRet to program

main.

• Dynamic multi-level exit (DME) extend call/return semantics to transfer in the reverse di-

rection to normal routine calls, requiring nonlocal transfer.

label L;
void f(int i) {

// nonlocal return
if (i == . . .) goto L;

}
void g(int i) {

if (i > 1) { g(i - 1); return; }
f(i);

}
void h(int i) {

if (i > 1) { h(i - 1); return; }
L = L1; // set dynamic transfer-point
f(1); goto S1;

L1: // handle L1 nonlocal return
S1: // continue normal execution

L = L2; // set dynamic transfer-point
g(1); goto S2;

L2: // handle L2 nonlocal return
S2: // continue normal execution

}

h

L2

L1

g

f
goto L

h

L2

L1

f
goto L

L

stack

hh
L1

L2

L1

L2

L

call from h to g to f

L

call from h to f

• label variable contains:

1. pointer to a block activation on the stack;

2. transfer point within the block.

• Nonlocal transfer, goto L, is a two-step operation.

1. direct control flow to the specified activation on the stack;

2. then go to the transfer point (label constant) within the routine.

12 CHAPTER 2. NONLOCAL TRANSFER

• Therefore, a label value is not statically/lexically determined.

◦ recursion in g ⇒ unknown distance between f and h on stack.

◦ what if L is set during the recursion of h?

• This complexity is why label constants have local scope.

• Transfer between goto and label value causes termination of stack block.

• First, nonlocal transfer from f transfers to the label L1 in h’s routine activation, terminating

f’s activation.

• Second, nonlocal transfer from f transfers to the static label L2 in the stack frame for h,

terminating the stack frame for f and g.

• Termination is implicit for direct transferring to h or requires stack unwinding if activations

contain objects with destructors or finalizers.

• DME is possible in C using:

◦ jmp_buf to declare a label variable,

◦ setjmp to initialize a label variable,

◦ longjmp to goto a label variable.

• DME allows multiple forms of returns to any level.

◦ Normal return transfers to statement after the call, often implying completion of rou-

tine’s algorithm.

◦ Exceptional return transfers to statement not after the call, indicating an ancillary com-

pletion (but not necessarily an error).

• Unfortunately, nonlocal transfer is too general, allowing branching to almost anywhere, i.e.,

the goto problem.

• Simulate nonlocal transfer with return codes.

http://proxy.lib.uwaterloo.ca/login?url=http://portal.acm.org/ft_gateway.cfm?id=362947&type=pdf&coll=GUIDE&dl=GUIDE&CFID=17962264&CFTOKEN=40004382

2.3. EXCEPTION HANDLING 13

label L;
void f(int i, int j) {

for (. . .) {
int k;
. . .

if (i < j && k > i) goto L;
. . .

}

}
void g(int i) {

for (. . .) {
int j;
. . . f(i, j); . . .

}

}
void h() {

L = L1;
for (. . .) {

int i;
. . . g(i); . . .

}
. . . return; // normal
L1: . . . // exceptional

}

int f(int i, int j) {
bool flag = false;
for (! flag && . . .) {

int k;
. . .

if (i < j && k > i) flag = true;
else { . . . }

}
if (! flag) { . . . }
return flag ? -1 : 0;

}
int g(int i) {

bool flag = false;
for (! flag && . . .) {

int j;
. . . if (f(i, j) == -1) flag = true
else { . . . }

}
if (! flag) { . . . }
return flag ? -1 : 0;

}
void h() {

bool flag = false;
for (! flag && . . .) {

int i;
. . . if (g(i) == -1) flag = true;
else { . . . }

}
if (! flag) { . . . return; }
. . .

}

2.3 Exception Handling

• DME, i.e., nonlocal transfer among routines, is often called exception handling.

• Exception handling is more than error handling.

• An exceptional event is an event that is (usually) known to exist but which is ancillary to

an algorithm.

◦ an exceptional event usually occurs with low frequency

◦ e.g., division by zero, I/O failure, end of file, pop empty stack

• An exception handling mechanism (EHM) provides some or all of the alternate kinds of

control-flow.

• Very difficult to simulate EHM with simpler control structures.

• Exceptions are supposed to make certain programming tasks easier, like robust programs.

14 CHAPTER 2. NONLOCAL TRANSFER

• Robustness results because exceptions are active versus passive, forcing programs to react

immediately when an exceptional event occurs.

• An EHM is not a panacea and only as good as the programmer using it.

2.4 Terminology

• execution is the language unit in which an exception can be raised, usually any entity with

its own runtime stack.

• exception type is a type name representing an exceptional event.

• exception is an instance of an exception type, generated by executing an operation indicating

an ancillary (exceptional) situation in execution.

• raise (throw) is the special operation that creates an exception.

• source execution is the execution raising an exception.

• faulting execution is the execution changing control flow due to a raised exception.

• local exception is when an exception is raised and handled by the same execution ⇒ source

= faulting.

• nonlocal exception is when an exception is raised by a source execution but delivered to a

different faulting execution ⇒ source 6= faulting.

• concurrent exception is a nonlocal exception, where the source and faulting executions are

executing concurrently.

• propagation directs control from a raise in the source execution to a handler in the faulting

execution.

• propagation mechanism is the rules used to locate a handler.

◦ most common propagation-mechanisms give precedence to handlers higher in the lex-

ical/call stack

* specificity versus generality

* efficient linear search during propagation

• handler is inline (nested) routine responsible for handling raised exception.

◦ handler catches exception by matching with one or more exception types

◦ after catching, a handler executes like a normal subroutine

◦ handler can return, reraise the current exception, or raise a new exception

◦ reraise terminate current handling and continue propagation of caught exception.

* useful if a handler cannot deal with an exception but needs to propagate same

exception to handler further down the stack.

2.5. EXECUTION ENVIRONMENT 15

* provided by a raise statement without an exception type:

. . . throw; // no exception type

where a raise must be in progress.

◦ an exception is handled only if the handler returns rather than reraises

• guarded block is a language block with associated handlers, e.g., try-block in C++/Java.

• unguarded block is a block with no handlers.

• termination means control cannot return to the raise point.

◦ all blocks on the faulting stack from the raise block to the guarded block handling the

exception are terminated, called stack unwinding

• resumption means control returns to the raise point ⇒ no stack unwinding.

• EHM = Exception Type + Raise (exception) + Propagation + Handlers

2.5 Execution Environment

• The execution environment has a significant effect on an EHM.

• An object-oriented concurrent environment requires a more complex EHM than a non-

object-oriented sequential environment.

• E.g., objects may have destructors that must be executed no matter how the object ends, i.e.,

by normal or exceptional termination.

class T {
int *i;
T() { i = new int[10]; . . . }
~T() { delete [] i; . . . } // must free storage

};
L: {

T t; // constructor must be executed
. . . if (. . .) break L;
. . .

} // destructor must be executed

• Control structures with finally clauses must always be executed (e.g., Java/µC++).

Java µC++

L: try {
infile = new Scanner(new File("abc"));
. . . if (. . .) break L;
. . .

} finally { // always executed
infile.close(); // must close file

}

L: try {
infile = new ifstream("abc");
. . . if (. . .) break L; // alt 1
. . . // alt 2

} _Finally { // always executed
infile.close(); // must close file
delete infile; // deallocate

}

16 CHAPTER 2. NONLOCAL TRANSFER

• Hence, terminating a block complicates the EHM as object destructors (and recursively for

nested objects) and finally clauses must be executed.

• For C++, a direct nonlocal transfer is often impossible, because of local objects with destruc-

tors, requiring linear stack unwinding.

• Also, complex execution-environment involving continuation, coroutine, task, each with its

own execution stack.

• Given multiple stacks, an EHM can be more sophisticated, resulting in more complexity.

◦ e.g., if no handler is found in one stack, it is possible to continue propagating the

exception in another stack.

2.6 Implementation

• DME is limited in most programming languages using exception handling.

struct E {}; // label
void f(. . .) {

. . .
throw E(); // raise
// control never returns here

}
int main() {

try {
f(. . .);

} catch(E) {. . .} // handler 1
try {

f(. . .);
} catch(E) {. . .} // handler 2
. . .

}

label L;
void f(. . .) {

. . .
goto L;

}
int main() {

L = L1; // set transfer-point
f(. . .); goto S1;

L1: // handle nonlocal return
S1: L = L2; // set transfer-point

f(. . .); goto S2;
L2: // handle nonlocal return
S2: ; . . .

}

• To implement throw/catch, the throw must know the last guarded block with a handler for

the raised exception type.

• One approach is to:

◦ associate a label variable with each exception type

◦ set label variable on entry to each guarded block with handler for the type

◦ reset label variable on exit to previous value, i.e., previous guarded block for that type

• However, setting/resetting label variable on try block entry/exit has a cost (small).

◦ rtn called million times but exception E never raised ⇒ million unnecessary operations.

void rtn(int i) {
try { // set label on entry

. . .
} catch(E) { . . . } // reset label on exit

}

2.7. STATIC/DYNAMIC CALL/RETURN 17

◦ Instead, catch/destructor data is stored once externally for each block and handler

found by linear search during a stack walk (no direct transfer).

◦ Advantage, millions of try entry/exit, but only tens of exceptions raised.

• Hence, termination is often implemented using zero cost on guarded-block entry but an

expensive approach on raise.

2.7 Static/Dynamic Call/Return

• All routine/exceptional control-flow can be characterized by two properties:

1. static/dynamic call: routine/exception name at the call/raise is looked up statically

(compile-time) or dynamically (runtime).

2. static/dynamic return: after a routine/handler completes, it returns to its static (defini-

tion) or dynamic (call) context.

call/raise

return/handled static dynamic

static 1) sequel 3) termination exception

dynamic 2) routine 4) routine pointer, virtual routine, resumption

• E.g., case 2) is a normal routine, with static name lookup at the call and a dynamic return.

2.8 Static Propagation (Sequel)

• Case 1) is called a sequel, which is a routine with no return value, where:

◦ the sequel name is looked up lexically at the call site, but

◦ control returns to the end of the block in which the sequel is declared.

A: for (;;) {

B: for (;;) {

C: for (;;) {

. . .
if (. . .) { break A; }

. . .

if (. . .) { break B; }

. . .
if (. . .) { break C; }

. . .
}

}
}

for (;;) {
sequel S1(. . .) { . . . } // nested
void M1(. . .) {

. . . if (. . .) S1(. . .); . . .
}
for (;;) {

sequel S2(. . .) { . . . } // nested
C: for (;;) {

M1(. . .); // modularize

if (. . .) S2(. . .); // modularize
. . .

if (. . .) break C;
. . .

}
} // S2 static return

} // S1 static return

18 CHAPTER 2. NONLOCAL TRANSFER

• Without a sequel, it is impossible to modularize code with static exits.

• ⇒ propagation is along the lexical structure

• Adheres to the termination model, as the stack is unwound.

• Sequel handles termination for a non-recoverable event (simple exception handling).

{ // new block
sequel StackOverflow(. . .) { . . . } // handler

class stack {
void push(int i) {

if (. . .) StackOverflow(. . .); // 2nd outcome
} // 1st outcome
. . .

};

stack s;
. . . s.push(3); . . . // overflow ?

} // sequel returns here

• The advantage of the sequel is the handler is statically known (like static multi-level exit),

and can be as efficient as a direct transfer.

• The disadvantage is that the sequel only works for monolithic programs because it must be

statically nested at the point of use.

◦ Fails for modular (library) code as the static context of the module and user code are

disjoint.

◦ E.g., if stack is separately compiled, the sequel call in push no longer knows the static

blocks containing calls to it.

2.9 Dynamic Propagation

• Cases 3) and 4) are called termination and resumption, and both have dynamic raise with

static/dynamic return, respectively.

• Dynamic propagation/static return (case 3) is also called dynamic multi-level exit (see Sec-

tion 2.2, p. 11).

• The advantage is that dynamic propagation works for separately-compiled programs.

• The disadvantage (advantage) of dynamic propagation is the handler is not statically known.

◦ without dynamic handler selection, the same action and context for that action is exe-

cuted for every exceptional change in control flow.

2.9. DYNAMIC PROPAGATION 19

2.9.1 Termination

• For termination:

◦ control transfers from the start of propagation to a handler ⇒ dynamic raise (call)

◦ when handler returns, it performs a static return ⇒ stack is unwound (like sequel)

• There are 2 basic termination forms for a non-recoverable operation: terminate and retry.

• terminate provides limited mechanism for block transfer on the call stack, like labelled

break.

struct E {}; // label
void f(. . .) {

. . .
throw E(); // raise
// control never returns here

}
int main() {

try {
f(. . .);

} catch(E) {. . .} // handler 1
try {

f(. . .);
} catch(E) {. . .} // handler 2
. . .

}

• No intermediate code to forward alternative outcome (see return union examples page 9).

struct NoStorage {};
struct BadComp {};
int * Malloc(size_t size) {

if (random() % 2) return (int *)malloc(sizeof(int));
throw NoStorage();

}
int rtn() {

int * p = Malloc(sizeof(int));
// DO NOT HAVE TO FORWARD NoStorage

*p = 7; // compute
if (random() % 2) return *p;
throw BadComp();

}
int main() {

srandom(getpid());
try { cout << rtn() << endl; }
catch(BadComp) { cout << "bad computation" << endl; }
catch(NoStorage) { cout << "no storage" << endl; }

}

20 CHAPTER 2. NONLOCAL TRANSFER

• C++ I/O can be toggled to raise exceptions versus return codes (like µC++).

C++ µC++

ifstream infile;
ofstream outfile;
outfile.exceptions(ios_base::failbit);
infile.exceptions(ios_base::failbit);
switch (argc) {

case 3:
try {

outfile.open(argv[2]);
} catch(ios_base::failure &) {. . .}
// fall through to handle input file

case 2:
try {

infile.open(argv[1]);
} catch(ios_base::failure &) {. . .}
break;

default:
. . .

} // switch
string line;
try {

for (;;) { // loop until end-of-file
getline(infile, line);
outfile << line << endl;

}
} catch (ios_base::failure &) {}

ifstream infile;
ofstream outfile;

switch (argc) {
case 3:

try {
outfile.open(argv[2]);

} catch(uFile::Failure &) {. . .}
// fall through to handle input file

case 2:
try {

infile.open(argv[1]);
} catch(uFile::Failure &) {. . .}
break;

default:
. . .

} // switch
string line;

for (;;) {
getline(infile, line);

if (infile.fail()) break; // no eof exception
outfile << line << endl;

}

• ios::exception mask indicates stream state-flags throw an exception if set

• failure exception raised after failed open or end-of-file when failbit set in exception mask

• µC++ provides exceptions for I/O errors, but no exception for eof.

• retry is a combination of termination with special handler semantics, i.e., restart the guarded

block handling the exception (Eiffel). (Pretend end-of-file is an exception of type Eof.)

https://www.student.cs.uwaterloo.ca/~cs343/examples/IOexp.cc
https://www.student.cs.uwaterloo.ca/~cs343/examples/uIO.cc

2.9. DYNAMIC PROPAGATION 21

Retry Simulation

char readfiles(char *files[], int N) {
int i = 0, value;
ifstream infile;
infile.open(files[i]);

try {
. . . infile >> value; . . .

} retry(Eof) {
i += 1;
infile.close();

if (i == N) goto Finished;
infile.open(files[i]);

}
Finished: ;

}

char readfiles(char *files[], int N) {
int i = 0, value;
ifstream infile;
infile.open(files[i]);
while (true) {

try {
. . . infile >> value; . . .

} catch(eof) {
i += 1;
infile.close();

if (i == N) break;
infile.open(files[i]);

}
}

}

• Because retry can be simulated, it is seldom supported directly.

2.9.2 Resumption

• resumption provides a limited mechanism to generate new blocks on the call stack:

◦ control transfers from the start of propagation to a handler ⇒ dynamic raise (call)

◦ when handler returns, it is dynamic return ⇒ stack is NOT unwound (like routine)

• A resumption handler is a corrective action so a computation can continue.

void f() {
resume E(); // raise
// control returns here

}
int main() {

try {
f(); // no parameters

} catch(E) {
// handler 1

}
try {

f(); // no parameters
} catch(E) {

// handler 2
}

}

void f(void (*fixup)()) {
fixup();
// control returns here

}
void fixup1() {

// handler 1
}
void fixup2() {

// handler 2
}
int main() {

f(fixup1); // parameters
f(fixup2); // parameters

}

• No intermediate code to forward fixup down to raise point.

22 CHAPTER 2. NONLOCAL TRANSFER

2.10 Exceptional Example

B1 {
B2 try {
B3 try {
B4 try {
B5 {
B6 try {

. . . throw E5(); . . .
C1 } catch(E7) { . . . }
C2 catch(E8) { . . . }
C3 catch(E9) { . . . }

}
C4 } catch(E4) { . . . }
C5 catch(E5) { . . . throw; . . . }
C6 catch(E6) { . . . }
C7 } catch(E3) { . . . }
C8 } catch(E5) { . . . resume/retry/terminate }
C9 catch(E2) { . . . }

}

propagation
call

throw

guarded / unguarded blocks

stack

handlers

catch

catch

handled
resumption
retry

terminate

throw

B1

B2

B3

B4

B5

C2 C3

C4 C5 C6

C9C8

C7

C1

E5

B6

3 Coroutine

• A coroutine is a routine that can also be suspended at some point and resumed from that

point when control returns.

• The state of a coroutine consists of:

◦ an execution location, starting at the beginning of the coroutine and remembered at

each suspend.

◦ an execution state holding the data created by the code the coroutine is executing. ⇒
each coroutine has its own stack, containing its local variables and those of any routines

it calls.

◦ an execution status—active or inactive or terminated—which changes as control

resumes and suspends in a coroutine.

• Hence, a coroutine does not start from the beginning on each activation; it is activated at the

point of last suspension.

• In contrast, a routine always starts execution at the beginning and its local variables only

persist for a single activation.

suspend

suspend

resume

resume

return

cocaller

state program

10

20

30

10
20
30

cocall
coroutine

program state
15

15

25

25

active

terminated

• A coroutine handles the class of problems that need to retain state between calls (e.g. plugin,

device driver, finite-state machine).

• A coroutine executes synchronously with other coroutines; hence, no concurrency among

coroutines.

• Coroutines are the precursor to concurrent tasks, and introduce the complex concept of sus-

pending and resuming on separate stacks.

• Two different approaches are possible for activating another coroutine:

1. A semi-coroutine acts asymmetrically, like non-recursive routines, by implicitly reac-

tivating the coroutine that previously activated it.

23

24 CHAPTER 3. COROUTINE

2. A full coroutine acts symmetrically, like recursive routines, by explicitly activating

a member of another coroutine, which directly or indirectly reactivates the original

coroutine (activation cycle).

• These approaches accommodate two different styles of coroutine usage.

3.1 Semi-Coroutine

3.1.1 Fibonacci Sequence

f (n) =

0 n = 0

1 n = 1

f (n−1)+ f (n−2) n ≥ 2

• 3 states, producing unbounded sequence: 0, 1, 1, 2, 3, 5, 8, 13, 21, . . .

3.1.1.1 Direct

• Compute and print Fibonacci numbers.

int main() {

int fn, fn1, fn2;
fn = 0; fn1 = fn; // 1st case
cout << fn << endl;
fn = 1; fn2 = fn1; fn1 = fn; // 2nd case
cout << fn << endl;
for (;;) { // infinite loop

fn = fn1 + fn2; fn2 = fn1; fn1 = fn; // general case
cout << fn << endl;

}

}

• Convert to routine that generates a sequence of Fibonacci numbers on each call (no output):

int main() {
for (int i = 1; i <= 10; i += 1) { // first 10 Fibonacci numbers

cout << fibonacci() << endl;
}

}

• Examine different solutions.

3.1. SEMI-COROUTINE 25

3.1.1.2 Routine

int fn1, fn2, state = 1; // global variables
int fibonacci() {

int fn;
switch (state) {

case 1:
fn = 0; fn1 = fn; state = 2;
break;

case 2:
fn = 1; fn2 = fn1; fn1 = fn; state = 3;
break;

case 3:
fn = fn1 + fn2; fn2 = fn1; fn1 = fn;
break;

}
return fn;

}

• unencapsulated global variables necessary to retain state between calls

• only one fibonacci generator can run at a time

• execution state must be explicitly retained

#define FIB_INIT { 0, 1 } /* first two Fibonacci numbers */
struct Fibonacci { int fn2, fn1; };
int fib(Fibonacci & f) {

int ret = f.fn2;
int fn = f.fn1 + f.fn2; // only last state (3) in Fibonacci definition
f.fn2 = f.fn1; f.fn1 = fn;
return ret;

}
int main() {

Fibonacci f1 = FIB_INIT, f2 = FIB_INIT; // multiple instances
for (int i = 1; i <= 10; i += 1) {

cout << fib(f1) << " " << fib(f2) << endl;
}

}

• unencapsulated program global variables become encapsulated structure variables

• multiple fibonacci generators (objects) can run at a time

• execution state removed by precomputing first 2 Fibonacci numbers and returning f (n−2)

26 CHAPTER 3. COROUTINE

3.1.1.3 Class

class Fibonacci {
int fn, fn1, fn2, state = 1; // global class variables

public:
int operator()() { // functor

switch (state) {
case 1:

fn = 0; fn1 = fn; state = 2;
break;

case 2:
fn = 1; fn2 = fn1; fn1 = fn; state = 3;
break;

case 3:
fn = fn1 + fn2; fn2 = fn1; fn1 = fn;
break;

}
return fn;

}
};
int main() {

Fibonacci f1, f2; // multiple instances
for (int i = 1; i <= 10; i += 1) {

cout << f1() << " " << f2() << endl;
} // for

}

• unencapsulated program global variables become encapsulated object global variables

• multiple fibonacci generators (objects) can run at a time

• execution state still explicit or use initialization trick

3.1.1.4 Coroutine

_Coroutine Fibonacci { // : public uBaseCoroutine
int fn; // used for communication
void main() { // distinguished member

int fn1, fn2; // retained between resumes
fn = 0; fn1 = fn;
suspend(); // return to last resume
fn = 1; fn2 = fn1; fn1 = fn;
suspend(); // return to last resume
for (;;) {

fn = fn1 + fn2; fn2 = fn1; fn1 = fn;
suspend(); // return to last resume

}

}
public:

int operator()() { // functor
resume(); // transfer to last suspend
return fn;

}
};

3.1. SEMI-COROUTINE 27

int main() {
Fibonacci f1, f2; // multiple instances
for (int i = 1; i <= 10; i += 1) {

cout << f1() << " " << f2() << endl;
}

}

• no explicit execution state! (see direct solution)

• _Coroutine type wraps coroutine and provides all class properties

• distinguished member main (coroutine main) can be suspended and resumed

• no parameters or return value (supplied by public members and communication variables).

• coroutine main can be called (even recursively), but normally a private/protected member.

Why?

• compile with u++ command

• All coroutines inherit from base type uBaseCoroutine:

class uBaseCoroutine {
protected:

void resume(); // context switch to this
void suspend(); // context switch to last resumer
virtual void main() = 0; // starting routine for coroutine

public:
uBaseCoroutine();
uBaseCoroutine(unsigned int stackSize); // set stack size
void verify(); // check stack
const char * setName(const char * name); // printed in error messages
const char * getName() const;
uBaseCoroutine & starter() const; // coroutine performing first resume
uBaseCoroutine & resumer() const; // coroutine performing last resume

};

• Program main called from hidden coroutine ⇒ has coroutine properties.

• resume/suspend cause a context switch between coroutine stacks

f2{fn}
f1{fn}

i

()() resume

main

resume

fn1, fn2

f1

context switch

fn1, fn2

f2

main

stacks

suspend suspend
::main

• first resume starts main on new stack (cocall); subsequent resumes reactivate last suspend.

28 CHAPTER 3. COROUTINE

• suspend reactivates last resume

• object becomes a coroutine on first resume; coroutine becomes an object when main ends

• routine frame at the top of the stack knows where to activate execution

• suspend/resume are protected members to prevent external calls. Why?

• Coroutine main does not have to return before a coroutine object is deleted.

• When deleted, a coroutine’s stack is always unwound and any destructors executed. Why?

• Warning, do not use catch(. . .) in a coroutine, if it may be deleted before terminating,

because a cleanup exception is raised to force stack unwinding (implementation issue).

3.1.2 Format Output

Unstructured input:

abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyz

Structured output:

abcd efgh ijkl mnop qrst

uvwx yzab cdef ghij klmn

opqr stuv wxyz

blocks of 4 letters, separated by 2 spaces, grouped into lines of 5 blocks.

3.1.2.1 Direct

• Read characters and print formatted output.

int main() {
int g, b;
char ch;
cin >> noskipws; // turn off white space skipping

for (;;) { // for as many characters
for (g = 0; g < 5; g += 1) { // groups of 5 blocks

for (b = 0; b < 4; b += 1) { // blocks of 4 chars
for (;;) { // for newline characters

cin >> ch; // read one character
if (cin.fail()) goto fini; // eof ? multi-level exit

if (ch != ’\n’) break; // ignore newline
}
cout << ch; // print character

}
cout << " "; // print block separator

}
cout << endl; // print group separator

}

fini: ;
if (g != 0 | | b != 0) cout << endl; // special case

}

3.1. SEMI-COROUTINE 29

• Convert to routine passed one character at a time to generate structured output (no input).

3.1.2.2 Routine

int g, b; // global variables
void fmtLines(char ch) {

if (ch != -1) { // not EOF ?
if (ch == ’\n’) return; // ignore newline
cout << ch; // print character
b += 1;
if (b == 4) { // block of 4 chars

cout << " "; // block separator
b = 0;
g += 1;

}
if (g == 5) { // group of 5 blocks

cout << endl; // group separator
g = 0;

}
} else {

if (g != 0 | | b != 0) cout << endl; // special case
}

}
int main() {

char ch;
cin >> noskipws; // turn off white space skipping
for (;;) { // for as many characters

cin >> ch;
if (cin.fail()) break; // eof ?

fmtLines(ch);
}
fmtLines(-1); // indicate EOF

}

• must retain variables b and g between successive calls.

• only one instance of formatter

• linearize (flatten) loops: one loop, lots of if statements

3.1.2.3 Class

class Format {
int g, b; // global class variables

public:
Format() : g(0), b(0) {}
~Format() { if (g != 0 | | b != 0) cout << endl; }
void prt(char ch) {

if (ch == ’\n’) return; // ignore newline
cout << ch; // print character
b += 1;

30 CHAPTER 3. COROUTINE

if (b == 4) { // block of 4 chars
cout << " "; // block separator
b = 0;
g += 1;

}
if (g == 5) { // group of 5 blocks

cout << endl; // group separator
g = 0;

}
}

};

int main() {
Format fmt;
char ch;
cin >> noskipws; // turn off white space skipping
for (;;) { // for as many characters

cin >> ch; // read one character
if (cin.fail()) break; // eof ?

fmt.prt(ch);
}

}

• Solves encapsulation and multiple instances issues, but explicitly managing execution state.

3.1.2.4 Coroutine

_Coroutine Format {
char ch; // used for communication
int g, b; // global because used in destructor
void main() {

for (;;) { // for as many characters
for (g = 0; g < 5; g += 1) { // groups of 5 blocks

for (b = 0; b < 4; b += 1) { // blocks of 4 characters
for (;;) { // for newline characters

suspend();
if (ch != ’\n’) break; // ignore newline

}
cout << ch; // print character

}
cout << " "; // print block separator

}
cout << endl; // print group separator

}

}
public:

Format() { resume(); } // start coroutine
~Format() { if (g != 0 | | b != 0) cout << endl; }
void prt(char ch) { Format::ch = ch; resume(); }

};

3.1. SEMI-COROUTINE 31

int main() {
Format fmt;
char ch;
cin >> noskipws; // turn off white space skipping
for (;;) {

cin >> ch; // read one character
if (cin.fail()) break; // eof ?

fmt.prt(ch);
}

}

• resume in constructor allows coroutine main to get to 1st input suspend.

fmt{ch, g, b}
::main

chprt resume

ch

fmt

main

suspend

3.1.3 Correct Coroutine Usage

• Eliminate computation or flag variables retaining information about execution state.

• E.g., sum even and odd digits of 10-digit number, where each digit is passed to coroutine:

BAD: Explicit Execution State GOOD: Implicit Execution State

for (int i = 0; i < 10; i += 1) {
if (i % 2 == 0) // even ?

even += digit;
else

odd += digit;
suspend();

}

for (int i = 0; i < 5; i += 1) {

even += digit;
suspend();
odd += digit;
suspend();

}

• Right example illustrates coroutine “Zen”; let it do the work.

• E.g., a BAD solution for the previous Fibonacci generator is:

32 CHAPTER 3. COROUTINE

void main() {
int fn1, fn2, state = 1;
for (;;) {

switch (state) { // no Zen
case 1:

fn = 0; fn1 = fn;
state = 2;
break;

case 2:
fn = 1; fn2 = fn1; fn1 = fn;
state = 3;
break;

case 3:
fn = fn1 + fn2; fn2 = fn1; fn1 = fn;
break;

}
suspend(); // no Zen

}
}

• Coroutine’s capabilities not used:

◦ explicit flag variable controls execution state

◦ original program structure lost in switch statement

• Must do more than just activate coroutine main to demonstrate understanding of retaining

data and execution state within a coroutine.

3.1.4 Coroutine Construction

• Fibonacci and formatter coroutines express original algorithm structure (no restructuring).

• When possible, simplest coroutine construction is to write a direct (stand-alone) program.

• Convert to coroutine by:

◦ putting processing code into coroutine main,

◦ converting reads if program is consuming or writes if program is producing to suspend,

* Fibonacci consumes nothing and produces (generates) Fibonacci numbers ⇒ con-

vert writes (cout) to suspends.

* Formatter consumes characters and only indirectly produces output (as side-effect)

⇒ convert reads (cin) to suspends.

◦ use interface members and communication variables to transfer data in/out of coroutine.

• This approach is impossible for advanced coroutine problems.

3.2. µC++ EHM 33

3.2 µC++ EHM

The following features characterize the µC++ EHM:

• exceptions must be generated from a specific kind of type.

• supports two kinds of raising: throw and resuming.

• supports two kinds of handlers, termination and resumption, which match with the kind of

raise.

• supports propagation of nonlocal and concurrent exceptions.

• all exception types (user, runtime, and I/O) are grouped into a hierarchy.

3.3 Exception Type

• C++ allows any type to be used as an exception type.

• µC++ restricts exception types to those types defined by _Event.

_Event exception-type-name { . . . };

• An exception type has all the properties of a class.

• Every exception type must have a public default and copy constructor.

• An exception is the same as a class-object with respect to creation and destruction.

_Event D { . . . };
D d; // local creation
_Resume d;
D *dp = new D; // dynamic creation
_Resume *dp;
delete dp;
_Throw D(); // temporary local creation

3.4 Inherited Members

• Each exception type inherits the following members from uBaseEvent:

class uBaseEvent { // like std::exception
uBaseEvent(const char *const msg = "");
const char *const message() const;
const uBaseCoroutine &source() const;
const char *sourceName() const;
virtual void defaultTerminate();
virtual void defaultResume();

};

• uBaseEvent(const char *const msg = "") – msg is printed if the exception is not caught.

34 CHAPTER 3. COROUTINE

◦ Message string is copied so it is safe to use within an exception even if the context of

the raise is deleted.

• message returns the string message associated with an exception.

• source returns the coroutine/task that raised the exception.

◦ coroutine/task may be deleted when the exception is caught so this reference may be

undefined.

• sourceName returns the name of the coroutine/task that raised the exception.

◦ name is copied from the raising coroutine/task when exception is created.

• defaultTerminate is implicitly called if an exception is thrown but not handled.

◦ default action is to forward an UnhandledException exception to resumer/joiner.

• defaultResume is implicitly called if an exception is resumed but not handled.

◦ default action is to throw the exception.

3.5 Raising

• There are two raising mechanisms: throwing and resuming.

_Throw [exception-type] ;
_Resume [exception-type] [_At uBaseCoroutine-id] ;

• If _Throw has no exception-type, it is a rethrow.

• If _Resume has no exception-type, it is a reresume.

• The optional _At clause allows the specified exception or the currently propagating exception

to be raised at another coroutine or task.

• Nonlocal/concurrent raise restricted to resumption as raising execution-state is often unaware

of the handling execution-state.

• Resumption allows faulting execution greatest flexibility: it can process the exception as a

resumption or rethrow the exception for termination.

• Exceptions in µC++ are propagated differently from C++.

C++ µC++

class B {};
class D : public B {};
void f(B & t) { . . . throw t; . . . }
try {

D m;
f(m);

} catch (D &) { cout << "D" << endl; }
catch (B &) { cout << "B" << endl; }

_Event B {};
_Event D : public B {};
void f(B & t) { . . . _Throw t; . . .}
try {

D m;
f(m);

} catch (D &) { cout << "D" << endl; }
catch (B &) { cout << "B" << endl; }

3.6. HANDLER 35

◦ In C++, routine f is passed an object of derived type D but throws an object of base type

B.

◦ In µC++, routine f is passed an object of derived type D and throws the original object

of type D.

◦ This change allows handlers to catch the specific (derived) rather than the general (base)

exception-type.

3.6 Handler

• µC++ has two kinds of handlers, termination and resumption, which match with the kind of

raise.

3.6.1 Termination

• The µC++ termination handler is the catch clause of a try block, i.e., same as in C++.

3.6.2 Resumption

• µC++ extends the try block to include resumption handlers.

• Resumption handler is denoted by a _CatchResume clause after try body:

try {
. . .

} _CatchResume(E1) { . . . } // must appear before catch clauses
// more _CatchResume clauses
_CatchResume(. . .) { . . . } // must be last _CatchResume clause
catch(E2) { . . . } // must appear after _CatchResume clauses
// more catch clauses
catch(. . .) { . . . } // must be last catch clause

• Any number of resumption handlers can be associated with a try block.

• All _CatchResume handlers must precede any catch handlers.

• Like catch(. . .) (catch-any), _CatchResume(. . .) must appear at the end of the list of the

resumption handlers.

• Resumption handler can access types and variables visible in its local scope.

typedef int Foo;
Foo i;
try {

f(. . .) // f is recursive and raises Foo
} _CatchResume(Foo & e) { // handler H

Foo fix = i; // use type and variable in local scope
. . . e = fix . . . // change _Resume block

}

36 CHAPTER 3. COROUTINE

H

f raise Foolexical
link

CatchResume(Foo)

i

4 21 3

1. call f

2. propagation from f to handler H

3. call handler

4. dereference lexical link to i

• lexical link is like this but to declaration block rather than object.

• Resumption handler cannot perform a break, continue, goto, or return.

◦ Resumption handler is corrective action so computation can continue.

◦ If correction impossible, handler should throw an exception not step into an enclosing

block to cause the stack to unwind.

B: try {
f(); // recursive calls and _Resume E()

} _CatchResume(E e) { // handler H
. . . break B; // force static return (disallowed)
_Throw e; // force recovery (allowed)

}

◦ Handler H above makes recursive calls to f, so goto must unwind stack to transfer into

stack frame B (nonlocal transfer).

◦ Throw may find another recovery action closer to raise point than B that can deal with

the problem.

3.6.3 Termination/Resumption

• The raise dictates set of handlers examined during propagation:

◦ terminating propagation (_Throw) only examines termination handlers (catch),

◦ resuming propagation (_Resume) only examines resumption handlers (_CatchResume).

• Exception types in each set can overlap.

_Event E {};
void rtn() {

try {
_Resume E();

} _CatchResume(E & e) { . . . _Throw e; } // H1
catch(E & e) { . . . } // H2

}

• Resumption handler H1 is invoked by the resume in the try block generating call stack:

rtn → try{}_CatchResume(E), catch(E)→ H1

3.7. NONLOCAL EXCEPTIONS 37

• Handler H1 throws E and the stack is unwound until the exception is caught by termination-

handler catch(E) and handler H2 is invoked.

rtn → H2

• The termination handler is available as resuming does not unwind the stack.

• Note interaction between resuming, defaultResume, and throwing:

_Event R {};
void rtn() {

try {
_Resume R(); // resume not throw

} catch(R &) { . . . } // H1, no _CatchResume!!!
}

• This generates the following call stack as there is no eligible resumption handler (or there is

a handler but marked ineligible):

rtn → try{}catch(R) → defaultResume

• When defaultResume is called, the default action throws R (see Section 3.4, p. 33).

rtn → H1

• Terminating propagation unwinds the stack until there is a match with the catch clause in

the try block.

3.7 Nonlocal Exceptions

• Nonlocal exceptions are exceptions raised by a source execution at a faulting execution.

• Nonlocal exceptions are possible because each coroutine (execution) has its own stack.

• Nonlocal exceptions are raised using _Resume . . . _At

38 CHAPTER 3. COROUTINE

_Event E {};
_Coroutine C {

void main() {
// initialization, no nonlocal delivery
try { // setup handlers

_Enable { // allow nonlocal exceptions
. . . suspend(); . . . // inside suspend is _Resume E();

} // disable all nonlocal exceptions
} catch(E) {

// handle nonlocal exception
}
// finalization, no nonlocal delivery

}
public:

C() { resume(); } // prime try (not always possible)
void mem() { resume(); }

};
int main() {

C c;
_Resume E() _At c; // exception pending
c.mem(); // trigger exception

}

• For nonlocal resumption, _Resume is a proxy for actual raise in the faulting coroutine ⇒
non-local resumption becomes local resumption.

c

Resume E
Enable

suspend
resume

faulting

E

source

::main

Resume E
At c

activate

• While source delivers nonlocal exception immediately, propagation only occurs when fault-

ing becomes active.

⇒ must suspend back to or call a member that does a resume of the faulting coroutine

• Faulting coroutine performs local _Resume implicitly at detection points for nonlocal ex-

ceptions, e.g., in _Enable, suspend, resume.

• Handler does not return to the proxy raise; control returns to the implicit local raise at ex-

ception delivery, e.g., back in _Enable, suspend, resume.

• Multiple nonlocal exceptions are queued and delivered in FIFO order depending on the cur-

rent enabled exceptions.

• Nonlocal delivery is initially disabled for a coroutine, so handlers can be set up before any

exception can be delivered (also see Section 5.11, p. 77).

3.7. NONLOCAL EXCEPTIONS 39

• Hence, nonlocal exceptions must be explicitly enabled before delivery can occur with _Enable.

• µC++ allows dynamic enabling and disabling of individual exception types versus all excep-

tion types.

_Enable <E1><E2>. . . {
// exceptions E1, E2 are enabled

}
_Disable <E1><E2>. . . {

// exceptions E1, E2 are disabled
}

• Specifying no exceptions is shorthand for specifying all nonlocal exceptions.

• _Enable and _Disable blocks can be nested, turning delivery on/off on entry and reestab-

lishing the delivery state to its prior value on exit.

• An unhandled exception raised by a coroutine raises a nonlocal exception of type

uBaseCoroutine::UnhandledException at the coroutine’s last resumer and then terminates

the coroutine.

_Event E {};
_Coroutine C {

void main() { _Throw E(); } // unwind
// defaultTerminate ⇒ _Resume UnhandledException() _At resumer()
// ⇒ coroutine activates last resumer (not starter) and terminates

public:
void mem() { resume(); } // nonlocal exception? ⇒ _Resume UnhandledException()

}; // _CatchResume continues after resume()
int main() {

C c;
try {

c.mem();
} _CatchResume(uBaseCoroutine::UnhandledException &) {. . .} // one of

catch(uBaseCoroutine::UnhandledException &) {. . .}
// catch continues after try

}

• Call to c.mem resumes coroutine c and then coroutine c throws exception E but does not

handle it.

• When the base of c’s stack is reached, an exception of type uBaseCoroutine::UnhandledException

is raised at ::main, since it last resumed c.

E

source

c

Resume Unh...(E)

::main

Unh...

faulting

Resume Unh...(E)
At resumer()

activate

40 CHAPTER 3. COROUTINE

• _CatchResume continues from resume (dynamic return, fixup)

• catch continues after handler (static return, recover)

• Forwarding can occur across any number of coroutines, until a task main forwards and then

the program terminates by calling main’s set_terminate.

• The original E exception is in the UnhandledException exception and can be thrown by

uh.triggerCause().

• If the original (E) exception has a default-terminate routine, it can override UnhandledException

behaviour (e.g., abort), or return and let it happen.

• While the coroutine terminates, control returns to its last resumer rather than its starter.

• Exception UnhandledException (and a few others) are always enabled.

3.8 Memory Management

Normal Program Stack Multiple Coroutine Stacks

stack heapfree stack1 heap stack2free heapstack3

• Normally program stack expands to heap; but coroutine stacks expand to next stack.

• In fact, coroutine stacks are normally allocated in the heap.

• Default µC++ coroutine stack size is 256K and it does not grow.

• Adjust coroutine stack-size through coroutine constructor:

_Coroutine C {
public:

C() : uBaseCoroutine(8192) {}; // default 8K stack
C(int size) : uBaseCoroutine(size) {}; // user specified stack size
. . .

};
C x, y(16384); // x has an 8K stack, y has a 16K stack

• Check for stack overflow using coroutine member verify:

void main() {
. . . // declarations
verify(); // check for stack overflow
. . . // code

}

• Be careful allocating arrays in the coroutine main; sometimes necessary to allocate large

arrays in heap. (see Point 4, p. 5)

3.9. SEMI-COROUTINE EXAMPLES 41

3.9 Semi-Coroutine Examples

3.9.1 Same Fringe

• Two binary trees have same fringe if all leafs are equals from left to right.

3 5 7

1 3

5

7

1

2

4

6

2

4

6

• Requires iterator to traverse a tree, return the value of each leaf, and continue the traversal.

• No direct solution without additional data-structure (e.g., stack) to manage tree traversal.

• Coroutine uses recursive tree-traversal but suspends during traversal to return value.

template< typename T > class Btree {
struct Node { . . . }; . . . // other members

public:
_Coroutine Iterator {

Node * cursor;
void walk(Node * node) { // walk tree

if (node == nullptr) return;
if (node->left == nullptr && node->right == nullptr) { // leaf?

cursor = node;
suspend(); // multiple stack frames

} else {
walk(node->left); // recursion
walk(node->right); // recursion

}
}
void main() { walk(cursor); cursor = nullptr; }

public:
Iterator(Btree<T> & btree) : cursor(&btree.root) {}
T * next() {

resume();
return cursor;

}
};
. . . // other members

};

template<class T> bool sameFringe(BTree<T> & tree1, BTree<T> & tree2) {
Btree<T>::Iterator iter1(btree1), iter2(btree2); // iterator for each tree
T * t1, * t2;
for (;;) {

t1 = iter1.next(); t2 = iter2.next();
if (t1 == nullptr | | t2 == nullptr) break; // one traversal complete ?

if (*t1 != *t2) return false; // elements not equal ?
}
return t1 == nullptr && t2 == nullptr; // both traversals completed ?

}

42 CHAPTER 3. COROUTINE

3.9.2 Device Driver

• Parse transmission protocol and return message text, e.g.:

. . . STX . . . message . . . ESC ETX . . . message . . . ETX 2-byte CRC . . .

3.9.2.1 Direct

int main() {
enum { STX = ’\002’, ESC = ’\033’, ETX = ’\003’ };
enum { MaxMsgLnth = 64 };
unsigned char msg[MaxMsgLnth];
. . .
try {

msg: for (;;) { // parse messages
int lnth = 0, checkval;
do {

byte = input(infile); // read bytes, throw Eof on eof
} while (byte != STX); // message start ?

eom: for (;;) { // scan message data
byte = input(infile);
switch (byte) {

case STX:
. . . // protocol error
continue msg; // uC++ labelled continue

case ETX: // end of message
break eom; // uC++ labelled break

case ESC: // escape next byte
byte = input(infile);
break;

} // switch
if (lnth >= MaxMsgLnth) { // buffer full ?

. . . // length error
continue msg; // uC++ labelled continue

} // if
msg[lnth] = byte; // store message
lnth += 1;

} // for
byte = input(infile); // gather check value
checkval = byte;
byte = input(infile);
checkval = (checkval << 8) | byte;
if (! crc(msg, lnth, checkval)) . . . // CRC error

} // for
} catch(Eof) {}
. . .

} // main

3.9.2.2 Coroutine

• Called by interrupt handler for each byte arriving at hardware serial port.

3.9. SEMI-COROUTINE EXAMPLES 43

_Coroutine DeviceDriver {
enum { STX = ’\002’, ESC = ’\033’, ETX = ’\003’ };
enum { MaxMsgLnth = 64 };
unsigned char byte;
unsigned char * msg;

public:
DeviceDriver(unsigned char * msg) : msg(msg) { resume(); }
void next(unsigned char b) { // called by interrupt handler

byte = b;
resume();

}

private:
void main() {

msg: for (;;) { // parse messages
int lnth = 0, checkval;
do {

suspend();
} while (byte != STX); // message start ?

eom: for (;;) { // scan message data
suspend();

switch (byte) {
case STX:

. . . // protocol error
continue msg; // uC++ labelled continue

case ETX: // end of message
break eom; // uC++ labelled break

case ESC: // escape next byte
suspend(); // get escaped character
break;

} // switch

if (lnth >= MaxMsgLnth) { // buffer full ?
. . . // length error
continue msg; // uC++ labelled continue

} // if
msg[lnth] = byte; // store message
lnth += 1;

} // for

suspend(); // gather check value
checkval = byte;
suspend();
checkval = (checkval << 8) | byte;
if (! crc(msg, lnth, checkval)) . . . // CRC error

} // for
} // main

}; // DeviceDriver

44 CHAPTER 3. COROUTINE

3.9.3 Producer-Consumer

_Coroutine Cons {
int p1, p2, status; bool done;
void main() { // starter prod

// 1st resume starts here
int money = 1;
for (; ! done;) {

cout << "cons " << p1 << " "
<< p2 << " pay $"

<< money << endl;
status += 1;
suspend(); // activate delivery or stop
money += 1;

}
cout << "cons stops" << endl;

} // suspend / resume(starter)
public:

Cons() : status(0), done(false) {}
int delivery(int p1, int p2) {

Cons::p1 = p1; Cons::p2 = p2;
resume(); // activate main
return status;

}
void stop() { done = true; resume(); } // activate main

};

_Coroutine Prod {
Cons & c;
int N;
void main() { // starter ::main

// 1st resume starts here
for (int i = 0; i < N; i += 1) {

int p1 = rand() % 100; // products
int p2 = rand() % 100;
cout << "prod " << p1

<< " " << p2 << endl;
int status = c.delivery(p1, p2);
cout << " stat " << status << endl;

}
c.stop();
cout << "prod stops" << endl;

} // suspend / resume(starter)

public:
Prod(Cons & c) : c(c) {}
void start(int N) {

Prod::N = N;
resume(); // activate main

}
};

3.9. SEMI-COROUTINE EXAMPLES 45

int main() {
Cons cons; // create consumer
Prod prod(cons); // create producer
prod.start(5); // start producer

}

prod{c, N}

cons{p1, p2,
status, done}

start N

main

delivery p1, p2

i,p1,p2,status main money

resume

suspend

resume

prod cons

::main

• Do both Prod and Cons need to be coroutines?

• When coroutine main returns, it activates the coroutine that started main.

• The starter coroutine is the coroutine that does the first resume (cocall).

◦ prod started cons.main, so control goes to prod suspended in stop.

◦ ::main started prod.main, so control goes to ::main suspended in start.

• For semi-coroutines, the starter is often the last (only) resumer, so it seems coroutine main

implicitly suspends on termination.

::main
start main

resume(1) resume(2)

stop

resume(3)

delivery

prod cons

main

suspend

◦ dashed red ⇒ create stack and resume coroutine main

◦ solid red ⇒ resume coroutine at last suspend

◦ solid blue ⇒ resume last resumer

◦ dashed blue ⇒ resume starter

46 CHAPTER 3. COROUTINE

3.10 Full Coroutines

• Semi-coroutine activates the member routine that activated it.

• Full coroutine has a resume cycle; semi-coroutine does not form a resume cycle.

call
return

resume
resume

suspend
resume

routine

stack(s)

semi-coroutine full coroutine

• A full coroutine is allowed to perform semi-coroutine operations because it subsumes the

notion of semi-coroutine.

_Coroutine Fc {
void main() { // starter ::main

mem(); // ?
resume(); // ?
suspend(); // ?

} // ?
public:

void mem() { resume(); }
};
int main() {

Fc fc;
fc.mem();

}

inactive active

control flow semantics

resume this

uThisCoroutine()

suspend last resumer

context switch

fc

mem mem

main

fc

::main

::main

mainmem

resume

fc

suspend

resume

3.10. FULL COROUTINES 47

• Suspend inactivates the current active coroutine (uThisCoroutine), and activates last resumer.

• Resume inactivates the current active coroutine (uThisCoroutine), and activates the current

object (this).

• Hence, the current object must be a non-terminated coroutine.

• Note, this and uThisCoroutine change at different times.

• Exception: last resumer not changed when resuming self because no practical value.

• Full coroutines can form an arbitrary topology with an arbitrary number of coroutines.

• There are 3 phases to any full coroutine program.

1. starting the cycle

2. executing the cycle

3. stopping the cycle (return to the program main)

• Starting the cycle requires each coroutine to know at least one other coroutine.

• The problem is mutually recursive references.

Fc x(y), y(x); // does not compile, why?

• One solution is to make closing the cycle a special case.

Fc x, y(x);
x.partner(y);

• Once the cycle is created, execution around the cycle can begin.

• Stopping can be as complex as starting, because a coroutine goes back to its starter.

• For full-coroutines, the starter is often not the last resumer, so coroutine main does not appear

to implicitly suspend on termination.

• But it is necessary to activate the program main to finish (unless exit is used).

• The starter stack always gets back to the program main.

• Again, it is unnecessary to terminate all coroutines, just delete them.

48 CHAPTER 3. COROUTINE

3.10.1 Ping/Pong

• Full-coroutine control-flow with 2 identical coroutines:

creation

::main

ping pong

starter

::main

ping

pong

execution

::main

ping pong

_Coroutine PingPong {
const char * name;
const unsigned int N;
PingPong * part;
void main() { // ping’s starter ::main, pong’s starter ping

for (unsigned int i = 0; i < N; i += 1) {
cout << name << endl;
part->cycle();

}
}

public:
PingPong(const char * name, unsigned int N, PingPong & part)

: name(name), N(N), part(& part) {}
PingPong(const char * name, unsigned int N) : name(name), N(N) {}
void partner(PingPong & part) { PingPong::part = ∂ }
void cycle() { resume(); }

};
int main() {

enum { N = 20 };
PingPong ping("ping", N), pong("pong", N, ping);
ping.partner(pong);
ping.cycle();

}

• ping created without partner; pong created with partner.

• ping makes pong partner, closing cycle.

• Why is PingPong::part a pointer rather than reference?

• cycle resumes ping ⇒ ::main is ping’s starter

• ping calls pong’s cycle member, resuming pong so ping is pong’s starter.

• pong calls ping’s cycle member, resuming ping in pong’s cycle member.

• Each coroutine cycles N times, becoming inactive in the other’s cycle member.

◦ ping ends first, because it started first, resuming its starter ::main in ping’s cycle member.

3.10. FULL COROUTINES 49

◦ ::main terminates with terminated coroutine ping and unterminated coroutine pong.

• Assume ping’s declaration is changed to ping("ping", N + 1).

◦ pong ends first, resuming its starter ping in pong’s cycle member.

◦ ping ends second, resuming its starter ::main in ping’s cycle member.

◦ ::main terminates with terminated coroutines ping and pong.

ping{"ping",N,pong}

pong{"pong",N,ping}

cycle ping

main

cycle

resume

i

ping

resume

main

cycle

i

pong

::main

main

resume1

cycle
::main

maincycle

resume2

ping pong

3.10.2 Producer-Consumer

• Full-coroutine control-flow and bidirectional communication with 2 non-identical corou-

tines:

_Coroutine Prod {
Cons * c;
int N, money, receipt;
void main() { // starter ::main

// 1st resume starts here
for (int i = 0; i < N; i += 1) {

int p1 = rand() % 100; // products
int p2 = rand() % 100;
cout << "prod " << p1

<< " " << p2 << endl;
int status = c->delivery(p1, p2);
cout << "prod rec $" << money

<< " stat " << status << endl;
receipt += 1;

}
c->stop();
cout << "prod stops" << endl;

}

public:
int payment(int money) {

Prod::money = money;
resume(); // Prod::main 1st time, then
return receipt; // prod in Cons::delivery

}
void start(int N, Cons & c) {

Prod::N = N; Prod::c = &c;
receipt = 0;
resume(); // activate main

}
};

50 CHAPTER 3. COROUTINE

_Coroutine Cons {
Prod & p;
int p1, p2, status;
bool done;
void main() { // starter prod

// 1st resume starts here
int money = 1, receipt;
for (; ! done;) {

cout << "cons " << p1 << " "
<< p2 << " pay $"
<< money << endl;

status += 1;
receipt = p.payment(money);
cout << "cons #"

<< receipt << endl;
money += 1;

}
cout << "cons stops" << endl;

}

public:
Cons(Prod & p) : p(p), status(0), done(false) {}
int delivery(int p1, int p2) {

Cons::p1 = p1; Cons::p2 = p2;
resume(); // Cons::main 1st time, then
return status; // cons in Prod::payment

}
void stop() {

done = true;
resume(); // activate Prod::payment

}
};
int main() {

Prod prod;
Cons cons(prod);
prod.start(5, cons);

}

• Cheat using forward reference for Cons at c->delivery and c->stop. Fix by?

money, receipt}

status, done}
cons{p,p1,p2,

prod{c, N,

start N, c

i,p1,p2,status

p1, p2

main

delivery

cons

moneymain

payment

resumeresume

prod

::main

main main

resume(1)
::main

payment

resume(3)

resume(2)

stop

resume(4)

prod cons

deliverystart

• Black dashed-line same control flow as ping/pong.

• Remove flag variable from full-coroutine producer-consumer.

3.11. COROUTINE LANGUAGES 51

_Event Stop {};
_Coroutine Prod {

Cons * c;
int N, money, receipt;
void main() {

for (int i = 0; i < N; i += 1) {
int p1 = rand() % 100;
int p2 = rand() % 100;
cout << "prod " << . . .
int status = c->delivery(p1, p2);
cout << "prod rec $" << . . .
receipt += 1;

}
_Resume Stop() _At resumer();
suspend(); // restart cons
cout << "prod stops" << endl;

}
public:

int payment(int money) {
Prod::money = money;
resume();
return receipt;

}
void start(int N, Cons & c) {

Prod::N = N; Prod::c = &c;
receipt = 0;
resume();

}
};

_Coroutine Cons {
Prod & p;
int p1, p2, status = 0;
void main() {

int money = 1, receipt;
try {

for (;;) {
cout << "cons " << p1 << . . .
status += 1;
receipt = p.payment(money);
cout << "cons #" << . . .
money += 1;
_Enable; // trigger exception

}
} catch(Stop &) {}
cout << "cons stops" << endl;

}
public:

Cons(Prod & p) : p(p) {}
int delivery(int p1, int p2) {

Cons::p1 = p1; Cons::p2 = p2;
resume();
return status;

}
};

3.11 Coroutine Languages

• Coroutine implementations have two forms:

1. stackless: use the caller’s stack and a fixed-sized local-state

2. stackful: separate stack and a fixed-sized local-state

• Stackless coroutines cannot call other routines and then suspend, i.e., only suspend in the

coroutine main.

• Generators/iterators are often simple enough to be stackless using yield.

• Simula, CLU, C#, Ruby, Python, JavaScript, Lua, F# all support yield constructs.

3.11.1 Python 3.5

• Stackless, semi coroutines, routine versus class, no calls, single interface

• Fibonacci (see Section 3.1.1.4, p. 26)

52 CHAPTER 3. COROUTINE

def Fibonacci(n): # coroutine main
fn = 0; fn1 = fn
yield fn # suspend
fn = 1; fn2 = fn1; fn1 = fn
yield fn # suspend
while True: # for infinite generator
for i in range(n - 2):

fn = fn1 + fn2; fn2 = fn1; fn1 = fn
yield fn # suspend

f1 = Fibonacci(10) # objects
f2 = Fibonacci(10)
for i in range(10):

print(next(f1), next(f2)) # resume
for fib in Fibonacci(15): # use generator as iterator

print(fib)

• Format (see Section 3.1.2.4, p. 30)

def Format():
try:

while True:
for g in range(5): # groups of 5 blocks

for b in range(4): # blocks of 4 characters
print((yield), end=’’) # receive from send

print(’ ’, end=’’) # block separator
print() # group separator

except GeneratorExit: # destructor
if g != 0 | b != 0: # special case

print()

fmt = Format()
next(fmt) # prime generator
for i in range(41):

fmt.send(’a’) # send to yield

• send takes only one argument, and no cycles ⇒ no full coroutine

3.11.2 JavaScript

• Similar to Python: stackless, semi coroutines, routine versus class, no calls, single interface

• Embedded in HTML with I/O from web browser.

• Fibonacci (see Section 3.1.1.4, p. 26)

<!DOCTYPE html><html>
<head><meta charset="utf-8" /><title>Fibonacci Coroutine</title></head>
<body><button id="button">Click for next Fibonacci number!</button>

<p id="output"></p></body>
<script>

3.11. COROUTINE LANGUAGES 53

function * Fibonacci() {
var fn = 0, fn1 = 0, fn2 = 0; // JS bug: initialize vars or lost on suspend
yield fn; // return fn to resumer
fn = 1; fn2 = fn1; fn1 = fn;
yield fn; // return fn to resumer
for (;;) {

fn = fn1 + fn2; fn2 = fn1; fn1 = fn;
yield fn; // return fn to resumer

}
}

const button = document.getElementById(’button’);
const output = document.getElementById(’output’);
var count = 0, suffix;
var fib = Fibonacci();
button.addEventListener("click", event => {

if (count % 10 == 1) suffix = "st";
else if (count % 10 == 2) suffix = "nd";
else suffix = "th";
output.textContent = count + suffix + " Fibonacci: " + fib.next().value;
count += 1;

});
</script></body></html>

• Format (see Section 3.1.2.4, p. 30)

<!DOCTYPE html><html>
<head><meta charset="utf-8" /><title>Format Coroutine</title></head>
<body><input placeholder="Type characters!" size=50><p id="output"></p></body>
<script>

function * Format() {
var g = 0, b = 0, ch = ’’; // JS bug: initialize vars or lost on suspend
for (;;) {

for (g = 0; g < 5; g += 1) {
for (b = 0; b < 4; b += 1) {

ch = yield;
output.innerHTML += ch; // console.log adds \n

}
output.innerHTML += " ";

}
output.innerHTML += "
";

}
}

const inputBox = document.querySelector(’input’);
const output = document.getElementById(’output’);
var format = Format();
format.next(); // prime generator
inputBox.addEventListener(’keypress’, event => {

format.next(event.key);
});
</script></body></html>

54 CHAPTER 3. COROUTINE

• FSM – detects 3 consecutive matching characters

<!DOCTYPE html><html>
<head><meta charset="utf-8" /><title>Consecutive characters</title></head>
<body><input placeholder="Type characters!" size=50><p id="output"></p></body>
<script>

function * HandleKeyEvent() {
var ch = ’’, prevCh = ’’; // JS bug: initialize vars or lost on suspend
for (;;) {

prevCh = ch;
for (var i = 1;; i += 1) {

ch = yield;
if (ch != prevCh) break;
if (i == 2) {

output.textContent = "3 consecutive characters!";
ch = yield;
output.textContent = "";
i = 0;

}
}

}
}

const inputBox = document.querySelector(’input’);
const output = document.getElementById(’output’);
var handler = HandleKeyEvent();
handler.next(); // prime generator
inputBox.addEventListener(’keypress’, event => {

handler.next(event.key);
});
</script></body></html>

3.11.3 C++20 Coroutines

• C++20 has an API for coroutines and outline code to build stackless, stackful, or even fibres

(tasks without preemption).

• This capability cannot be used directly. It requires writing significant low-level implementa-

tion code.

4 More Exceptions

4.1 Derived Exception-Type

• derived exception-types is a mechanism for inheritance of exception types, like inheritance

of classes.

• Provides a kind of polymorphism among exception types:

Exception

IO

NetworkFile

Arithmetic

UnderflowDivideByZero Overflow

• Provides ability to handle an exception at different degrees of specificity along the hierarchy.

• Possible to catch a more general exception-type in higher-level code where the implementa-

tion details are unknown.

• Higher-level code should catch general exception-types to reduce tight coupling to the spe-

cific implementation.

◦ tight coupling may force unnecessary changes in the higher-level code when low-level

code changes.

• Exception-type inheritance allows a handler to match multiple exceptions, e.g., a base han-

dler can catch both base and derived exception-type.

• To handle this case, most propagation mechanisms perform a linear search of the handlers

for a guarded block and select the first matching handler.

try { . . .
} catch(Arithmetic &) { . . .
} catch(Overflow) { . . . // never selected!!!
}

• When subclassing, it is best to catch an exception by reference:

struct B {};
struct D : public B {};
try {

throw D(); // _Throw in uC++
} catch(B e) { // truncation

// cannot down-cast
}

try {
throw D(); // _Throw in uC++

} catch(B & e) { // no truncation
. . . dynamic_cast<D>(e) . . .

}

◦ Otherwise, exception is truncated from its dynamic type to static type specified at the

handler, and cannot be down-cast to the dynamic type.

• Notice, catching truncation (see page 55) is different from raising truncation, which does not

occur in µC++ with _Throw.

55

56 CHAPTER 4. MORE EXCEPTIONS

4.2 Catch-Any

• catch-any is a mechanism to match any exception propagating through a guarded block.

• With exception-type inheritance, catch-any can be provided by the root exception-type, e.g.,

catch(Exception) in Java.

• Otherwise, special syntax is needed, e.g., catch(. . .) in C++.

• For termination, catch-any is used as a general cleanup when a non-specific exception occurs.

• For resumption, this capability allows a guarded block to gather or generate information

about control flow (e.g., logging).

try {
. . .

} _CatchResume(. . .) { // catch-any
. . . // logging
_Resume; // reresume for fixup

} catch(. . .) { // catch-any
. . . // cleanup
_Throw; // rethrow for recovery

}

• Java finalization:

try { . . .
} catch(E) { . . . }
. . . // other catch clauses
} finally { // always executed

. . . // cleanup
// possibly rethrow

}

provides catch-any capabilities and handles the non-exceptional case.

◦ difficult to mimic in C++, even with RAII, because of local variables.

4.3 Exception Parameters

• Exception parameters allow passing information from the raise to a handler.

• Inform a handler about details of the exception, and to modify the raise site to fix an excep-

tional situation.

• Different EHMs provide different ways to pass parameters.

• In C++/Java, parameters are defined inside the exception:

4.4. EXCEPTION LIST 57

struct E {
int i;
E(int i) : i(i) {}

};
void f(. . .) { . . . throw E(3); . . . } // argument
int main() {

try {
f(. . .);

} catch(E p) { // parameter, value or reference
. . . p.i . . .

}
}

• For resumption, values at raise modified via reference/pointer in caught exception:

_Event E {
public:

int & r;
E(int & r) : r(r) {}

};
void f() {

int x;
. . . _Resume E(x); . . .

}
void g() {

try {
f();

} _CatchResume(E & e) {
. . . e.r = 3; . . .

}
}

x

Resume

3

propagation

callf

recursion

CatchRe...try

g

handler e.r = 3;

fixup

4.4 Exception List

• Missing exception handler for arithmetic overflow in control software caused Ariane 5 rocket

to self-destruct ($370 million loss).

• exception list is part of a routine’s prototype specifying which exception types may propa-

gate from the routine to its caller.

int g() throw(E) { . . . throw E(); }

• This capability allows:

◦ static detection of a raised exception not handled locally or by its caller

◦ runtime detection where the exception may be converted into a special failure excep-

tion or the program terminated.

• 2 kinds of checking:

◦ checked/unchecked exception-type (Java, inheritance based, static check)

http://proxy.lib.uwaterloo.ca/login?url=http://portal.acm.org/ft_gateway.cfm?id=251992&type=pdf&coll=DL&dl=ACM&CFID=82623086&CFTOKEN=15966575

58 CHAPTER 4. MORE EXCEPTIONS

◦ checked/unchecked routines (C++, exception-list based, dynamic check)

(deprecated C++11, replaced with noexcept)

• While checked exception-types are useful for software engineering, reuse is precluded.

• E.g., consider the simplified C++ template routine sort:

template<class T> void sort(T items[]) throw(?, ?, ...) {
// using bool operator<(const T &a, const T &b);

using the operator routine < in its definition.

• Impossible to know all exception types that propagated from routine < for every type.

• Since only a fixed set of exception types can appear in sort’s exception list, some sortable

types are precluded.

• Exception lists can preclude reuse for arguments of routine pointers (functional style) and/or

polymorphic methods/routines (OO style):

// throw NO exceptions
void f(void (*p)() throw()) {

p();
}
void g() throw(E) { throw E(); }
void h() {

try { . . . f(g); . . .
} catch(E) {}

}

struct B { // throw NO exceptions
virtual void g() throw() {}
void f() { g(); }

};
struct D : public B {

void g() throw(E) { throw E(); }
void h() {

try { . . . f(); . . .
} catch(E) {}

}
};

• Left example, routine h has an appropriate try block and passes the version of g to f that

raises exception-type E.

• However, checked exception-types preclude this case because the signature of argument g is

less restrictive than parameter p of f.

• Right example, member routine D::h calls B::f, which calls D::g that raises exception-type E.

• However, checked exception types preclude this case because the signature of D::g is less

restrictive than B::g.

• Finally, determining an exception list for a routine can become impossible for concurrent

exceptions because they can propagate at any time.

4.5 Destructor

• Destructor is implicitly noexcept ⇒ cannot raise an exception.

4.6. MULTIPLE EXCEPTIONS 59

• Destructor can raise an exception, if marked noexcept(false), or inherits from class with

noexcept(false) destructor.

struct E {};
struct C {

~C() noexcept(false) { throw E(); }
};
try { // outer try

C x; // raise on deallocation
try { // inner try

C y; // raise on deallocation
} catch(E) {. . .} // inner handler

} catch(E) {. . .} // outer handler

y’s destructor
| throw E

inner try x’s destructor
| y | throw E

outer try outer try
| x | x

◦ y’s destructor called at end of inner try block, it raises an exception E, which unwinds

destructor and try, and handled at inner catch

◦ x’s destructor called at end of outer try block, it raises an exception E, which unwinds

destructor and try, and handled at outer catch

4.6 Multiple Exceptions

• An exception handler can generated an arbitrary number of nested exceptions.

struct E {};
int cnt = 3;
void f(int i) {

if (i == 0) throw E();
try {

f(i - 1);
} catch(E) { // handler h

cnt -= 1;
if (cnt > 0) f(2);

}
}
int main() { f(2); }

f

f

f

f

f

f

f

h

h

f

fh

throw E1

throw E2

• Exceptions are nested as handler can rethrow its matched exception when control returned.

• However, multiple exceptions cannot propagate simultaneously.

• Only destructor code can intervene during propagation.

• Hence, a destructor cannot raise an exception during propagation; it can only start propaga-

tion.

try {
C x; // raise on deallocation
throw E();

} catch(E) {. . .}

• Raise of E causes unwind of inner try block.

60 CHAPTER 4. MORE EXCEPTIONS

• x’s destructor called during unwind, it raises an exception E, which one should be used?

◦ Cannot start second exception without handler to deal with first exception, i.e., cannot

drop exception and start another.

◦ Cannot postpone first exception because second exception may remove its handlers

during stack unwinding.

• Check if exception is being propagated with uncaught_exceptions().

5 Concurrency

• A thread is an independent sequential execution path through a program.

◦ Each thread is scheduled for execution separately and independently from other threads.

• A process is a program component (like a routine) that has its own thread and has the same

state information as a coroutine.

• A task is similar to a process except that it is

◦ reduced along some particular dimension (like the difference between a boat and a ship,

one is physically smaller than the other).

◦ It is often the case that a process has its own memory, while tasks share a common

memory.

◦ A task is sometimes called a light-weight process (LWP).

• Parallel execution is when 2 or more operations occur simultaneously, which can only occur

when multiple processors (CPUs) are present.

• Concurrent execution is any situation in which execution of multiple threads appears to be

performed in parallel.

◦ It is the threads of control associated with processes and tasks that results in concurrent

execution, not the processors.

5.1 Why Write Concurrent Programs

• Dividing a problem into multiple executing threads is an important programming technique

just like dividing a problem into multiple routines.

• Expressing a problem with multiple executing threads may be the natural (best) way of

describing it.

• Multiple executing threads can enhance execution-time efficiency by taking advantage of

inherent concurrency in an algorithm and any parallelism available in the computer system.

5.2 Why Concurrency is Difficult

• to understand:

◦ While people can do several things concurrently, the number is small because of the

difficulty in managing and coordinating them.

◦ Especially when the things interact with one another.

• to specify:

◦ How can/should a problem be broken up so that parts of it can be solved at the same

time as other parts?

61

62 CHAPTER 5. CONCURRENCY

◦ How and when do these parts interact or are they independent?

◦ If interaction is necessary, what information must be communicated during the interac-

tion?

• to debug:

◦ Concurrent operations proceed at varying speeds and in non-deterministic order, hence

execution is not repeatable (Heisenbug).

◦ Reasoning about multiple streams or threads of execution and their interactions is much

more complex than for a single thread.

• E.g. Moving furniture out of a room; can’t do it alone, but how many helpers and how to do

it quickly to minimize the cost?

• How many helpers?

◦ 1,2,3, ... N, where N is the number of items of furniture

◦ more than N?

• Where are the bottlenecks?

◦ the door out of the room, items in front of other items, large items

• What communication is necessary between the helpers?

◦ which item to take next

◦ some are fragile and need special care

◦ big items need several helpers working together

5.3 Concurrent Hardware

• Concurrent execution of threads is possible with only one CPU (uniprocessor); multitask-

ing for multiple tasks or multiprocessing for multiple processes.

computer

CPU
task1 task2

state program state program

100 5

◦ Parallelism is simulated by context switching the threads on the CPU.

◦ Most of the issues in concurrency can be illustrated without parallelism.

◦ Pointers among tasks work because memory is shared.

◦ Unlike coroutines, task switching may occur at non-deterministic program loca-

tions, i.e., between any two machine instructions.

5.3. CONCURRENT HARDWARE 63

◦ Introduces all the difficulties in concurrent programs.

* programs must be written to work regardless of non-deterministic ordering of pro-

gram execution.

◦ Switching happens explicitly but conditionally when calling routines.

* routine may or may not context switch depending on hidden (internal) state (cannot

predict)

◦ Switching can happen implicitly because of an external interrupt independent of pro-

gram execution.

* e.g., I/O or timer interrupt;

* timer interrupts divide execution (between instructions) into discrete time-slices

occurring at non-deterministic time intervals

* ⇒ task execution is not continuous

◦ If interrupts affect scheduling (execution order), it is called preemptive, otherwise the

scheduling is non-preemptive.

◦ Programmer cannot predict execution order, unlike coroutines.

◦ Granularity of context-switch is instruction level for preemptive (harder to reason) and

routine level for non-preemptive.

• In fact, every computer has multiple CPUs: main CPU(s), bus CPU, graphics CPU, disk

CPU, network CPU, etc.

• Concurrent/parallel execution of threads is possible with multiple CPUs sharing memory

(multiprocessor):

CPU CPU

computer

task1 task2

state program state program

100 5

• Pointers among tasks work because memory is shared.

• Concurrent/parallel execution of threads is possible with single/multiple CPUs on different

computers with separate memories (distributed system):

computer1 computer2

CPU CPU
process process

state program state program

100 1007 5

• Pointers among tasks do NOT work because memory is not shared.

64 CHAPTER 5. CONCURRENCY

5.4 Execution States

• A thread may go through the following states during its execution.

ready running

blocked
(waiting)

new halted
(scheduler) (multi-core)

• State transitions are initiated in response to events (e.g., interrupts):

◦ entering the system (new → ready)

◦ assigning thread to computing resource, e.g., CPU (ready → running)

◦ timer alarm for preemption (running → ready)

◦ long-term delay versus spinning (running → blocked)

◦ completion of delay, e.g., network or I/O completion (blocked → ready)

◦ normal completion or error, e.g., segment fault (running → halted)

• Thread cannot bypass the “ready” state during a transition so the scheduler maintains com-

plete control of the system.

• Non-deterministic “ready ↔ running” transition ⇒ basic operations unsafe:

int i = 0; // shared
task0 task1
i += 1 i += 1

• If increment implemented with single inc i instruction, transitions can only occur before or

after instruction, not during.

• If increment is replaced by a load-store sequence, transitions can occur during sequence.

ld r1,i // load into register 1 the value of i
. . . // PREEMPTION
add r1,#1 // add 1 to register 1
. . . // PREEMPTION
st r1,i // store register 1 into i

• If both tasks increment 10 times, the expected result is 20.

• True for single instruction, false for load-store sequence.

• Many failure cases for load-store sequence where i does not reach 20.

5.5. THREADING MODEL 65

• Remember, context switch saves and restores registers for each coroutine/task.

task0 task1

1st iteration
ld r1,i (r1 <- 0)
add r1,#1 (r1 <- 1)

1st iteration
st r1,i (i <- 1)

1st iteration
ld r1,i (r1 <- 0)
add r1,#1 (r1 <- 1)
st r1,i (i <- 1)
2nd iteration
ld r1,i (r1 <- 1)
add r1,#1 (r1 <- 2)
st r1,i (i <- 2)
3rd iteration
ld r1,i (r1 <- 2)
add r1,#1 (r1 <- 3)
st r1,i (i <- 3)

• The 3 iterations of task1 are lost when overwritten by task0.

• Hence, sequential operations, however small (increment), are unsafe in a concurrent pro-

gram.

5.5 Threading Model

• For multiprocessor systems, a threading model defines relationship between threads and

CPUs.

• OS manages CPUs providing logical access via kernel threads (virtual processors) sched-

uled across the CPUs.

1:1:4 3:3:4 4:1:4 4:3:4

System
Operating scheduler

user thread

kernel thread

CPU

Process1 Process2 Process3 Process4

scheduler scheduler

66 CHAPTER 5. CONCURRENCY

• More kernel threads than CPUs to provide multiprocessing, i.e., run multiple programs si-

multaneously.

• A process may have multiple kernel threads to provide parallelism if multiple CPUs.

• A program may have user threads scheduled on its process’s kernel threads.

• User threads are a low-cost structuring mechanism, like routines, objects, coroutines (versus

high-cost kernel thread).

• Relationship is denoted by user:kernel:CPU, where:

◦ 1:1:C (kernel threading) – 1 user thread maps to 1 kernel thread

◦ N:N:C (generalize kernel threading) – N × 1:1 kernel threads (Java/Pthreads/C++)

◦ M:1:C (user threading) – M user threads map to 1 kernel thread (no parallelism)

◦ M:N:C (user threading) – M user threads map to N kernel threads (Go, µC++)

• Often the CPU number (C) is omitted.

• Can recursively add nano threads (stackless) on top of user threads (stackful), and virtual

machine below OS.

5.6 Concurrent Systems

• Concurrent systems can be divided into 3 major types:

1. those that attempt to discover implicit concurrency in an otherwise sequential program,

e.g., parallelizing loops and access to data structures

2. those that provide concurrency through implicit constructs, which a programmer uses

to build a concurrent program

3. those that provide concurrency through explicit constructs, which a programmer uses

to build a concurrent program

• In type 1, there is a fundamental limit to how much concurrency can be found and current

techniques only work on a certain class of problems.

• In type 2, concurrency is accessed indirectly via specialized mechanisms (e.g., pragmas or

parallel for) and threads are implicitly managed.

• In type 3, concurrency is directly accessed and threads explicitly managed.

• Types 1 & 2 are always built from type 3.

• To solve all concurrency problems, threads need to be explicit.

• Both implicit and explicit mechanisms are complementary, and hence, can appear together

in a single programming language.

5.7. SPEEDUP 67

• However, the limitations of implicit mechanisms require that explicit mechanisms always be

available to achieve maximum concurrency.

• Some concurrent systems provide a single technique or paradigm that must be used to solve

all concurrent problems.

• While a particular paradigm may be very good for solving certain kinds of problems, it may

be awkward or preclude other kinds of solutions.

• Therefore, a good concurrent system must support a variety of different concurrent ap-

proaches, while at the same time not requiring the programmer to work at too low a level.

• In all cases, as concurrency increases, so does the complexity to express and manage it.

5.7 Speedup

• Program speedup is SC = T1/TC, where C is number of CPUs and T1 is sequential execution.

• E.g., 1 CPU takes 10 seconds, T1 = 10 (user time), 4 CPUs takes 2.5 seconds, T4 = 2.5 (real

time) ⇒ S4 = 10/2.5 = 4 times speedup (linear).

0 3 71 2 4 5 6 8
CPUs

S
C

=
T

1
/

T
C

non-linear

linear
(ideal)

(most common)

sub-linear
(less common)

SC <C

SC =C
(unlikely)

SC >Csuper linear

• Aspects affecting speedup (assume sufficient parallelism for concurrency):

1. amount of concurrency

2. critical path among concurrency

3. scheduler efficiency

• An algorithm/program is composed of sequential and concurrent sections.

• E.g., sequentially read matrix, concurrently subtotal rows, sequentially total subtotals.

• Amdahl’s law (Gene Amdahl): concurrent section of program is P making sequential sec-

tion 1−P, then maximum speedup using C CPUs is:

SC =
1

(1−P)+P/C
where T1 = 1,TC = sequential+ concurrent

68 CHAPTER 5. CONCURRENCY

• Normalize: T1 = 10/10 = 1, T4 = 2.5/10 = .25.

S4 =
1

(1−1)+1× .25
= 4 times, P = 1 ⇒ (100%) o f T4 is concurrent

• Change P = .8(80%) so T4/C = .8× .25 = .2 is concurrent and 1− .8 = .2(20%) is sequen-

tial.

S4 =
1

(1− .8)+ .8× .25
=

1

.2+ .2
= 2.5 times, because o f sequential code

• As C goes to infinity, P/C goes to 0, so maximum speedup is 1/(1− P), i.e., time for

sequential section.

• Speedup falls rapidly as sequential section (1−P) increases.

• E.g., sequential section = .2(20%), SC = 1/(1− .8)⇒ max speedup 5.

• Concurrent programming consists of minimizing sequential section (1−P).

• E.g., an algorithm/program has 4 stages: t1 = 10, t2 = 25, t3 = 15, t4 = 50 (time units)

• Concurrently speedup sections t2 by 5 times and t4 by 10 times.

sequential
concurrent

t1 t3 t4t2

• TC = 10 + 25 / 5 + 15 + 50 / 10 = 35 (time units)

Speedup = 100 / 35 = 2.86 times

• Large reductions for t2 and t4 have only minor effect on speedup.

• Formula does not consider any increasing costs for the concurrency, i.e., administrative costs,

so results are optimistic.

• While sequential sections bound speedup, concurrent sections bound speedup by the critical

path of computation.

independent dependent

critical path

time

5.8. THREAD CREATION 69

◦ independent execution : all threads created together and do not interact.

◦ dependent execution : threads created at different times and interact.

• Longest path bounds speedup (even for independent execution).

• Finally, speedup can be affected by scheduler efficiency/ordering (often no control), e.g.:

◦ greedy scheduling : run a thread as long as possible before context switching (not very

concurrent).

◦ LIFO scheduling : give priority to newly waiting tasks (starvation).

• Therefore, it is difficult to achieve significant speedup for many algorithms/programs.

• In general, benefit comes when many programs achieve some speedup so there is an overall

improvement on a multiprocessor computer.

5.8 Thread Creation

• Concurrency requires 3 mechanisms in a programming language.

1. creation – cause another thread of control to come into existence.

2. synchronization – establish timing relationships among threads, e.g., same time, same

rate, happens before/after.

3. communication – transmit data among threads.

• Thread creation must be a primitive operation; cannot be built from other operations in a

language.

• ⇒ need new construct to create a thread and define where the thread starts execution.

5.8.1 COBEGIN/COEND

• Compound statement with statements run by multiple threads.

#include <uCobegin.h>
int i;
void p1(. . .); void p2(. . .); void p3(. . .);
// initial thread creates threads
COBEGIN // threads execute statement in block

BEGIN i = 1; . . . END
BEGIN p1(5); . . . END // order and speed of internal
BEGIN p2(7); . . . END // thread execution is unknown
BEGIN p3(9); . . . END

COEND // initial thread waits for all internal threads to
// finish (synchronize) before control continues

• Implicit or explicit concurrency?

• A thread graph represents thread creations:

70 CHAPTER 5. CONCURRENCY

COEND

COBEGIN

COEND

COBEGIN

p1(5) p2(7) p3(9)p

...

i = 1

p

p

• Restricted to creating trees (lattice) of threads.

• Use recursion to create dynamic number of threads.

void loop(int N) {
if (N != 0) {

COBEGIN
BEGIN p1(. . .); END
BEGIN loop(N - 1); END // recursive call

COEND // wait for return of recursive call
}

}
cin >> N;
loop(N);

• What does the thread graph look like?

5.8.2 START/WAIT

• Start thread in routine and wait (join) at thread termination, allowing arbitrary thread graph:

#include <uCobegin.h>
int i;
void p(int i) {. . .}
int f(int i) {. . .}
auto tp = START(p, 5); thread starts in p(5)
s1 continue execution, do not wait for p
auto tf = START(f, 8); thread starts in f(8)
s2 continue execution, do not wait for f
WAIT(tp); wait for p to finish
s3
i = WAIT(tf); wait for f to finish
s4

START

START

WAIT

WAIT

p

s2

s3

s1

s4

f

• Allows same routine to be started multiple times with different arguments.

• Implicit or explicit concurrency?

5.8. THREAD CREATION 71

• COBEGIN/COEND can only approximate this thread graph:

COBEGIN
BEGIN p(5); END
BEGIN s1;

COBEGIN
BEGIN f(8); END
BEGIN s2; END

END // wait for f!
END

COEND
s3; s4;

• START/WAIT can simulate COBEGIN/COEND:

COBEGIN auto t1 = START(p1, . . .)
BEGIN p1(. . .) END auto t2 = START(p2, . . .)
BEGIN p2(. . .) END WAIT t1

COEND WAIT t2

5.8.3 Thread Object

• C++ is an object-oriented programming language, which suggests:

◦ wrap the thread in an object to leverage all class features

◦ use object allocation/deallocation to define thread lifetime rather than control structure

COBEGIN

COEND

START
WAIT

_Task T { // thread type
void main() {. . .} // thread starts here

};
{ // { int i, j, k; } ???

T t; // create object on stack, start thread
} // wait for thread to finish

T * t = new T; // create thread object on heap, start thread
delete t; // wait for thread to finish

• Block-terminate/delete must wait for each task’s thread to finish. Why?

• Unusual to:

◦ create object in a block and not use it

◦ allocate object and immediately delete it.

• Simulate COBEGIN/COEND with _Task object by creating type for each statement:

72 CHAPTER 5. CONCURRENCY

int i;
_Task T1 {

void main() { i = 1; }
};
_Task T2 {

void main() { p1(5); }
};
_Task T3 {

void main() { p2(7); }
};
_Task T4 {

void main() { p3(9); }
};

int main() {
{ // COBEGIN

T1 t1; T2 t2; T3 t3; T4 t4;
} // COEND

}
void p1(. . .) {

{ // COBEGIN
T5 t5; T6 t6; T7 t7; T8 t8;

} // COEND
}

• Simulate START/WAIT with _Task object by creating type for each call:

int i;
_Task T1 {

void main() { p(5); }
};
_Task T2 {

int temp;
void main() { temp = f(8); }

public:
~T2() { i = temp; }

};

int main() {
T1 * tp = new T1; // start T1
. . . s1 . . .
T2 * tf = new T2; // start T2
. . . s2 . . .
delete tp; // wait for p
. . . s3 . . .
delete tf; // wait for f
. . . s4 . . .

}

• Variable i cannot be assigned until tf is deleted, otherwise the value could change in s2/s3.

• Implicit or explicit concurrency?

5.8.4 Actor

• An actor (Hewitt/Agha) is a unit of work without a thread.

• Two popular programming languages with actors are Erlang and Scala.

• Communication is via polymorphic queue of messages (mailbox)⇒ dynamic type-checking.

(sync/async)
send

(clients)
m1 m2 mn

mailbox

actor executor

receive

multi-type messages

threadsbehaviours

• Usually no shared information among actors and no blocking is allowed.

5.8. THREAD CREATION 73

#include <uActor.h>
struct StrMsg : public uActor::Message { // derived message

string val; // string message
StrMsg(string val) : Message(uActor::Delete), // delete after use

val(val) {}
};
_Actor Hello {

Allocation receive(Message & msg) { // receive base type
Case(StrMsg, msg) { // discriminate derived message

. . . msg_d->val; . . . // access derived message
} else Case(StopMsg, msg) return Delete; // delete actor
return Nodelete; // reuse actor

}
};

int main() { // like COBEGIN / COEND
uActor::start(); // start actor system

*new Hello() | *new StrMsg("hello") | uActor::stopMsg;

*new Hello() | *new StrMsg("bonjour") | uActor::stopMsg;
uActor::stop(); // wait for all actors to terminate

}

• Implicit or explicit concurrency?

• Must start actor system (and create thread pool) (uActor::start()).

• Actor must receive at least one message to start.

• Messages received in FIFO order from mailbox and executed sequentially.

• Received derived message accessed through name msg_d.

• Send messages with operator |.

• (StartMsg) uActor::startMsg / (StopMsg) uActor::stopMsg persistent predefined messages.

• Must wait for actors to complete (uActor::stop()).

• Most actor systems leverage garbage collection to manage actors and messages, and the actor

system ends after all actors terminate.

• C++ does not have garbage collection so actors/messages use explicit storage-management

returning an allocation status for each actor/message.

class uActor {
public:

enum Allocation { Nodelete, Delete, Destroy, Finished }; // allocation actions
struct Message {

Allocation allocation; // allocation action
. . .

}
private:

Allocation allocation; // allocation action
};

74 CHAPTER 5. CONCURRENCY

Nodelete ⇒ actor or message persists after an actor returns from receive. Use for multi-

use actors or messages during their life time. (message default)

Delete ⇒ actor or message is deleted after an actor returns from receive. Use with

dynamically allocated actors or messages at completion.

Destroy ⇒ actor’s or message’s destructor is called after an actor returns from receive

but storage is not deallocated. Use with placement allocated actors or messages at

completion.

Finished ⇒ actor is marked finished after it returns from receive but neither the destruc-

tor is called nor storage deallocated. (No action for a message.) Use with stack

allocated actors or messages at completion.

#include <uActor.h>
struct StrMsg : public uActor::Message { // default Nodelete

string val;
StrMsg(string val) : val(val) {}

};
_Actor Hello {

Allocation receive(Message & msg) {
Case(StrMsg, msg) {

. . . msg_d->val . . .;
}
return Finished; // no delete/destroy but remove from actor system

}
};
int main() {

uActor::start();
Hello hellos[2]; // stack allocate actors and messages
StrMsg hello("hello"), bonjour("bonjour");
hellos[0] | hello;
hellos[1] | bonjour;
uActor::stop();

} // DEALLOCATE ACTORS/MESSAGES

• One shot actor with single string message (no stopMsg).

5.9 Termination Synchronization

• A thread terminates when:

◦ it finishes normally

◦ it finishes with an error

◦ it is killed by its parent (or sibling) (not supported in µC++)

◦ because the parent terminates (not supported in µC++)

• Children can continue to exist even after the parent terminates (although this is rare).

5.10. DIVIDE-AND-CONQUER 75

◦ E.g. sign off and leave child process(es) running

• Synchronizing at termination is possible for independent threads.

• Termination synchronization may be used to perform a final communication.

5.10 Divide-and-Conquer

• Divide-and-conquer is characterized by ability to subdivide work across data ⇒ work can be

performed independently on the data.

• Work performed on each data group is identical to work performed on data as whole.

• Taken to extremes, each data item is processed independently, but administration of concur-

rency becomes greater than cost of work.

• Only termination synchronization is required to know when the work is done

• Partial results are then processed further if necessary.

• Sum rows of a matrix concurrently using concurrent statement:

#include <uCobegin.h>
int main() {

const int rows = 10, cols = 10;
int matrix[rows][cols], subtotals[rows], total = 0;
// read matrix
COFOR(r, 0, rows,
// for (int r = 0; r < rows; r += 1)

subtotals[r] = 0; // r is loop number
for (int c = 0; c < cols; c += 1)

subtotals[r] += matrix[r][c];
); // wait for threads
for (int r = 0; r < rows; r += 1) {

total += subtotals[r]; // total subtotals
}
cout << total << endl;

}

T0 ∑

T1 ∑

T2 ∑

T3 ∑

matrix subtotals

total ∑

23

-1

56

-2

10

6

-13

8 -5

6

11

5 7

20

0

1 0

0

0

0

• COFOR logically creates end - start threads, indexed start. .end - 1 one per loop body.

• Implicit or explicit concurrency?

• Sum rows of a matrix concurrently using actors:

76 CHAPTER 5. CONCURRENCY

_Actor Adder {
int * row, cols, & subtotal; // communication
Allocation receive(Message &) { // only startMsg

subtotal = 0;
for (int c = 0; c < cols; c += 1) subtotal += row[c];
return Delete; // delete actor (match new)

}
public:

Adder(int row[], int cols, int & subtotal) :
row(row), cols(cols), subtotal(subtotal) {}

};

int main() {
. . . // same
uActor::start(); // start actor system
for (int r = 0; r < rows; r += 1) { // actor per row

*new Adder(matrix[r], cols, subtotals[r]) | uActor::startMsg;
}
uActor::stop(); // wait for all actors to terminate
. . . // same

} // main

• Sum rows of a matrix concurrently using concurrent objects:

_Task Adder {
int * row, cols, & subtotal; // communication
void main() {

subtotal = 0;
for (int c = 0; c < cols; c += 1) subtotal += row[c];

}
public:

Adder(int row[], int cols, int & subtotal) :
row(row), cols(cols), subtotal(subtotal) {}

};

int main() {
. . . // same
Adder * adders[rows];
for (int r = 0; r < rows; r += 1) { // start threads to sum rows

adders[r] = new Adder(matrix[r], cols, subtotals[r]);
}
for (int r = 0; r < rows; r += 1) { // wait for threads to finish

delete adders[r];
total += subtotals[r]; // total subtotals

}
cout << total << endl;

}

5.11. EXCEPTIONS 77

int main() {
. . . // same
{

unique_ptr<Adder> adders[rows];
for (int r = 0; r < rows; r += 1) { // start threads to sum rows

adders[r] = make_unique<Adder>(matrix[r], cols, subtotals[r]);
}

} // wait for tasks to terminate
for (int r = 0; r < rows; r += 1) {

total += subtotals[r]; // total subtotals
}

}

• Why are the tasks created in the heap?

• Does it matter in what order adder tasks are created?

• Does it matter in what order adder tasks are deleted? (critical path)

5.11 Exceptions

• Exceptions can be handled locally within a task, or nonlocally among coroutines, or concur-

rently among tasks.

◦ All concurrent exceptions are nonlocal, but nonlocal exceptions can also be sequential.

• Local task exceptions are the same as for a class.

◦ An unhandled exception raised by a task terminates the program.

• Nonlocal exceptions are possible because each coroutine/task has its own stack (execution

state)

• Nonlocal exceptions between a task and a coroutine are the same as between coroutines

(single thread).

• Concurrent exceptions among tasks are more complex due to the multiple threads.

• A concurrent exception provides an additional kind of communication among tasks.

• For example, two tasks may begin searching for a key in different sets:

78 CHAPTER 5. CONCURRENCY

_Event StopEvent {};
_Task Searcher {

Searcher * partner;
void main() {

try {
_Enable { // allow nonlocal exceptions

. . . // search
if (key == . . .) { // found result

_Resume StopEvent() _At *partner; // stop partner
_Throw StopEvent(); // stop me

}
}

} catch(StopEvent) {. . .} // reset for next search

• When one task finds the key, it informs the other task to stop searching.

• For a concurrent raise, the source execution may only block while queueing the event for

delivery at the faulting execution.

• After event is delivered, faulting execution it is not interrupted, it polls:

◦ when an _Enable statement begins/ends,

◦ after a call to suspend/resume for UnhandledException,

◦ after a call to yield,

◦ after a call to _Accept unblocks for RendezvousFailure.

• Similar to coroutines (see Section 3.7, p. 37), an unhandled exception raised by a task raises

a nonlocal exception of type uBaseCoroutine::UnhandledException at the task’s joiner and

then terminates the task.

_Event E {};
_Task T {

void main() { _Throw E(); } // unwind
};
int main() {

try {
{ // extra block

T t;
} // continue _CatchResume

} _CatchResume(uBaseCoroutine::UnhandledException &) {. . .} // one of
catch(uBaseCoroutine::UnhandledException &) {. . .}

// catch continues after try
}

• Forwarding can occur across any number of tasks (and coroutines), until the program main

forwards and then the program terminates by calling main’s set_terminate.

5.12. SYNCHRONIZATION AND COMMUNICATION DURING EXECUTION 79

5.12 Synchronization and Communication During Execution

• Synchronization occurs when one thread waits until another thread has reached a certain

execution point (state and code).

• One place synchronization is needed is in transmitting data between threads.

◦ One thread has to be ready to transmit the information and the other has to be ready to

receive it, simultaneously.

◦ Otherwise one might transmit when no one is receiving, or one might receive when

nothing is transmitted.

bool Insert = false, Remove = false;
int Data;

_Task Prod {
int N;
void main() {

for (int i = 1; i <= N; i += 1) {
1 Data = i; // transfer data
2 Insert = true;
3 while (! Remove) {} // busy wait
4 Remove = false;

}
}

public:
Prod(int N) : N(N) {}

};

_Task Cons {
int N;
void main() {

int data;
for (int i = 1; i <= N; i += 1) {

1 while (! Insert) {} // busy wait
2 Insert = false;
3 data = Data; // remove data
4 Remove = true;

}
}

public:
Cons(int N) : N(N) {}

};
int main() {

Prod prod(5); Cons cons(5);
}

• 2 infinite loops! No, because of implicit switching between threads.

• cons synchronizes (waits) until prod transfers some data, then prod waits for cons to remove

the data.

• A loop waiting for an event among threads is called a busy wait.

• Are 2 synchronization flags necessary?

5.13 Communication

• Once threads are synchronized there are many ways that information can be transferred from

one thread to the other.

• If the threads are in the same memory, then information can be transferred by value or ad-

dress (e.g., reference parameter).

• If the threads are not in the same memory (distributed), then transferring information by

value is straightforward but by address is difficult.

80 CHAPTER 5. CONCURRENCY

5.14 Critical Section

• Threads may access non-concurrent objects, like a file or linked-list.

• There is a potential problem if there are multiple threads attempting to operate on the same

object simultaneously.

• Not a problem if the operation on the object is atomic (not divisible).

• This means no other thread can modify any partial results during the operation on the object

(but the thread can be interrupted).

• Where an operation is composed of many instructions, it is often necessary to make the

operation atomic.

• A group of instructions on an associated object (data) that must be performed atomically is

called a critical section.

• Preventing simultaneous execution of a critical section by multiple threads is called mutual

exclusion.

• Must determine when concurrent access is allowed and when it must be prevented.

• One way to handle this is to detect any sharing and serialize all access; wasteful if threads

are only reading.

• Improve by differentiating between reading and writing

◦ allow multiple readers or a single writer; still wasteful as a writer may only write at the

end of its usage.

• Need to minimize the amount of mutual exclusion (i.e., make critical sections as small

as possible, Amdahl’s law) to maximize concurrency.

5.15 Static Variables

• Warning: static variables in a class are shared among all objects generated by that class.

• These shared variables may need mutual exclusion for correct usage.

• However, a few special cases where static variables can be used safely, e.g., task constructor.

• If task objects are generated serially, static variables can be used in the constructor.

• E.g., assigning each task is own name:

5.16. MUTUAL EXCLUSION GAME 81

_Task T {
static int tid;
string name; // must supply storage
. . .

public:
T() {

name = "T" + to_string(tid); // shared read
setName(name.c_str()); // name task
tid += 1; // shared write

}
. . .

};
int T::tid = 0; // initialize static variable in .C file
T t[10]; // 10 tasks with individual names

• Task constructor is executed by the creating thread, so array constructors executed sequen-

tially.

• This approach only works if one task creates all the objects and initialization data is internal.

• Instead of static variables, pass a task identifier to the constructor:

T::T(int tid) { . . . } // create name
T * t[10]; // 10 pointers to tasks
for (int i = 0; i < 10; i += 1) {

t[i] = new T(i); // with individual names
}

• In general, it is best to avoid using shared static variables in a concurrent program.

5.16 Mutual Exclusion Game

• Is it possible to write code guaranteeing a statement (or group of statements) is always seri-

ally executed by 2 threads?

• Rules of the Game:

1. Only one thread can be in a critical section at a time with respect to a particular object

(safety).

2. Threads may run at arbitrary speed and in arbitrary order, while the underlying system

guarantees a thread makes progress (i.e., threads get some CPU time).

3. If a thread is not in the entry or exit code controlling access to the critical section, it

may not prevent other threads from entering the critical section.

4. In selecting a thread for entry to a critical section, a selection cannot be postponed

indefinitely (liveness). Not satisfying this rule is called indefinite postponement or

livelock.

5. After a thread starts entry to the critical section, it must eventually enter. Not satisfying

this rule is called starvation.

82 CHAPTER 5. CONCURRENCY

• Indefinite postponement and starvation are related by busy waiting.

• Unlike synchronization, looping for an event in mutual exclusion must ensure eventual

progress.

• Threads waiting to enter can be serviced in any order, as long as each thread eventually

enters.

• If threads are not serviced in first-come first-serve (FCFS) order of arrival, there is a notion

of unfairness

• Unfairness implies waiting threads are overtaken by arriving threads, called barging.

5.17 Self-Testing Critical Section

void CriticalSection() {
static uBaseTask * curr; // shared
curr = &uThisTask();
for (int i = 1; i <= 100; i += 1) {

. . . // work
if (curr != &uThisTask()) { // check

abort("interference");
}

}
}

inside

Peter

• What is the minimum number of interference tests and where?

• Why are multiple tests useful?

5.18 Software Solutions

5.18.1 Lock

enum Yale { CLOSED, OPEN } Lock = OPEN; // shared

_Task PermissionLock {
void main() {

for (int i = 1; i <= 1000; i += 1) {
while (::Lock == CLOSED) {} // entry protocol
::Lock = CLOSED;
CriticalSection(); // critical section
::Lock = OPEN; // exit protocol

}
}

public:
PermissionLock() {}

};
int main() {

PermissionLock t0, t1;
}

Peter

inside

Breaks rule 1

5.18. SOFTWARE SOLUTIONS 83

5.18.2 Alternation

int Last = 0; // shared

_Task Alternation {
int me;

void main() {
for (int i = 1; i <= 1000; i += 1) {

while (::Last == me) {} // entry protocol
CriticalSection(); // critical section
::Last = me; // exit protocol

}
}

public:
Alternation(int me) : me(me) {}

};
int main() {

Alternation t0(0), t1(1);
}

Peter

outside

Breaks rule 3

5.18.3 Declare Intent

enum Intent { WantIn, DontWantIn };

_Task DeclIntent {
Intent & me, & you;
void main() {

for (int i = 1; i <= 1000; i += 1) {
me = WantIn; // entry protocol
while (you == WantIn) {}
CriticalSection(); // critical section
me = DontWantIn; // exit protocol

}
}

public:
DeclIntent(Intent & me, Intent & you) :

me(me), you(you) {}
};
int main() {

Intent me = DontWantIn, you = DontWantIn;
DeclIntent t0(me, you), t1(you, me);

}

outside

Breaks rule 4

84 CHAPTER 5. CONCURRENCY

5.18.4 Retract Intent

enum Intent { WantIn, DontWantIn };
_Task RetractIntent {

Intent & me, & you;
void main() {

for (int i = 1; i <= 1000; i += 1) {
for (;;) { // entry protocol

me = WantIn;
if (you == DontWantIn) break;

me = DontWantIn;
while (you == WantIn) {}

}
CriticalSection(); // critical section
me = DontWantIn; // exit protocol

}
}

public:
RetractIntent(Intent & me, Intent & you) : me(me), you(you) {}

};
int main() {

Intent me = DontWantIn, you = DontWantIn;
RetractIntent t0(me, you), t1(you, me);

}

Breaks rule 4

5.18.5 Prioritized Retract Intent

enum Intent { WantIn, DontWantIn }; enum Priority { HIGH, low };
_Task PriorityEntry {

Intent & me, & you; Priority priority;
void main() {

for (int i = 1; i <= 1000; i += 1) {
for (;;) { // entry protocol

me = WantIn;
if (you == DontWantIn) break;

if (priority == low) {
me = DontWantIn;
while (you == WantIn) {} // busy wait

}
}
CriticalSection(); // critical section
me = DontWantIn; // exit protocol

}
}

public:
PriorityEntry(Priority p, Intent & me, Intent & you) : priority(p), me(me), you(you) {}

};
int main() {

Intent me = DontWantIn, you = DontWantIn;
PriorityEntry t0(HIGH, me, you), t1(low, you, me);

} // main

outside

HIGH

low

Breaks rule 5

5.18. SOFTWARE SOLUTIONS 85

5.18.6 Dekker (modified retract intent)

enum Intent { WantIn, DontWantIn };
Intent * Last;
_Task Dekker {

Intent & me, & you;
void main() {

for (int i = 1; i <= 1000; i += 1) {
1 for (;;) { // entry protocol, high priority
2 me = WantIn; // READ FLICKER
3 if (you == DontWantIn) break; // does not want in ?
4 if (::Last == &me) { // low priority task ?
5 me = DontWantIn; // retract intent, READ FLICKER
6 while (::Last == &me // low priority busy wait

&& you == WantIn) {}
}

}
7 CriticalSection();
8 if (::Last != &me) // exit protocol
9 ::Last = &me; // READ FLICKER

10 me = DontWantIn; // READ FLICKER
}

}
public:

Dekker(Intent & me, Intent & you) : me(me), you(you) {}
};

outside

int main() {
Intent me = DontWantIn, you = DontWantIn;
::Last = &me; // arbitrary who starts as last
Dekker t0(me, you), t1(you, me);

}

• Dekker’s algorithm appears RW-safe.

◦ On cheap multi-core computers, read/write is not atomic.

◦ Hence, simultaneous writes scramble bits, and for simultaneous read/write, read sees

flickering bits during write.

◦ RW-safe means a mutual-exclusion algorithm works for non-atomic read/write.

◦ Dekker has no simultaneous W/W because intent reset after alternation in exit protocol.

◦ Dekker has simultaneous R/W but all are equality so works if final value never flickers.

•• 2015 Hesselink found failure case if final value flickers:

86 CHAPTER 5. CONCURRENCY

T0 T1

9 ::Last = &me
10 me = DontWantIn
(flicker DontWantIn)

(flicker WantIn)

(flicker DontWantIn)
terminate

3 you == DontWantIn (true)
7 Critical Section
9 ::Last = &me

3 you == DontWantIn (false)
4 ::Last == &me (true)
6 low priority wait

6 ::Last == &me (true, spin forever)

• RW-safe version (Hesselink)

◦ line 6: add conjunction you == WantIn ⇒ stop spinning

◦ line 8: add conditional assignment to ::Last

T0 T1

7 Critical Section

9 ::Last = &me
(flicker you T1)

(flicker me T0)
10 me = DontWantIn
(repeat)

6 ::Last == &me && you == WantIn (true)

(repeat)

◦ T1 starvation (rule 5)

◦ Not assigning at line 9 when ::Last != &me prevents flicker so T1 makes progress.

• Dekker has unbounded overtaking (not starvation) because race loser retracts intent.

• ⇒ thread exiting critical does not exclude itself for reentry.

◦ T0 exits critical section and attempts reentry

◦ T1 is now high priority (Last != me) but delays in low-priority busy-loop and resetting

its intent.

◦ T0 can enter critical section unbounded times until T1 resets its intent

◦ T1 sets intent ⇒ bound of 1 as T1 can be entering or in critical section

• Unbounded overtaking is allowed by rule 3: not preventing entry to the critical section by

the delayed thread.

5.18. SOFTWARE SOLUTIONS 87

5.18.7 Peterson (modified declare intent)

enum Intent { WantIn, DontWantIn };
Intent * Last;

_Task Peterson {
Intent & me, & you;
void main() {

for (int i = 1; i <= 1000; i += 1) {
1 me = WantIn; // entry protocol, order matters
2 ::Last = &me; // RACE!
3 while (you == WantIn && ::Last == &me) {}
4 CriticalSection(); // critical section
5 me = DontWantIn; // exit protocol

}
}

public:
Peterson(Intent & me, Intent & you) : me(me), you(you) {}

};
int main() {

Intent me = DontWantIn, you = DontWantIn;
Peterson t0(me, you), t1(you, me);

}

• Peterson’s algorithm is RW-unsafe requiring atomic read/write operations.

• Peterson has bounded overtaking because race loser does not retracts intent.

• ⇒ thread exiting critical excludes itself for reentry.

◦ T0 exits critical section and attempts reentry

◦ T0 runs race by itself and loses

◦ T0 must wait (Last == me)

◦ T1 eventually sees (Last != me)

• Bounded overtaking is allowed by rule 3 because the prevention is occurring in the entry

protocol.

• Can line 2 be moved before 1?

1 2 ::Last = &me; // RACE!
2 1 me = WantIn; // entry protocol
3 3 while (you == WantIn && ::Last == &me) {}
4 4 CriticalSection(); // critical section
5 5 me = DontWantIn; // exit protocol

◦ T0 executes Line 1 ⇒ ::Last = T0

◦ T1 executes Line 1 ⇒ ::Last = T1

◦ T1 executes Line 2 ⇒ T1 = WantIn

◦ T1 enters CS, because T0 == DontWantIn

◦ T0 executes Line 2 ⇒ T0 = WantIn

◦ T0 enters CS, because ::Last == T1

88 CHAPTER 5. CONCURRENCY

5.18.8 N-Thread Prioritized Entry

enum Intent { WantIn, DontWantIn };
_Task NTask { // Burns-Lynch/Lamport: B-L

Intent * intents; // position & priority
int N, priority, i, j;
void main() {

for (i = 1; i <= 1000; i += 1) {
// step 1, wait for tasks with higher priority
do { // entry protocol

intents[priority] = WantIn;
// check if task with higher priority wants in
for (j = priority-1; j >= 0; j -= 1) {

if (intents[j] == WantIn) {
intents[priority] = DontWantIn;
while (intents[j] == WantIn) {}
break;

}
}

} while (intents[priority] == DontWantIn);
// step 2, wait for tasks with lower priority
for (j = priority+1; j < N; j += 1) {

while (intents[j] == WantIn) {}
}
CriticalSection();
intents[priority] = DontWantIn; // exit protocol

}
}

public:
NTask(Intent i[], int N, int p) : intents(i), N(N), priority(p) {}

};

Breaks rule 5

low
priority priority

HIGH 90 81 72 63 4 5

HIGH low
priority priority

90 81 72 63 4 5

• Only N bits needed.

5.18. SOFTWARE SOLUTIONS 89

• No known solution for all 5 rules using only N bits.

• Other N-thread solutions use more memory.

(best: 3-bit RW-unsafe, 4-bit RW-safe).

5.18.9 N-Thread Bakery (Tickets)

_Task Bakery { // (Lamport) Hehner-Shyamasundar
int * ticket, N, priority;
void main() {

for (int i = 0; i < 1000; i += 1) {
// step 1, select a ticket
ticket[priority] = 0; // highest priority
int max = 0; // O(N) search
for (int j = 0; j < N; j += 1) { // for largest ticket

int v = ticket[j]; // can change so copy
if (v != INT_MAX && max < v) max = v;

}
max += 1; // advance ticket
ticket[priority] = max;
// step 2, wait for ticket to be selected
for (int j = 0; j < N; j += 1) { // check tickets

while (ticket[j] < max | |
(ticket[j] == max && j < priority)) {}

}
CriticalSection();
ticket[priority] = INT_MAX; // exit protocol

}
}

public:
Bakery(int t[], int N, int p) : ticket(t), N(N), priority(p) {}

};

HIGH low
priority priority

∞ ∞ ∞ 0

90 81 72 63 4 5

18 017 20 1918

• ticket value of ∞ (INT_MAX) ⇒ don’t want in

• ticket value of 0 ⇒ selecting ticket

• ticket selection is unusual

• tickets are not unique ⇒ use position as secondary priority

• low ticket and position ⇒ high priority

• ticket values cannot increase indefinitely ⇒ could fail (probabilistically correct)

• ticket value reset to INT_MAX when no attempted entry

• NM bits, where M is the ticket size (e.g., 32 bits)

90 CHAPTER 5. CONCURRENCY

• Lamport RW-safe

• Hehner/Shyamasundar RW-unsafe

assignment ticket[priority] = max can flickers to INT_MAX ⇒ other tasks proceed

5.18.10 Tournament

• Binary (d-ary) tree with ⌈N/2⌉ start nodes and ⌈lgN⌉ levels.

D5

D6

D2

D1

T1T0

T2

D3

T3 T4D3

T4T3

D4

D2

T2

D1

T0 T1

maximal

D4

minimal

• Thread assigned to start node, where it begins mutual exclusion process.

• Each node is like a Dekker or Peterson 2-thread algorithm.

• Tree structure tries to find compromise between fairness and performance.

• Exit protocol must retract intents in reverse order.

• Otherwise race between retracting/released threads along same tree path:

◦ T0 retracts its intent (left) at D1,

◦ T1 (right) now moves from D1 to D4, sets its intent at D4 (left), and with no competition

at D4 proceeds to D6 (left),

◦ T0 (left) now retracts the intent at D4 set by T1,

◦ T2/3 continue from D2, sets its intent at D4 (right), and with no competition at D4 (left)

proceeds to D6, which ultimately violates mutual exclusion.

• No overall livelock because each node has no livelock.

• No starvation because each node guarantees progress, so each thread eventually reaches the

root.

• Tournament algorithm RW-safety depends on MX algorithm; tree traversal is local to each

thread.

• Tournament algorithms have unbounded overtaking as no synchronization among the nodes

of the tree.

5.18. SOFTWARE SOLUTIONS 91

• For a minimal binary tree, the tournament approach uses (N − 1)M bits, where (N − 1) is

the number of tree nodes and M is the node size (e.g., intent, turn).

_Task TournamentMax { // Taubenfeld-Buhr
struct Token { int intents[2], turn; }; // intents/turn
static Token ** t; // triangular matrix
int depth, id;

void main() {
unsigned int lid; // local id at each tree level
for (int i = 0; i < 1000; i += 1) {

lid = id; // entry protocol
for (int lv = 0; lv < depth; lv += 1) {

binary_prologue(lid & 1, &t[lv][lid >> 1]);
lid >>= 1; // advance local id for next tree level

}
CriticalSection(id);
for (int lv = depth - 1; lv >= 0; lv -= 1) { // exit protocol

lid = id >> lv; // retract reverse order
binary_epilogue(lid & 1, &t[lv][lid >> 1]);

}
}

}
public:

TournamentMax(struct Token * t[], int depth, int id) :
t(t), depth(depth), id(id) {}

};

• Can be optimized to 3 shifts and exclusive-or using Peterson 2-thread for binary.

• Path from leaf to root is fixed per thread ⇒ table lookup possible using max or min tree.

5.18.11 Arbiter

• Create full-time arbitrator task to control entry to critical section.

bool intents[N], serving[N]; // initialize to false

_Task Client {
int me;
void main() {

for (int i = 0; i < 100; i += 1) {
intents[me] = true; // entry protocol
while (! serving[me]) {} // busy wait
CriticalSection();
serving[me] = false; // exit protocol

}
}

public:
Client(int me) : me(me) {}

};

92 CHAPTER 5. CONCURRENCY

_Task Arbiter {
void main() {

int i = N; // force cycle to start at id=0
for (;;) {

do { // circular search => no starvation
i = (i + 1) % N; // advance next client

} while (! intents[i]); // not want in ?
intents[i] = false; // retract intent on behalf of client
serving[i] = true; // wait for exit from critical section
while (serving[i]) {} // busy wait

}
}

};

intents

serving

0 1 2 3 4 5 6 7

• Mutual exclusion becomes synchronization between arbiter and clients.

• Arbiter never uses the critical section ⇒ no indefinite postponement.

• Arbiter cycles through waiting clients (not FCFS) ⇒ no starvation.

• RW-unsafe due to read flicker.

• Cost is creation, management, and execution (continuous busy waiting) of arbiter task.

5.19 Hardware Solutions

• Software solutions to the critical-section problem rely on

◦ shared information,

◦ communication among threads,

◦ (maybe) atomic memory-access.

• Hardware solutions introduce level below software level.

• Cheat by making assumptions about execution impossible at software level.

E.g., control order and speed of execution.

• Allows elimination of much of the shared information and the checking of this information

required in the software solution.

• Special instructions to perform an atomic read and write operation.

• Sufficient for multitasking on a single CPU.

5.19. HARDWARE SOLUTIONS 93

5.19.1 Test/Set Instruction

• Simple lock of critical section fails:

int Lock = OPEN; // shared
// each task does
while (Lock == CLOSED); // fails to achieve (read)
Lock = CLOSED; // mutual exclusion (write)
// critical section
Lock = OPEN;

• The test-and-set instruction performs an atomic read and fixed assignment.

int Lock = OPEN; // shared

int TestSet(int & b) {
// begin atomic
int temp = b;
b = CLOSED;
// end atomic
return temp;

}

void Task::main() { // each task does
while(TestSet(Lock) == CLOSED);
// critical section
Lock = OPEN;

}

◦ if test/set returns open ⇒ loop stops and lock is set to closed

◦ if test/set returns closed ⇒ loop executes until the other thread sets lock to open

• Works for N threads attempting entry to critical section and only depends on one shared

datum (lock).

• However, rule 5 is broken, as there is no guarantee of eventual progress.

• In multiple CPU case, hardware (bus) must also guarantee multiple CPUs cannot interleave

these special R/W instructions on same memory location.

5.19.2 Swap Instruction

• The swap instruction performs an atomic interchange of two separate values.

int Lock = OPEN; // shared

void Swap(int & a, & b) {
int temp;
// begin atomic
temp = a;
a = b;
b = temp;
// end atomic

}

void Task::main() { // each task does
int dummy = CLOSED;
do {

Swap(Lock, dummy);
} while(dummy == CLOSED);
// critical section
Lock = OPEN;

}

◦ if dummy returns open ⇒ loop stops and lock is set to closed

◦ if dummy returns closed ⇒ loop executes until the other thread sets lock to open

94 CHAPTER 5. CONCURRENCY

5.19.3 Fetch and Increment Instruction

• The fetch-and-increment instruction performs an increment between the read and write.

int Lock = 0; // shared

int FetchInc(int & val) {
// begin atomic
int temp = val;
val += 1;
// end atomic
return temp;

}

void Task::main() { // each task does
while (FetchInc(Lock) != 0);
// critical section
Lock = 0;

• Often fetch-and-increment is generalized to add any value ⇒ also decrement with negative

value.

• Lock counter can overflow during busy waiting and starvation (rule 5).

• Use ticket counter to solve both problems (Bakery Algorithm, see Section 5.18.9, p. 89):

class ticketLock {
unsigned int tickets, serving;

public:
ticketLock() : tickets(0), serving(0) {}
void acquire() { // entry protocol

int ticket = FetchInc(tickets); // obtain a ticket
while (ticket != serving) {} // busy wait

}
void release() { // exit protocol

serving += 1;
}

};

• Ticket overflow is a problem only if all values used simultaneously, and FIFO service ⇒ no

starvation.

6 Locks

• Package software/hardware locking into abstract type for general use.

• Locks are constructed for synchronization or mutual exclusion or both.

6.1 Lock Taxonomy

• Lock implementation is divided into two general categories: spinning and blocking.

yield synchronization

condition barrier

blocking (queueing)spinning

semaphoreno yield

binary counting owner

(other)mutex

• Spinning locks busy wait until an event occurs ⇒ task oscillates between ready and running

states due to time slicing.

• Blocking locks do not busy wait, but block until an event occurs ⇒ some other mechanism

must unblock waiting task when the event happens.

• Within each category, different kinds of spinning and blocking locks exist.

6.2 Spin Lock

• A spin lock is implemented using busy waiting, which loops checking for an event to occur.

while(TestSet(Lock) == CLOSED); // use up time-slice (no yield)

• So far, when a task is busy waiting, it loops until:

◦ critical section becomes unlocked or an event happens.

◦ waiting task is preempted (time-slice ends) and put back on ready queue.

Hence, CPU is wasting time constantly checking the event.

• To increase uniprocessor efficiency, a task can:

◦ explicitly terminate its time-slice

◦ move back to the ready state after only one event-check fails. (Why one?)

• Task member yield relinquishes time-slice by rescheduling running task back onto ready

queue.

while(TestSet(Lock) == CLOSED) uThisTask().yield(); // relinquish time-slice

• To increase multiprocessor efficiency, a task can yield after N event-checks fail. (Why N?)

95

96 CHAPTER 6. LOCKS

• Some spin-locks allow adjustment of spin duration, called adaptive spin-lock.

• Most spin-lock implementations break rule 5, i.e., no bound on service. ⇒ possible starva-

tion of one or more tasks.

• Spin lock is appropriate and necessary in situations where there is no other work to do.

6.2.1 Implementation

• µC++ provides a non-yielding spin lock, uSpinLock, and a yielding spin lock, uLock.

class uSpinLock {
public:

uSpinLock(); // open
void acquire();
bool tryacquire();
void release();

};

class uLock {
public:

uLock(unsigned int value = 1);
void acquire();
bool tryacquire();
void release();

};

• Both locks are built directly from an atomic hardware instruction.

• Lock starts closed (0) or opened (1); waiting tasks compete to acquire lock after release.

• In theory, starvation could occur; in practice, it is seldom a problem.

• tryacquire makes one attempt to acquire the lock, i.e., it does not wait.

• It is not meaningful to read or to assign to a lock variable, or copy a lock variable, e.g., pass

it as a value parameter.

• synchronization

_Task T1 {
uLock & lk;
void main() {

. . .
S1
lk.release();
. . .

}
public:

T1(uLock & lk) : lk(lk) {}
};

_Task T2 {
uLock & lk;
void main() {

. . .
lk.acquire();
S2
. . .

}
public:

T2(uLock & lk) : lk(lk) {}
};

int main() {

uLock lock(0); // closed
T1 t1(lock);
T2 t2(lock);

}

• mutual exclusion

6.3. BLOCKING LOCKS 97

_Task T {
uLock & lk;
void main() {

. . .
lk.acquire();
// critical section
lk.release();
. . .
lk.acquire();
// critical section
lk.release();
. . .

}
public:

T(uLock & lk) : lk(lk) {}
};

int main() {

uLock lock(1); // open
T t0(lock), t1(lock);

}

◦ Does this solution afford maximum concurrency?

◦ Depends on critical sections: independent (disjoint) or dependent.

◦ How many locks are needed for mutual exclusion?

6.3 Blocking Locks

• For spinning locks,

◦ acquiring task(s) is solely responsible for detecting an open lock after the releasing task

opens it.

• For blocking locks,

◦ acquiring task makes one check for open lock and blocks

◦ releasing task has sole responsibility for detecting blocked acquirer and transferring

lock, or just releasing lock.

• Blocking locks reduce busy waiting by having releasing task do additional work: coopera-

tion.

◦ What advantage does the releasing task get from doing the cooperation?

• Therefore, all blocking locks have

◦ state to facilitate lock semantics

◦ list of blocked acquirers

blocked

task1

blocked

task2

blocked

task3

block list

state

blocking lock

• Which task is scheduled next from the list of blocked tasks?

98 CHAPTER 6. LOCKS

6.3.1 Mutex Lock

• Mutex lock is used solely to provide mutual exclusion.

• Restricting a lock to just mutual exclusion:

◦ separates lock usage between synchronization and mutual exclusion

◦ permits optimizations and checks as the lock only provides one specialized function

• Mutex locks are divided into two kinds:

◦ single acquisition : task that acquired the lock cannot acquire it again

◦ multiple acquisition : lock owner can acquire it multiple times, called an owner lock

• Multiple acquisition can handle looping or recursion involving a lock:

void f() {
. . .
lock.acquire();
. . . f(); // recursive call within critical section
lock.release();

}

• May require only one release to unlock, or as many releases as acquires.

6.3.1.1 Implementation

• Multiple acquisition lock manages owner state (blue).

class MutexLock {
bool avail; // resource available ?
Task * owner // lock owner
queue<Task> blocked; // blocked tasks
SpinLock lock; // mutex nonblocking lock

public:
MutexLock() : avail(true), owner(nullptr) {}
void acquire() {

lock.acquire(); // barging
while (! avail && owner != currThread()) { // busy waiting

// add self to lock’s blocked list
yieldNoSchedule(); // do not reschedule to ready queue
lock.acquire(); // reacquire spinlock

}
avail = false;
owner = currThread(); // set new owner
lock.release();

}

6.3. BLOCKING LOCKS 99

void release() {
lock.acquire();
if (owner != currThread()) . . . // ERROR CHECK
owner = nullptr; // no owner
if (! blocked.empty()) {

// remove task from blocked list and make ready
}
avail = true; // reset
lock.release(); // RACE

}
};

• yieldNoSchedule yields the processor time-slice but does not reschedule thread to ready

queue.

• Single or multiple unblock for multiple acquisition?

• avail is necessary as queue can be empty but critical section occupied.

• Problem: blocking occurs holding spin lock!

• ⇒ release lock before blocking

// add self to blocked list of lock
lock.release(); // allow releasing task to unblock next waiting task
// PREEMPTION ⇒ put on ready queue
yieldNoSchedule();

• Race between blocking and unblocking tasks.

• Blocking task releases spin lock but preempted before yield and put onto ready queue.

• Unblocking task can enter, see blocking task on lock’s blocked list, and put on ready queue.

• But task is already on the ready queue because of the preemption!

• Need magic to atomically yield without scheduling and release spin lock.

• Magic is often accomplished with more cooperation:

yieldNoSchedule(lock);

• Spin lock is passed to the runtime system, which does the yield without schedule and then,

on behalf of the user thread, unlocks the lock.

• Alternative approach is park/unpark, where each thread blocks on a private binary semaphore

(see Section 6.4.4.6, p. 127 private semaphore).

• Note, the runtime system violates order and speed of execution by being non-preemptable.

• Problem: avail and lock reset ⇒ acquiring tasks can barge ahead of released task.

100 CHAPTER 6. LOCKS

• Released task must check again (while) ⇒ busy waiting ⇒ starvation

• Barging avoidance (cooperation): hold avail between releasing and unblocking task (bounded

overtaking)

void acquire() {
lock.acquire(); // barging

if (! avail && owner != currThread()) { // avoid barging
// add self to lock’s blocked list
yieldNoSchedule(lock);
// DO NOT REACQUIRE LOCK, avail == false

} else {
avail = false;
lock.release();

}
owner = currThread(); // set new owner, safe as avail == false

}

void release() {
lock.acquire();
owner = nullptr; // no owner
if (! blocked.empty()) {

// remove task from blocked list and make ready
} else {

avail = true; // conditional reset
}
lock.release(); // RACE

}

• Bargers enter mutual-exclusion protocol but block so released task does not busy wait (if

rather than while).

• Mutual exclusion is conceptually passed from releasing to unblocking tasks (baton passing).

• Barging prevention (cooperation): hold lock between releasing and unblocking task

void acquire() {
lock.acquire(); // prevention barging
if (! avail && owner != currThread()) {

// add self to lock’s blocked list
yieldNoSchedule(lock);
// DO NOT REACQUIRE LOCK

}
avail = false;
owner = currThread(); // set new owner
lock.release();

}

6.3. BLOCKING LOCKS 101

void release() {
lock.acquire();
owner = nullptr; // no owner
if (! blocked.empty()) {

// remove task from blocked list and make ready
// DO NOT RELEASE LOCK

} else {
avail = true; // conditional reset
lock.release(); // NO RACE

}
}

• Critical section is not bracketed by the spin lock when lock is passed.

• Alternative (cooperation): leave lock owner at front of blocked list to act as availability and

owner variable.

class MutexLock {
queue<Task> blocked; // blocked tasks
SpinLock lock; // nonblocking lock

public:
void acquire() {

lock.acquire(); // prevention barging
if (blocked.empty()) { // no one waiting ?

node.owner = currThread();
// add self to lock’s blocked list

} else if (blocked.head().owner != currThread()) { // not owner ?
// add self to lock’s blocked list
yieldNoSchedule(lock);
// DO NOT REACQUIRE LOCK

}
lock.release();

}
void release() {

lock.acquire();
// REMOVE TASK FROM HEAD OF BLOCKED LIST
if (! blocked.empty()) {

// MAKE TASK AT FRONT READY BUT DO NOT REMOVE
// DO NOT RELEASE LOCK

} else {
lock.release(); // NO RACE

}
}

};

• If critical section acquired, blocked list must have a node on it to check for in-use.

6.3.1.2 uOwnerLock

• µC++ provides a multiple-acquisition mutex-lock, uOwnerLock:

102 CHAPTER 6. LOCKS

class uOwnerLock {
public:

uOwnerLock();
uBaseTask * owner();
unsigned int times();
void acquire();
bool tryacquire();
void release();

};

• owner() returns nullptr if no owner, otherwise address of task that currently owns lock.

• times() returns number of times lock has been acquired by owner task.

• Must release as many times as acquire.

• Otherwise, operations same as for uLock but with blocking instead of spinning for acquire.

6.3.1.3 Mutex-Lock Release-Pattern

• To ensure a mutual exclusion lock is always released use the following patterns.

◦ executable statement – finally clause

uOwnerLock lock;
lock.acquire();
try {

. . . // protected by lock
} _Finally {

lock.release();
}

◦ allocation/deallocation (RAII – Resource Acquisition Is Initialization)

class RAII { // create once
uOwnerLock & lock;

public:
RAII(uOwnerLock & lock) : lock(lock) { lock.acquire(); }
~RAII() { lock.release(); }

};
uOwnerLock lock;
{

RAII raii(lock); // lock acquired by constructor
. . . // protected by lock

} // lock release by destructor

• Lock always released on normal, local transfer (break/return), and exception.

• Cannot be used for barging prevention. Why?

6.3. BLOCKING LOCKS 103

6.3.1.4 Stream Locks

• Specialized mutex lock for I/O based on uOwnerLock.

• Concurrent use of C++ streams can produce unpredictable results.

◦ if two tasks execute:

task1 : cout << "abc " << "def " << endl;
task2 : cout << "uvw " << "xyz " << endl;

any of the outputs can appear:

abc def
uvw xyz

abc uvw xyz
def

uvw abc xyz def abuvwc dexf
yz

uvw abc def
xyz

• µC++ provides: osacquire for output streams and isacquire for input streams.

• Most common usage is to create an anonymous stream lock for a cascaded I/O expression:

task1 : osacquire(cout) << "abc " << "def " << endl;
task2 : osacquire(cout) << "uvw " << "xyz " << endl;

constraining the output to two different lines in either order:

abc def
uvw xyz

uvw xyz
abc def

• Multiple I/O statements can be protected using block structure:

{ // acquire the lock for stream cout for block duration
osacquire acq(cout); // named stream lock
cout << "abc";
osacquire(cout) << "uvw " << "xyz " << endl; // OK?
cout << "def";

} // implicitly release the lock when “acq” is deallocated

• Which locking-release pattern is used by stream locks?

6.3.2 Synchronization Lock

• Synchronization lock is used solely to block tasks waiting for synchronization.

• Weakest form of blocking lock as its only state is list of blocked tasks.

◦ ⇒ acquiring task always blocks (no state to make it conditional)

Need ability to yield time-slice and block versus yield and go back on ready queue.

◦ ⇒ release is lost when no waiting task (no state to remember it)

• Often called a condition lock, with wait / signal(notify) for acquire / release.

104 CHAPTER 6. LOCKS

6.3.2.1 Implementation

• Like mutex lock, synchronization lock needs mutual exclusion for safe implementation.

• Location of mutual exclusion classifies synchronization lock:

external locking use an external lock to protect task list,

internal locking use an internal lock to protect state (lock is extra state).

• external locking

class SyncLock {
Task * list;

public:
SyncLock() : list(nullptr) {}
void acquire() {

// add self to task list
yieldNoSchedule();

}
void release() {

if (list != nullptr) {
// remove task from blocked list and make ready

}
}

};

◦ Use external state to avoid lost release.

◦ Need mutual exclusion to protect task list and possible external state.

◦ Releasing task detects a blocked task and performs necessary cooperation.

• Usage pattern:

◦ Cannot enter a restaurant if all tables are full.

◦ Must acquire a lock to check for an empty table because state can change.

◦ If no free table, block on waiting-list until a table becomes available or leave (balk) and

eat somewhere else.

6.3. BLOCKING LOCKS 105

table

sync

long term

occupied?

mutex

short term

podium

// shared variables
MutexLock m; // external mutex lock
SyncLock s; // synchronization lock
bool occupied = false; // indicate if event has occurred

// acquiring task
m.acquire(); // mutual exclusion to examine state & possibly block
if (occupied) { // event not occurred ?

if (/* do not wait */) { m.release(); return; /* go elsewhere */ }
s.acquire(); // long-term block for event
m.acquire(); // require mutual exclusion to set state

}
occupied = true; // set
m.release();

... EAT! ...
// releasing task

m.acquire(); // mutual exclusion to examine state
occupied = false; // reset
s.release(); // possibly unblock waiting task
m.release(); // release mutual exclusion

• Why is a single waiting queue (bench) inadequate?

• Blocking occurs holding external mutual-exclusion lock!

• ⇒ release lock before blocking

// acquiring task
m.acquire(); // mutual exclusion to examine state & possibly block
if (occupied) { // event not occurred ?

m.release(); // release external mutex-lock
// PREEMPTION
s.acquire(); // block for event
. . .

• Race between blocking and unblocking tasks.

106 CHAPTER 6. LOCKS

• To prevent race, modify synchronization-lock acquire to release lock.

void acquire(MutexLock & m) {
// add self to task list
yieldNoSchedule(m);
// possibly reacquire mutexlock

}

• Or, protecting mutex-lock is bound at synchronization-lock creation and used implicitly.

• Now use first usage pattern.

// acquiring task
m.acquire(); // mutual exclusion to examine state & possibly block
if (occupied) { // event not occurred ?

s.acquire(m); // block for event and release mutex lock
. . .

• Has the race been prevented?

• Problem: barging can occur when releasing task resets occupied.

◦ ⇒ non-FIFO order and possible starvation

• Note, same problems as inside mutex lock but occurring outside between mutex and syn-

chronization locks.

• Use barging avoidance:

// releasing task
m.acquire(); // mutual exclusion to examine state
if (! s.empty()) s.release(); // unblock, no reset
else occupied = false; // reset
m.release(); // release mutual exclusion

or prevention:

// releasing task
m.acquire(); // mutual exclusion to examine state
if (! s.empty()) s.release(); // unblock, no reset
else { occupied = false; m.release(); } // reset & release

• internal locking

6.3. BLOCKING LOCKS 107

class SyncLock {
Task * list; // blocked tasks
SpinLock lock; // internal lock

public:
SyncLock() : list(nullptr) {}
void acquire(MutexLock & m) { // optional external lock

lock.acquire();
// add self to task list
m.release(); // release external mutex-lock
CAN BE INTERRUPTED HERE
yieldNoSchedule(lock);
m.acquire(); // possibly reacquire after blocking

}

void release() {
lock.acquire();
if (list != nullptr) {

// remove task from blocked list and make ready
}
lock.release();

}
};

◦ Why does acquire still take an external lock?

◦ Why is the race after releasing the external mutex-lock not a problem?

• Has the busy wait been removed from the blocking lock?

6.3.2.2 uCondLock

• µC++ provides an internal synchronization-lock, uCondLock.

class uCondLock {
public:

uCondLock();
void wait(uOwnerLock & lock);
bool signal();
bool broadcast();
bool empty();

};

• wait and signal are used to block a thread on and unblock a thread from the queue of a

condition, respectively.

• wait atomically blocks the calling task and releases argument owner-lock.

• wait reacquires its argument owner-lock before returning.

• signal unblocks a single task in FIFO order.

• broadcast unblocks all waiting tasks.

108 CHAPTER 6. LOCKS

• signal/broadcast do nothing for an empty condition and return false; otherwise, return true.

• empty returns false if blocked tasks on the queue and true otherwise.

6.3.2.3 Programming Pattern

• Using synchronization locks is complex because they are weak.

• Must provide external mutual-exclusion and protect against loss signal (release).

• Why is synchronization more complex for blocking locks than spinning (uLock)?

bool done = false;

_Task T1 {
uOwnerLock & mlk;
uCondLock & clk;

void main() {
mlk.acquire(); // prevent lost signal
if (! done) // signal occurred ?

// signal not occurred
clk.wait(mlk); // atomic wait/release
// mutex lock re-acquired after wait

mlk.release(); // release either way
S2;

}
public:

T1(uOwnerLock & mlk,
uCondLock & clk) :
mlk(mlk), clk(clk) {}

};

_Task T2 {
uOwnerLock & mlk;
uCondLock & clk;

void main() {
S1;
mlk.acquire(); // prevent lost signal
done = true; // remember signal occurred
clk.signal(); // signal lost if not waiting
mlk.release();

}
public:

T2(uOwnerLock & mlk,
uCondLock & clk) :
mlk(mlk), clk(clk) {}

};

int main() {
uOwnerLock mlk;
uCondLock clk;
T1 t1(mlk, clk);
T2 t2(mlk, clk);

}

6.3.3 Barrier

• A barrier coordinates a group of tasks performing a concurrent operation surrounded by

sequential operations.

• Hence, a barrier is for synchronization and cannot build mutual exclusion.

• Unlike previous synchronization locks, a barrier retains state about the events it manages:

number of tasks blocked on the barrier.

• Since manipulation of this state requires mutual exclusion, most barriers use internal locking.

6.3. BLOCKING LOCKS 109

• E.g., 3 tasks must execute a section of code in a particular order: S1, S2 and S3 must all

execute before S5, S6 and S7.

T1::main() {
. . .
S1
b.block();
S5
. . .

}

T2::main() {
. . .
S2
b.block();
S6
. . .

}

T3::main() {
. . .
S3
b.block();
S7
. . .

}

int main() {
Barrier b(3);
T1 x(b);
T2 y(b);
T3 z(b);

}

• Barrier is initialized to control 3 tasks and passed to each task by reference (not copied).

• Barrier blocks each task at call to block until all tasks have called block.

• Last task to call block does not block and releases other tasks (cooperation).

• Hence, all tasks leave together (synchronized) after arriving at the barrier.

• Note, must specify in advance total number of block operations before tasks released.

• Two common uses for barriers:

cyclicone shot

endstart

Barrier start(N+1), end(N+1); // shared
Coordinator
// start N tasks so they can initialize
// general initialization
start.block(); // wait for threads to start
// do other work
end.block(); // wait for threads to end
// general close down and possibly loop

Workers

// initialize
start.block(); // wait for threads to start
// do work
end.block(); // wait for threads to end
// close down

• Two barriers allow Coordinator to accumulate results (subtotals) while Workers reinitialize

(read next row).

• Alternative is last Worker does coordination, but prevents Workers reinitializing during co-

ordination.

• Why not use termination synchronization and create new tasks for each computation?

◦ creation and deletion of computation tasks is expensive

110 CHAPTER 6. LOCKS

6.3.3.1 uBarrier

• µC++ barrier is a thread-safe coroutine, where the coroutine main can be resumed by the last

task arriving at the barrier.

#include <uBarrier.h>
_Cormonitor uBarrier { // think _Coroutine

protected:
void main() { for (;;) suspend(); } // points of synchronization
virtual void last() { resume(); } // called by last task to barrier

public:
uBarrier(unsigned int total);
unsigned int total() const; // # of tasks synchronizing
unsigned int waiters() const; // # of waiting tasks
void reset(unsigned int total); // reset # tasks synchronizing
virtual void block(); // wait for Nth thread, which calls last, unblocks waiting thread

};

• Member last is called by the Nth (last) task to the barrier, and then all blocked tasks are

released.

• uBarrier has implicit mutual exclusion ⇒ no barging ⇒ only manages synchronization

• User barrier is built by:

◦ inheriting from uBarrier

◦ redefining last and/or block member and possibly coroutine main

◦ possibly initializing main from constructor

• E.g., previous matrix sum (see page 75) adds subtotals in order of task termination, but

barrier can add subtotals in order produced.

_Cormonitor Accumulator : public uBarrier {
int total_ = 0, temp;
uBaseTask * Nth_ = nullptr;

protected:
void last() { // reset and remember Nth task

temp = total_; total_ = 0;
Nth_ = &uThisTask();

}
public:

Accumulator(int rows) : uBarrier(rows) {}
void block(int subtotal) {

total_ += subtotal;
uBarrier::block();

}
int total() { return temp; }
uBaseTask * Nth() { return Nth_; }

};

6.3. BLOCKING LOCKS 111

_Task Adder {
int * row, size;
Accumulator & acc;
void main() {

int subtotal = 0;
for (unsigned int r = 0; r < size; r += 1) subtotal += row[r];
acc.block(subtotal); // provide subtotal; block for completion

}
public:

Adder(int row[], int size, Accumulator & acc) :
size(size), row(row), acc(acc) {}

};

int main() {
enum { rows = 10, cols = 10 };
int matrix[rows][cols];
Adder * adders[rows];
Accumulator acc(rows); // barrier synchronizes each summation
// read matrix
for (unsigned int r = 0; r < rows; r += 1)

adders[r] = new Adder(matrix[r], cols, acc);
for (unsigned int r = 0; r < rows; r += 1)

delete adders[r];
cout << acc.total() << " " << acc.Nth() << endl;

}

• Why not have task delete itself after unblocking from uBarrier::block()?

void block(int subtotal) {
total_ += subtotal; uBarrier::block();
delete &uThisTask();

}

• Coroutine barrier can be reused many times, e.g., read in a new matrix in Accumulator::main

after each summation.

• Why can a barrier not be used within a COFOR?

6.3.4 Binary Semaphore

• Binary semaphore (Edsger W. Dijkstra) is blocking equivalent to yielding spin-lock.

• Provides synchronization and mutual exclusion.

Semaphore lock(0); // 0 => closed, 1 => open, default 1

• More powerful than synchronization lock as it remembers state about an event.

• Names for acquire and release from Dutch terms

• acquire is P

◦ passeren ⇒ to pass

◦ prolagen ⇒ (proberen) to try (verlagen) to decrease

112 CHAPTER 6. LOCKS

lock.P(); // wait to enter

P waits if the semaphore counter is zero and then decrements it.

• release is V

◦ vrijgeven ⇒ to release

◦ verhogen ⇒ to increase

lock.V(); // release lock

V increases the counter and unblocks a waiting task (if present).

• When the semaphore has only two states (open/closed), it is called a binary semaphore.

• synchronization

_Task T1 {
BinSem & lk;
void main() {

. . .
S1
lk.V();
. . .

}
public:

T1(BinSem & lk) : lk(lk) {}
};

_Task T2 {
BinSem & lk;
void main() {

. . .
lk.P();
S2
. . .

}
public:

T2(BinSem & lk) : lk(lk) {}
};

int main() {

BinSem lock(0); // closed
T1 t1(lock);
T2 t2(lock);

}

• mutual exclusion

_Task T {
BinSem & lk;
void main() {

. . .
lk.P();
// critical section
lk.V();
. . .
lk.P();
// critical section
lk.V();
. . .

}
public:

T(BinSem & lk) : lk(lk) {}
};

int main() {

BinSem lock(1); // start open
T t0(lock), t1(lock);

}

6.3.4.1 Implementation

• Implementation has:

6.3. BLOCKING LOCKS 113

◦ blocking task-list

◦ avail indicates if event has occurred (state)

◦ spin lock to protect state

class BinSem {
queue<Task> blocked; // blocked tasks
bool avail; // resource available ?
SpinLock lock; // mutex nonblocking lock

public:
BinSem(bool start = true) : avail(start) {}
void P() {

lock.acquire(); // prevention barging
if (! avail) {

// add self to lock’s blocked list
yieldNoSchedule(lock);
// DO NOT REACQUIRE LOCK

}
avail = false;
lock.release();

}
void V() {

lock.acquire();
if (! blocked.empty()) {

// remove task from blocked list and make ready
// DO NOT RELEASE LOCK

} else {
avail = true; // conditional reset
lock.release(); // NO RACE

}
}

};

• Same as single-acquisition mutexLock but can initialize avail.

• Higher cost for synchronization if external lock already acquired.

6.3.5 Counting Semaphore

• Augment the definition of P and V to allow a multi-valued semaphore.

• What does it mean for a lock to have more than open/closed (unlocked/locked)?

◦ ⇒ critical sections allowing N simultaneous tasks.

• Augment V to allow increasing the counter an arbitrary amount.

• synchronization

◦ Three tasks must execute so S2 and S3 only execute after S1 has completed.

114 CHAPTER 6. LOCKS

T1::main() {
. . .
lk.P();
S2
. . .

}

T2::main() {
. . .
lk.P();
S3
. . .

}

T3::main() {
S1
lk.V(); // lk.V(2)
lk.V();
. . .

}

int main() {

CntSem lk(0); // closed
T1 x(lk);
T2 y(lk);
T3 z(lk);

}

• mutual exclusion

◦ Critical section allowing up to 3 simultaneous tasks.

_Task T {
CntSem & lk;
void main() {

. . .
lk.P();
// up to 3 tasks in
// critical section
lk.V();
. . .

}
public:

T(CntSem & lk) : lk(lk) {}
};

int main() {

CntSem lk(3); // allow 3
T t0(lk), t1(lk), . . .;

}

• Must know in advance the total number of P’s on the semaphore.

6.3.5.1 Implementation

• Change availability into counter, and set to some maximum on creation.

• Decrement counter on acquire and increment on release.

• Block acquiring task when counter is 0.

• Negative counter indicates number of waiting tasks.

class CntSem {
queue<Task> blocked; // blocked tasks
int cnt; // resource being used ?
SpinLock lock; // nonblocking lock

public:
CntSem(int start = 1) : cnt(start) {}

6.3. BLOCKING LOCKS 115

void P() {
lock.acquire();
cnt -= 1;
if (cnt < 0) {

// add self to lock’s blocked list
yieldNoSchedule(lock);
// DO NOT REACQUIRE LOCK

}
lock.release();

}

void V() {
lock.acquire();
cnt += 1;
if (cnt <= 0) {

// remove task from blocked list and make ready
// DO NOT RELEASE LOCK

} else {
lock.release(); // NO RACE

}
}

};

• In general, binary/counting semaphores are used in two distinct ways:

1. For synchronization, if the semaphore starts at 0 ⇒ waiting for an event to occur.

2. For mutual exclusion, if the semaphore starts at 1(N) ⇒ controls a critical section.

• µC++ provides a counting semaphore, uSemaphore, which subsumes a binary semaphore.

#include <uSemaphore.h>
class uSemaphore {

public:
uSemaphore(unsigned int count = 1);
void P();
bool TryP();
void V(unsigned int times = 1);
int counter() const;
bool empty() const;

};

• P decrements the semaphore counter; if the counter is greater than or equal to zero, the

calling task continues, otherwise it blocks.

• TryP returns true if the semaphore is acquired and false otherwise (never blocks).

• V wakes up the task blocked for the longest time if there are tasks blocked on the semaphore

and increments the semaphore counter.

• If V is passed a positive integer N, the semaphore is Ved N times.

116 CHAPTER 6. LOCKS

• The member routine counter returns the value of the semaphore counter:

◦ negative means abs(N) tasks are blocked waiting to acquire the semaphore, and the

semaphore is locked;

◦ zero means no tasks are waiting to acquire the semaphore, and the semaphore is locked;

◦ positive means the semaphore is unlocked and allows N tasks to acquire the semaphore.

• The member routine empty returns false if there are threads blocked on the semaphore and

true otherwise.

6.4 Lock Programming

6.4.1 Precedence Graph

• P and V in conjunction with COBEGIN are as powerful as START and WAIT.

• E.g., execute statements so the result is the same as serial execution but concurrency is

maximized.

S1: a := 1
S2: b := 2
S3: c := a + b
S4: d := 2 * a
S5: e := c + d

• Analyse which data and code depend on each other.

• i.e., statement S1 and S2 are independent ⇒ can execute in either order or at the same time.

• Statement S3 is dependent on S1 and S2 because it uses both results.

• Display dependencies graphically in a precedence graph (different from process graph).

T
i

m
e

S5

S3S4

S2S1

Semaphore L1(0), L2(0), L3(0), L4(0);
COBEGIN

BEGIN a := 1; V(L1); END;
BEGIN b := 2; V(L2); END;
BEGIN P(L1); P(L2); c := a + b; V(L3); END;
BEGIN P(L1); d := 2 * a; V(L4); END;
BEGIN P(L3); P(L4); e := c + d; END;

COEND

6.4. LOCK PROGRAMMING 117

• Does this solution work?

• Optimal solution: minimum threads, M, and traverse M paths through precedence graph.

T
i

m
e

S5

S3S4

S2S1

Semaphore L1(0), L2(0);
COBEGIN

BEGIN a := 1; V(L1); d := 2 * a; V(L2); END;
BEGIN b := 2; P(L1); c := a + b; P(L2); e := c + d; END;

COEND

• process graph (different from precedence graph)

COBEGIN

COEND

p

S3 S4S2S1p S5

p

6.4.2 Buffering

• Tasks communicate unidirectionally through a queue.

• Producer adds items to the back of a queue.

• Consumer removes items from the front of a queue.

6.4.2.1 Unbounded Buffer

• Two tasks communicate through a queue of unbounded length.

consumerproducer

• Because tasks work at different speeds, producer may get ahead of consumer.

◦ Producer never has to wait as buffer has infinite length.

◦ Consumer has to wait if buffer is empty ⇒ wait for producer to add.

118 CHAPTER 6. LOCKS

• Queue is shared between producer/consumer, and counting semaphore controls access.

#define QueueSize ∞
int front = 0, back = 0;
int Elements[QueueSize];
uSemaphore full(0);
void Producer::main() {

for (;;) {
// produce an item
// add to back of queue
full.V();

}
// produce a stopping value
full.V();

}
void Consumer::main() {

for (;;) {
full.P();
// take an item from the front of the queue

if (stopping value ?) break;
// process or consume the item

}
}

• Is there a problem adding and removing items from the shared queue?

• Is the full semaphore used for mutual exclusion or synchronization?

6.4.2.2 Bounded Buffer

• Two tasks communicate through a queue of bounded length.

• Because of bounded length:

◦ Producer has to wait if buffer is full ⇒ wait for consumer to remove.

◦ Consumer has to wait if buffer is empty ⇒ wait for producer to add.

• Use counting semaphores to account for the finite length of the shared queue.

6.4. LOCK PROGRAMMING 119

uSemaphore full(0), empty(QueueSize);
void Producer::main() {

for (;;) {
// produce an item
empty.P();
// add element to buffer
full.V();

}
// produce a stopping value
full.V();

}
void Consumer::main() {

for (;;) {
full.P();
// remove element from buffer

if (stopping value ?) break;
// process or consume the item
empty.V();

}
}

• Does this produce maximum concurrency?

• Can it handle multiple producers/consumers?

0

full empty

5

1 4

34

2 3

3 2

13 9

4 1

10

5 0

-3

6.4.3 Lock Techniques

• Many possible solutions; need systematic approach.

• A split binary semaphore is a collection of semaphores where at most one of the collection

has the value 1.

◦ I.e., the sum of the semaphores is always less than or equal to one.

◦ Used when different kinds of tasks have to block separately.

◦ Cannot differentiate tasks blocked on the same semaphore (condition) lock. Why?

120 CHAPTER 6. LOCKS

◦ E.g., A and B tasks block on different semaphores so they can be unblocked based on

kind, but collectively manage 2 semaphores like it was one.

• Split binary semaphores can be used to solve complicated mutual-exclusion problems by a

technique called baton passing.

• The rules of baton passing are:

◦ there is exactly one (conceptual) baton

◦ nobody moves in the entry/exit code unless they have it

◦ once the baton is released, cannot read/write variables in entry/exit

• E.g., baton is conceptually acquired in entry/exit protocol and passed from signaller to sig-

nalled task (see page 100).

class BinSem {
queue<Task> blocked;
bool avail;
SpinLock lock;

public:
BinSem(bool start = true) : avail(start) {}
void P() {

lock.acquire(); PICKUP BATON, CAN ACCESS STATE
if (! avail) {

// add self to lock’s blocked list
PUT DOWN BATON, CANNOT ACCESS STATE
yieldNoSchedule(lock);
// UNBLOCK WITH SPIN LOCK ACQUIRED
PASSED BATON, CAN ACCESS STATE

}
avail = false;
lock.release(); PUT DOWN BATON, CANNOT ACCESS STATE

}
void V() {

lock.acquire(); PICKUP BATON, CAN ACCESS STATE
if (! blocked.empty()) {

// remove task from blocked list and make ready
PASS BATON, CANNOT ACCESS STATE

} else {
avail = true;
lock.release(); PUT DOWN BATON, CANNOT ACCESS STATE

}
}

};

• Can mutex/condition lock perform baton passing to prevent barging?

◦ Not if signalled task must implicitly re-acquire the mutex lock before continuing.

◦ ⇒ signaller must release the mutex lock.

◦ There is now a race between signalled and calling tasks, resulting in barging.

6.4.4 Readers and Writer Problem

• Multiple tasks sharing a resource: some reading the resource and some writing the resource.

6.4. LOCK PROGRAMMING 121

• Allow multiple concurrent reader tasks simultaneous access, but serialize access for writer

tasks (a writer may read).

• Use split-binary semaphore to segregate 3 kinds of tasks: arrivers, readers, writers.

• Use baton-passing to help understand complexity.

r r r w w w

r

r

w

r

w

w

WritersReaders baton

Entry

short term

long term long term

6.4.4.1 Solution 1

uSemaphore entry(1), rwait(0), wwait(0); // split binary semaphores
int rdel = 0, wdel = 0, rcnt = 0, wcnt = 0; // auxiliary counters
void Reader::main() {

entry.P(); // pickup baton
if (wcnt > 0) { // occupied ?

rdel += 1; entry.V(); // put baton down
rwait.P(); rdel -= 1; // passed baton

}
rcnt += 1;
if (rdel > 0) { // waiting readers ?

rwait.V(); // pass baton
} else {

entry.V(); // put baton down
}
// READ
entry.P(); // pickup baton
rcnt -= 1;
if (rcnt == 0 && wdel > 0) { // waiting writers ?

wwait.V(); // pass baton
} else {

entry.V(); // put baton down
}

}

122 CHAPTER 6. LOCKS

void Writer::main() {
entry.P(); // pickup baton
if (rcnt > 0 | | wcnt > 0) { // occupied ?

wdel += 1; entry.V(); // put baton down
wwait.P(); wdel -= 1; // passed baton

}
wcnt += 1;
entry.V(); // put baton down
// WRITE
entry.P(); // pickup baton
wcnt -= 1;
if (rdel > 0) { // waiting readers ?

rwait.V(); // pass baton
} else if (wdel > 0) { // waiting writers ?

wwait.V(); // pass baton
} else {

entry.V(); // put baton down
}

}

• Problem: reader only checks for writer in resource, never writers waiting to use it.

◦ ⇒ readers barge ahead of writers who already waited.

◦ ⇒ continuous stream of readers (actually only 2 needed) prevent waiting writers from

making progress (starvation).

6.4.4.2 Solution 2

• Give writers priority and make the readers wait.

◦ Works most of the time because normally 80% readers and 20% writers.

• Change entry protocol for reader to the following:

entry.P(); // pickup baton
if (wcnt > 0 | | wdel > 0) { // waiting writers?

rdel += 1; entry.V(); // put baton down
rwait.P(); rdel -= 1; // passed baton

}
rcnt += 1;
if (rdel > 0) { // waiting readers ?

rwait.V(); // pass baton
} else {

entry.V(); // put baton down
}

• Also, change writer’s exit protocol to favour writers:

6.4. LOCK PROGRAMMING 123

entry.P(); // pickup baton
wcnt -= 1;
if (wdel > 0) { // check writers first

wwait.V(); // pass baton
} else if (rdel > 0) {

rwait.V(); // pass baton
} else {

entry.V(); // put baton down
}

◦ ⇒ writers barge.

◦ ⇒ continuous stream of writers cause reader starvation.

6.4.4.3 Solution 3

• Fairness on simultaneous arrival is solved by alternation (Dekker’s solution).

• E.g., use last flag to indicate the kind of tasks last using the resource, i.e., reader or writer.

• On exit, first select from opposite kind, e.g., if last is reader, first check for waiting writer

otherwise waiting reader, then update last.

• Flag is unnecessary if readers wait when there is a waiting writer, and all readers started after

a writer.

• ⇒ put writer’s exit-protocol back to favour readers.

entry.P(); // pickup baton
wcnt -= 1;
if (rdel > 0) { // check readers first

rwait.V(); // pass baton
} else if (wdel > 0) {

wwait.V(); // pass baton
} else {

entry.V(); // put baton down
}

• Arriving readers cannot barge ahead of waiting writers and unblocking writers cannot barge

ahead of a waiting reader

• ⇒ alternation for simultaneous waiting.

6.4.4.4 Solution 4

• Problem: temporal barging!

• Staleness/freshness for last flag and staleness with no-flag.

124 CHAPTER 6. LOCKS

w

wrr

baton

12:30

1:302:00 1:00

• Alternation for simultaneous waiting means when writer leaves resource:

◦ both readers enter ⇒ 2:00 reader reads data that is stale; should read 1:30 write

◦ writer enters and overwrites 12:30 data (never seen) ⇒ 1:00 reader reads data that is

too fresh (i.e., missed reading 12:30 data)

• Staleness/freshness can lead to plane or stock-market crash.

• Service readers and writers in temporal order, i.e., first-in first-out (FIFO), but allow mul-

tiple concurrent readers.

• Have readers and writers wait on same semaphore ⇒ collapse split binary semaphore.

• But now lose kind of waiting task!

• Introduce shadow queue to retain kind of waiting task on semaphore:

r

r

w

r

w

w

w rwrw r

w w wr r r

Entry

Readers & Writers baton

Shadow Queue

6.4. LOCK PROGRAMMING 125

uSemaphore entry(1), rwwait(0); // readers/writers, temporal order
int rwdel = 0, rcnt = 0, wcnt = 0; // auxiliary counters
enum RW { READER, WRITER }; // kinds of tasks
queue<RW> rw_id; // queue of kinds
void Reader::main() {

entry.P(); // pickup baton
if (wcnt > 0 | | rwdel > 0) { // anybody waiting?

rw_id.push(READER); // store kind
rwdel += 1; entry.V(); rwwait.P(); rwdel -= 1;
rw_id.pop();

}
rcnt += 1;
if (rwdel > 0 && rw_id.front() == READER) { // more readers ?

rwwait.V(); // pass baton
} else

entry.V(); // put baton down
// READ
entry.P(); // exit protocol
rcnt -= 1;
if (rcnt == 0 && rwdel > 0) { // last reader ?

rwwait.V(); // pass baton
} else

entry.V(); // put baton down
}

void Writer::main() {
entry.P(); // pickup baton
if (rcnt > 0 | | wcnt > 0) {

rw_id.push(WRITER); // store kind
rwdel += 1; entry.V(); rwwait.P(); rwdel -= 1;
rw_id.pop();

}
wcnt += 1;
entry.V(); // put baton down
// WRITE
entry.P(); // pickup baton
wcnt -= 1;
if (rwdel > 0) { // anyone waiting ?

rwwait.V(); // pass baton
} else

entry.V(); // put baton down
}

• Why can task pop front node on shadow queue when unblocked?

6.4.4.5 Solution 5

• Cheat on cooperation:

◦ allow 2 checks for write instead of 1

◦ use reader/writer bench and writer chair.

126 CHAPTER 6. LOCKS

• On exit, if chair empty, unconditionally unblock task at front of reader/writer semaphore.

• ⇒ reader can incorrectly unblock a writer.

• This writer now waits second time but in chair.

• Chair is always checked first on exit (higher priority than bench).

r

r

w

r

w

w

w rwrw r

Entry

Readers & Writers baton Writer

w

uSemaphore entry(1), rwwait(0), wwait(0);
int rwdel = 0, wdel = 0, rcnt = 0, wcnt = 0; // auxiliary counters
void Reader::main() {

entry.P(); // pickup baton
if (wcnt > 0 | | wdel > 0 | | rwdel > 0) {

rwdel += 1; entry.V(); rwwait.P(); rwdel -= 1;
}
rcnt += 1;
if (rwdel > 0) { // more readers ?

rwwait.V(); // pass baton
} else

entry.V(); // put baton down
// READ
entry.P(); // pickup baton
rcnt -= 1;
if (rcnt == 0) { // last reader ?

if (wdel != 0) { // writer waiting ?
wwait.V(); // pass baton

} else if (rwdel > 0) { // anyone waiting ?
rwwait.V(); // pass baton

} else
entry.V(); // put baton down

} else
entry.V(); // put baton down

}

6.4. LOCK PROGRAMMING 127

void Writer::main() {
entry.P(); // pickup baton
if (rcnt > 0 | | wcnt > 0) { // first wait ?

rwdel += 1; entry.V(); rwwait.P(); rwdel -= 1;
if (rcnt > 0) { // second wait ?

wdel += 1; entry.V(); wwait.P(); wdel -= 1;
}

}
wcnt += 1;
entry.V(); // put baton down
// WRITE
entry.P(); // pickup baton
wcnt -= 1;
if (rwdel > 0) { // anyone waiting ?

rwwait.V(); // pass baton
} else

entry.V(); // put baton down
}

6.4.4.6 Solution 6

• Still temporal problem when tasks move from one blocking list to another.

• In solutions, reader/writer entry-protocols have code sequence:

. . . entry.V(); INTERRUPTED HERE Xwait.P();

• For writer:

◦ pick up baton and see readers using resource

◦ put baton down, entry.V(), but time-sliced before wait, Xwait.P().

◦ another writer does same thing, and this can occur to any depth.

◦ writers restart in any order or immediately have another time-slice

◦ e.g., 2:00 writer goes ahead of 1:00 writer ⇒ freshness problem.

• For reader:

◦ pick up baton and see writer using resource

◦ put baton down, entry.V(), but time-sliced before wait, Xwait.P().

◦ writers that arrived ahead of reader do same thing

◦ reader restarts before any writers

◦ e.g., 2:00 reader goes ahead of 1:00 writer ⇒ staleness problem.

• Need atomic block and release ⇒ magic like turning off time-slicing.

Xwait.P(entry); // uC++ semaphore

• Alternative: ticket

128 CHAPTER 6. LOCKS

◦ readers/writers take ticket (see Section 5.18.9, p. 89) before putting baton down

◦ to pass baton, serving counter is incremented and then WAKE ALL BLOCKED

TASKS

◦ each task checks ticket with serving value, and one proceeds while others reblock

◦ starvation not an issue as waiting queue is bounded length, but inefficient

• Alternative: private semaphore

◦ list of private semaphores, one for each waiting task, versus multiple waiting tasks on

a semaphore.

◦ add list node before releasing entry lock, which establishes position, then block on

private semaphore.

◦ to pass baton, private semaphore at head of the queue is Ved, if present.

◦ if task blocked on private semaphore, it is unblocked

◦ if task not blocked due to time-slice, V is remembered, and task does not block on P.

r

r

w

r

w

w

w w r r w r

Entry

baton

Private Semaphores

Readers & Writers

w w wr rr

6.4. LOCK PROGRAMMING 129

uSemaphore entry(1);
int rwdel = 0, rcnt = 0, wcnt = 0;
struct RWnode {

RW rw; // kinds of task
uSemaphore sem; // private semaphore
RWnode(RW rw) : rw(rw), sem(0) {}

};
queue<RWnode *> rw_id;
void Reader::main() {

entry.P(); // pickup baton
if (wcnt > 0 | | ! rw_id.empty()) { // anybody waiting?

RWnode r(READER);
rw_id.push(&r); // store kind
rwdel += 1; entry.V(); r.sem.P(); rwdel -= 1;
rw_id.pop();

}
rcnt += 1;
if (rwdel > 0 && rw_id.front()->rw == READER) { // more readers ?

rw_id.front()->sem.V(); // pass baton
} else

entry.V(); // put baton down
// READ
entry.P(); // pickup baton
rcnt -= 1;
if (rcnt == 0 && rwdel > 0) { // last reader ?

rw_id.front()->sem.V(); // pass baton
} else

entry.V(); // put baton down
}

void Writer::main() {
entry.P(); // pickup baton
if (rcnt > 0 | | wcnt > 0) { // resource in use ?

RWnode w(WRITER);
rw_id.push(&w); // remember kind of task
rwdel += 1; entry.V(); w.sem.P(); rwdel -= 1;
rw_id.pop();

}
wcnt += 1;
entry.V();
// WRITE
entry.P(); // pickup baton
wcnt -= 1;
if (rwdel > 0) { // anyone waiting ?

rw_id.front()->sem.V(); // pass baton
} else

entry.V(); // put baton down
}

6.4.4.7 Solution 7

• Ad hoc solution with questionable split-binary semaphores and baton-passing.

130 CHAPTER 6. LOCKS

w

r

r

w

r

w

w
lock

baton

Entry

Writer

• Tasks wait in temporal order on entry semaphore.

• Only one writer ever waits on the writer chair until readers leave resource.

• Waiting writer blocks holding baton to force other arriving tasks to wait on entry.

• Semaphore lock is used only for mutual exclusion.

• Sometimes acquire two locks to prevent tasks entering and leaving.

• Release in opposite order.

uSemaphore entry(1); // two locks open
uSemaphore lock(1), wwait(0);
int rcnt = 0, wdel = 0;

void Reader::main() {
entry.P(); // entry protocol
lock.P();
rcnt += 1;
lock.V();
entry.V(); // put baton down
// READ
lock.P(); // exit protocol
rcnt -= 1; // critical section
if (rcnt == 0 && wdel == 1) { // last reader & writer waiting ?

lock.V();
wwait.V(); // pass baton

} else
lock.V();

}

6.4. LOCK PROGRAMMING 131

void Writer::main() {
entry.P(); // entry protocol
lock.P();
if (rcnt > 0) { // readers waiting ?

wdel += 1;
lock.V();
wwait.P(); // wait for readers
wdel -= 1; // unblock with baton

} else
lock.V();

// WRITE
entry.V(); // exit protocol

}

• Is temporal order preserved?

• While solution is smaller, harder to reason about correctness.

• Does not generalize for other kinds of complex synchronization and mutual exclusion.

132 CHAPTER 6. LOCKS

7 Concurrent Errors

7.1 Race Condition

• A race condition occurs when there is missing:

◦ synchronization

◦ mutual exclusion

• Two or more tasks race along assuming synchronization or mutual exclusion has occurred.

• Can be very difficult to locate (thought experiments).

◦ Aug. 14, 2003 Northeastern blackout : worst power outage in North American history.

◦ Race condition buried in four million lines of C code.

◦ “in excess of three million online operational hours in which nothing had ever exercised

that bug.”

7.2 No Progress

7.2.1 Live-lock

• Indefinite postponement: “You go first” problem on simultaneous arrival (consuming CPU)

• Caused by poor scheduling in entry protocol:

133

134 CHAPTER 7. CONCURRENT ERRORS

• There always exists some mechanism to break tie on simultaneous arrival that deals effec-

tively with live-lock (Oracle with cardboard test).

7.2.2 Starvation

• A selection algorithm ignores one or more tasks so they are never executed, i.e., lack of

long-term fairness.

• Long-term (infinite) starvation is extremely rare, but short-term starvation can occur and is a

problem.

• Like live-lock, starving task might be ready at any time, switching among active, ready and

possibly blocked states (consuming CPU).

7.2.3 Deadlock

• Deadlock is the state when one or more processes are waiting for an event that will not

occur.

• Unlike live-lock/starvation, deadlocked task is blocked so not consuming CPU.

7.2.3.1 Synchronization Deadlock

• Failure in cooperation, so a blocked task is never unblocked (stuck waiting):

int main() {
uSemaphore s(0); // closed
s.P(); // wait for lock to open

}

7.3. DEADLOCK PREVENTION 135

7.2.3.2 Mutual Exclusion Deadlock

• Failure to acquire a resource protected by mutual exclusion.

• Deadlock, unless one of the cars is willing to backup.

• There are 5 conditions that must occur for a set of processes to deadlock.

1. A concrete shared-resource requiring mutual exclusion, i.e., exists without a task.

◦ A task “wanting to drive across the intersection” is not a resource.

2. A process holds a resource while waiting for access to a resource held by another

process (hold and wait).

3. Once a process has gained access to a resource, the runtime system cannot get it back

(no preemption).

4. There exists a circular wait of processes on resources.

5. These conditions must occur simultaneously.

• Simple example using semaphores:

uSemaphore L1(1), L2(1); // open
task1 task2

L1.P() L2.P() // acquire opposite locks
R1 R2 // access resource
L2.P() L1.P() // acquire opposite locks

R1 & R2 R2 & R1 // access resources

7.3 Deadlock Prevention

• Eliminate one or more of the conditions required for a deadlock from an algorithm ⇒ dead-

lock can never occur.

7.3.1 Synchronization Prevention

• Eliminate all synchronization from a program

• ⇒ no communication

• ⇒ impossible in most cases

136 CHAPTER 7. CONCURRENT ERRORS

7.3.2 Mutual Exclusion Prevention

• Deadlock can be prevented by eliminating one of the 5 conditions:

1. no mutual exclusion

• ⇒ no shared resources

• ⇒ impossible in most cases

2. no hold & wait: do not give any resource, unless all resources can be given

uSemaphore L1(1), L2(1); // open
task1 task2

L1.P() L2.P() L1.P() L2.P() // acquire all locks at start
R1 R2 // access resource

R1 & R2 R2 & R1 // access resources

• ⇒ poor resource utilization

• possible starvation

3. allow preemption

• Preemption is dynamic ⇒ cannot apply statically.

4. no circular wait: by controlling order of resource allocations

uSemaphore L1(1), L2(1); // open
task1 task2

L1.P() L1.P() // acquire same locks
R1 // access resource
L2.P() L2.P() // acquire same locks

R2 // access resource
R1 & R2 R2 & R1 // access resources

• Use an ordered resource policy:

R2<R1 < R3

T1 T2

· · ·

TN

◦ divide all resources into classes R1, R2, R3, etc.

◦ rule: can only request a resource from class Ri if holding no resources from any

class R j for j ≥ i

◦ unless each class contains only one resource, requires requesting several resources

simultaneously

◦ denote the highest class number for which T holds a resource by h(T)

◦ if process T1 is requesting a resource of class k and is blocked because that resource

is held by process T2, then h(T1)< k ≤ h(T2)

7.4. DEADLOCK AVOIDANCE 137

◦ as the preceding inequality is strict, a circular wait is impossible

◦ in some cases there is a natural division of resources into classes that makes this

policy work nicely

◦ in other cases, some processes are forced to acquire resources in an unnatural

sequence, complicating their code and producing poor resource utilization

5. prevent simultaneous occurrence:

• Show previous 4 rules cannot occur simultaneously.

7.4 Deadlock Avoidance

• Monitor all lock blocking and resource allocation to detect any potential formation of dead-

lock.

deadlock

safe

unsafe

• Achieve better resource utilization, but additional overhead to avoid deadlock.

7.4.1 Banker’s Algorithm

• Demonstrate a safe sequence of resource allocations that ⇒ no deadlock.

• However, requires a process state its maximum resource needs.

R1 R2 R3 R4

6 12 4 2 total resources (TR)

T1 4 10 1 1 maximum needed

T2 2 4 1 2 for execution

T3 5 9 0 1 (M)

T1 6 23 5 1 0 currently

T2 1 2 1 0 allocated

T3 1 2 0 0 (C)

resource request (T1, R1) 2 → 3

T1 1 5 0 1 needed to

T2 1 2 0 2 execute

T3 4 7 0 1 (N = M−C)

• Is there a safe order of execution that avoids deadlock should each process require its maxi-

mum resource allocation?

138 CHAPTER 7. CONCURRENT ERRORS

current available resources

1 3 2 2 (CR = T R−∑Ccols)

T2 0 1 2 0 (CR =CR−NT2)

2 5 3 2 (CR =CR+MT 2)

T1 1 0 3 1 (CR =CR−NT1)

5 10 4 2 (CR =CR+MT 1)

T3 1 3 4 1 (CR =CR−NT3)

6 12 4 2 (CR =CR+MT 3)

• So a safe order exists (the left column in the table above) and hence the Banker’s Algorithm

allows the resource request.

• If there is a choice of processes to choose for execution, it does not matter which path is

taken.

• Example: If T1 or T3 could go to their maximum with the current resources, then choose

either. A safe order starting with T1 exists if and only if a safe order starting with T3 exists.

• Does task scheduling need to be adjusted to the safe sequence?

• The check for a safe order can be performed for every allocation of resource to a process

(optimizations are possible, i.e., same thread asks for another resource).

7.4.2 Allocation Graphs

• One method to check for potential deadlock is to graph processes and resource usage at each

moment a resource is allocated.

with multiple instancesresource

task

task is waiting for a resource instance

task is holding a resource instance

• Multiple instances are put into a resource so that a specific resource does not have to be

requested. Instead, a generic request is made.

T4

T3

T1 T2

R1

R2

R3

7.4. DEADLOCK AVOIDANCE 139

• If a graph contains no cycles, no process in the system is deadlocked.

• If any resource has several instances, a cycle 6⇒ deadlock.

T1 → R1 → T2 → R3 → T3 → R2 → T1 (cycle)

T2 → R3 → T3 → R2 → T2 (cycle)

◦ If T4 releases its resource, the cycle is broken.

• Create isomorphic graph without multiple instances (expensive and difficult):

T1 T2

T4

R32R31R1

T3

R21 R22

• If each resource has one instance, a cycle ⇒ deadlock.

• Use graph reduction to locate deadlocks:

T3

T1 T2

R1

R2

R3

T3

T1

R1

R2

R3

R1

R2

R3

T3

R1

R2

R3

• Problems:

140 CHAPTER 7. CONCURRENT ERRORS

◦ When choices for tasks, selection is tricky (like isomorphic graph).

◦ For large graphs, detecting cycles is expensive.

◦ Many graphs to examine over time, one for each particular allocation state of the sys-

tem.

7.5 Detection and Recovery

• Instead of avoiding deadlock let it happen and recover.

◦ ⇒ ability to discover deadlock

◦ ⇒ preemption

• Discovering deadlock is difficult, e.g., build and check for cycles in allocation graph.

◦ not on each resource allocation, but every T seconds or every time a resource cannot be

immediately allocated

◦ Try µC++ debugging macros to locate deadlock.

• Recovery involves preemption of one or more processes in a cycle.

◦ decision is not easy and must prevent starvation

◦ The preemption victim must be restarted, from beginning or some previous checkpoint

state, if you cannot guarantee all resources have not changed.

◦ even that is not enough as the victim may have made changes before the preemption.

7.6 Which Method To Chose?

• Maybe “none of the above”: just ignore the problem

◦ if some process is blocked for rather a long time, assume it is deadlocked and abort it

◦ do this automatically in transaction-processing systems, manually elsewhere

• Of the techniques studied, only the ordered resource policy turns out to have much practical

value.

8 Indirect Communication

• P and V are low level primitives for protecting critical sections and establishing synchro-

nization between tasks.

• Shared variables provide the actual information that is communicated.

• Both of these can be complicated to use and may be incorrectly placed.

• Split-binary semaphores and baton passing are complex.

• Need higher level facilities that perform some of these details automatically.

• Get help from programming-language/compiler.

8.1 Critical Regions

• Declare which variables are to be shared, as in:

VAR v : SHARED INTEGER MutexLock v_lock;

• Access to shared variables is restricted to within a REGION statement, and within the region,

mutual exclusion is guaranteed.

REGION v DO v_lock.acquire()
// critical section . . . // x = v; (read) v = y (write)

END REGION v_lock.release()

• Simultaneous reads are impossible!

• Modify to allow reading of shared variables outside the critical region and modifications in

the region.

• Problem: reading partially updated information while a task is updating the shared variable

in the region.

• Nesting can result in deadlock.

VAR x, y : SHARED INTEGER

task1 task2
REGION x DO REGION y DO

.
REGION y DO REGION x DO

.
END REGION END REGION
.

END REGION END REGION

141

142 CHAPTER 8. INDIRECT COMMUNICATION

8.2 Conditional Critical Regions

• Introduce a condition that must be true as well as having mutual exclusion.

REGION v DO
AWAIT conditional-expression
. . .

END REGION

• E.g. The consumer from the producer-consumer problem.

VAR Q : SHARED QUEUE<INT,10>

REGION Q DO
AWAIT NOT EMPTY(Q) buffer not empty
take an item from the front of the queue

END REGION

• If the condition is false, the region lock is released and entry is started again (busy waiting).

• If prevent busy waiting, block on queue for shared variable, and on region exit, search for

true conditional-expression and unblock.

8.3 Monitor

• A monitor is an abstract data type that combines shared data with serialization of its modi-

fication.

_Monitor name {
shared data
members that see and modify the data

};

• A mutex member (short for mutual-exclusion member) is one that does NOT begin execu-

tion if there is another active mutex member.

◦ ⇒ a call to a mutex member may become blocked waiting entry, and queues of waiting

tasks may form.

◦ Public member routines of a monitor are implicitly mutex and other kinds of members

can be made explicitly mutex with qualifier (_Mutex).

• Basically each monitor has a lock which is Ped on entry to a monitor member and Ved on

exit.

8.4. SCHEDULING (SYNCHRONIZATION) 143

class Mon {
MutexLock mlock;
int v;

public:
int x(. . .) { // mutex member

mlock.acquire();
. . . // int temp = v;
mlock.release();
return v; // return temp;

}
};

• Recursive entry is allowed (owner mutex lock), i.e., one mutex member can call another or

itself.

• Unhandled exceptions raised within a monitor should always release the implicit monitor

locks so the monitor can continue to function.

• Destructor must be mutex, so ending a block with a monitor or deleting a dynamically allo-

cated monitor, blocks if thread in monitor.

• Atomic counter using a monitor:

_Monitor AtomicCounter {
int counter;

public:
AtomicCounter(int init = 0) : counter(init) {}
int inc() { counter += 1; return counter; } // mutex members
int dec() { counter -= 1; return counter; }

};

AtomicCounter a, b, c;
. . . a.inc(); . . . // accessed by multiple threads
. . . b.dec(); . . .
. . . c.inc(); . . .

8.4 Scheduling (Synchronization)

• A monitor may want to schedule tasks in an order different from the order in which they

arrive (bounded buffer, readers/write with staleness/freshness).

• There are two techniques: external and internal scheduling.

◦ external is scheduling tasks outside the monitor and is accomplished with the accept

statement.

◦ internal is scheduling tasks inside the monitor and is accomplished using condition

variables with signal & wait.

144 CHAPTER 8. INDIRECT COMMUNICATION

8.4.1 External Scheduling

• The accept statement controls which mutex members can accept calls.

• By preventing certain members from accepting calls at different times, it is possible to con-

trol scheduling of tasks.

• Each _Accept defines what cooperation must occur for the accepting task to proceed.

• E.g. Bounded Buffer

_Monitor BoundedBuffer {
int front = 0, back = 0, count = 0;
int elements[20];

public:
_Nomutex int query() const { return count; }
[_Mutex] void insert(int elem);
[_Mutex] int remove();

};
void BoundedBuffer::insert(int elem) {

if (count == 20) _Accept(remove);
elements[back] = elem;
back = (back + 1) % 20;
count += 1;

}
int BoundedBuffer::remove() {

if (count == 0) _Accept(insert);
int elem = elements[front];
front = (front + 1) % 20;
count -= 1;
return elem;

}

datashared

P

P

C

C

P

exit

remove

insert
calling

acceptor

remove

insert

• Queues of tasks form outside the monitor, waiting to be accepted into either insert or remove.

• An acceptor blocks all calls except a call to the specified mutex member(s) occurs.

• Accepted call is executed like a conventional member call.

• When the accepted task exits the mutex member (or waits), the acceptor continues.

• If the accepted task does an accept, it blocks, forming a stack of blocked acceptors.

• External scheduling is simple because unblocking (signalling) is implicit.

8.4.2 Internal Scheduling

• Scheduling among tasks inside the monitor.

• A condition is an external synchronization-lock (see Section 6.3.2, p. 103), i.e., queue of

waiting tasks:

uCondition x, y, z[5];

8.4. SCHEDULING (SYNCHRONIZATION) 145

• empty returns false if there are tasks blocked on the queue and true otherwise.

• front returns an integer value stored with the waiting task at the front of the condition queue.

• A task waits (blocks) by placing itself on a condition:

x.wait(); // wait(mutex, condition)

Atomically places the executing task at the back of the condition queue, and allows another

task into the monitor by releasing the monitor lock.

• A task on a condition queue is made ready by signalling the condition:

x.signal();

Removes and makes ready blocked task at front of the condition queue.

• Signaller does not block, so the signalled task must continue waiting until the signaller

exits or waits.

• Like a SyncLock, a signal on an empty condition is lost!

• E.g. Bounded Buffer (like binary semaphore solution):

_Monitor BoundedBuffer {
uCondition full, empty;
int front = 0, back = 0, count = 0;
int elements[20];

public:
_Nomutex int query() const { return count; }
void insert(int elem) {

if (count == 20) empty.wait();
elements[back] = elem;
back = (back + 1) % 20;
count += 1;
full.signal();

}
int remove() {

if (count == 0) full.wait();
int elem = elements[front];
front = (front + 1) % 20;
count -= 1;
empty.signal();
return elem;

}
};

P

PP

C

C

shared data

calling

signalled

signal

exit

wait
signalBlock

full

empty

Java

• wait() blocks the current thread, and restarts a signalled task or implicitly releases the moni-

tor lock.

• signal() unblocks the thread on the front of the condition queue after the signaller thread

blocks or exits.

• signalBlock() unblocks the thread on the front of the condition queue and blocks the sig-

naller thread.

• General Model

146 CHAPTER 8. INDIRECT COMMUNICATION

_Monitor Mon {
uCondition A, B;
. . .

public:
int X(. . .) {. . .}
void Y(. . .) {. . .}

};

d

b

b

a c

d

duplicateblocked taskactive task

a

c

exit

A

condition
B

stack

acceptor/
signalled

condition

X Y

entry
queue

arrival
order of

shared

variables

mutex
queues

• entry queue is FIFO list of calling tasks to the monitor.

• When to use external or internal scheduling?

• External is easier to specify and explain over internal with condition variables.

• However, external scheduling cannot be used if:

◦ scheduling depends on member parameter value(s), e.g., compatibility code for dating

◦ scheduling must block in the monitor but cannot guarantee the next call fulfills cooper-

ation

• Dating service

boys

b b

b

girls

g g g

g g

g

g / b
exchange

0

1

2

3
b

girlPhoneNo

boyPhoneNo

ccode

8.5. READERS/WRITER 147

_Monitor DatingService {
enum { CCodes = 20 }; // compatibility codes
uCondition girls[CCodes], boys[CCodes], exchange;
int girlPhoneNo, boyPhoneNo;

public:
int girl(int phoneNo, int ccode) {

if (boys[ccode].empty()) { // no compatible boy ?
girls[ccode].wait(); // wait for boy
girlPhoneNo = phoneNo; // make phone number available
exchange.signal(); // wake boy from chair

} else {
girlPhoneNo = phoneNo; // make phone number available
// signalBlock() & remove exchange
boys[ccode].signal(); // wake boy
exchange.wait(); // sit in chair

}
return boyPhoneNo;

}
int boy(int phoneNo, int ccode) {

// same as above, with boy/girl interchanged
}

};

• Also, possible to use signal with empty bench (ccode) as chair.

8.5 Readers/Writer

• Solution 3 (Section 6.4.4.3, p. 123), no bargers, 5 rules, not temporal

_Monitor ReadersWriter {
int rcnt = 0, wcnt = 0;
uCondition readers, writers;

public:
void startRead() {

if (wcnt != 0 | | ! writers.empty()) readers.wait();
rcnt += 1;
readers.signal();

}
void endRead() {

rcnt -= 1;
if (rcnt == 0) writers.signal();

}

148 CHAPTER 8. INDIRECT COMMUNICATION

void startWrite() {
if (wcnt !=0 | | rcnt != 0) writers.wait();
wcnt = 1;

}
void endWrite() {

wcnt = 0;
if (! readers.empty()) readers.signal();
else writers.signal();

}
};

• Problem: has the same protocol as P and V.

ReadersWriter rw;
readers writers

rw.startRead() rw.startWrite() // 2-step protocol
// read // write
rw.endRead() rw.endWrite()

• Simplify protocol:

ReadersWriter rw;
readers writers

rw.read(. . .) rw.write(. . .) // 1-step protocol

◦ Implies only one read/write action, or pass pointer to read/write action.

• Alternative interface:

_Monitor ReadersWriter {
_Mutex void startRead() { . . . }
_Mutex void endRead() { . . . }
_Mutex void startWrite() { . . . }
_Mutex void endWrite() { . . . }

public:
_Nomutex void read(. . .) { // no const or mutable

startRead(); // acquire mutual exclusion
// read, no mutual exclusion
endRead(); // release mutual exclusion

}
_Nomutex void write(. . .) { // no const or mutable

startWrite() // acquire mutual exclusion
// write
endWrite() // release mutual exclusion

}
};

• Alternative interface, and remove wcnt (barging prevention):

8.5. READERS/WRITER 149

_Monitor ReadersWriter {
_Mutex void startRead() {

if (! writers.empty()) readers.wait();
rcnt += 1;
readers.signal();

}
_Mutex void endRead() { . . . }

public:
_Nomutex void read(. . .) { // no const or mutable

startRead(); // acquire mutual exclusion
// read, no mutual exclusion
endRead(); // release mutual exclusion

}
void write(. . .) { // acquire mutual exclusion

if (rcnt != 0) writers.wait(); // release/reacquire
// write, mutual exclusion
if (! readers.empty()) readers.signal();
else writers.signal();

}
};

• Solution 4 (Section 6.4.4.4, p. 123), condition shadow queue with type uintptr_t data.

_Monitor ReadersWriter {
int rcnt = 0, wcnt = 0;
uCondition RWers;
enum RW { READER, WRITER };

public:
void startRead() {

if (wcnt !=0 | | ! RWers.empty()) RWers.wait(READER);
rcnt += 1;
if (! RWers.empty() && RWers.front() == READER) RWers.signal();

}
void endRead() {

rcnt -= 1;
if (rcnt == 0) RWers.signal();

}

void startWrite() {
if (wcnt != 0 | | rcnt != 0) RWers.wait(WRITER);
wcnt = 1;

}
void endWrite() {

wcnt = 0;
RWers.signal();

}
};

150 CHAPTER 8. INDIRECT COMMUNICATION

READER READERREADERWRITER WRITER

RWers

task1

blocked blocked blocked

task2 task3

blocked blocked

task4 task5

• Use shadow queue to solve dating service, i.e., shadow with phone number.

• µC++ uCondLock and uSemaphore also support shadow queues with type uintptr_t data.

• Solution 8, external scheduling

_Monitor ReadersWriter {
int rcnt = 0, wcnt = 0;

public:
void endRead() {

rcnt -= 1;
}
void endWrite() {

wcnt = 0;
}
void startRead() {

if (wcnt > 0) _Accept(endWrite);
rcnt += 1;

}
void startWrite() {

if (wcnt > 0) _Accept(endWrite);
else while (rcnt > 0) _Accept(endRead);
wcnt = 1;

}
};

• Why has the order of the member routines changed?

8.6 Exceptions

• An exception raised in a monitor member propagates to the caller’s thread.

_Monitor M {
public:

void mem1() {
. . . if (. . .) _Throw E(); . . . // E goes to caller

} // uRendezvousFailure goes to “this”
void mem2() {

try {
. . . if (. . .) _Accept(mem1); . . .

} catch(uMutexFailure::RendezvousFailure &) { // implicitly enabled
// deal with rendezvous failure

} // try
}

};

8.7. NESTED MONITOR CALLS 151

• Caller in M::mem1 gets exception E propagated on its stack.

• On exiting M::mem1, caller implicitly raises non-local RendezvousFailure exception at mon-

itor acceptor’s thread to identify failed cooperation.

• RendezvousFailure always enabled ⇒ _Enable block unnecessary.

• For multiple _Accept clauses

_Accept(mem2 | | mem3 | | . . .);

flag variable required to know which member failed.

8.7 Nested Monitor Calls

• Nested monitor problem: acquire monitor (lock) M1, call to monitor M2, and wait on

condition in M2.

M1

acquire
T0

M2

acquire
block
release

• Monitor M2’s mutex lock is released by wait, but monitor M1’s monitor lock is NOT released

⇒ potential deadlock.

• Releasing all locks can inadvertently release a lock, e.g., incorrectly release M0 before M1.

• Same problem occurs with locks.

• Called lock composition problem.

• Nested monitor used as guardian lock for readers/writer problem (like external scheduling

RW page 150).

_Monitor RW {
_Monitor RWN {

uCondition bench;
int rcnt = 0;

public:
void startRead() { rcnt += 1; }
void endRead() {

rcnt -= 1;
if (rcnt == 0) bench.signal();

}
void startEndWrite() {

if (rcnt > 0) bench.wait(); // blocking holding rw
// sequential write

}
} rwn;

152 CHAPTER 8. INDIRECT COMMUNICATION

_Mutex void mutexRead() { rwn.startRead(); }
public:

void write() { rwn.startEndWrite(); }
_Nomutex void read() {

mutexRead();
// concurrent reads
rwn.endRead();

}
};

• If the writer waits in rwn, it prevent both readers and writers acquiring rw, which prevents

starvation and forces FIFO ordering.

8.8 Intrusive Lists

• Non-contiguous variable-length data-structures, e.g., list, dictionary, normally require dy-

namic allocation as the structure increases/deceases when adding/deleting nodes.

• Three kinds of collections: copy data, copy pointer, and intrusive pointers:

data1 data2

data1 data2

data1 data2

copy data copy pointer to data intrusive links in data

data1 data2

heapheap

global/stack/heap

copy creates a collection node with link fields, ⇒ dynamic allocation for links and possibly

data, copies data and/or data-pointer into node, and links node into collection.

intrusive assumes a node with data and link fields, ⇒ no dynamic allocation for collection

links or copying.

• Programmer manages node lifetime for copy pointer and intrusive.

• µC++ provides intrusive data-structures allowing global/stack/heap nodes and no copying.

struct Node : public uColable {
int i;
Node(int i) : i(i) {}

};
int main() {

Node n1{ 1 }, n2{ 2 }, n3{ 3 }; // stack nodes
uStack<Node> s;
s.push(&n1); s.push(&n2); s.push(&n3); // no dynamic allocation
Node * sp;
for (uStackIter<Node> si(s); si >> sp;) cout << sp->i << " ";
cout << endl;

}

8.9. COUNTING SEMAPHORE, V, P VS. CONDITION, SIGNAL, WAIT 153

• µC++ implementation uses private intrusive links for non-copyable objects like a coroutine

or task, e.g., tasks on ready queue.

• Intrusive links have two formats: one link field (uColable) for a collection, and two link

fields (uSeqable) for a sequence.

data

collection node

data

sequence node

class stacknode : public uColable { . . . }
class queuenode : public uColable { . . . }
class seqnode : public uSeqable { . . . }

• Template classes uStack/uQueue (singlely linked) are collections and uSequence (doublely

linked) is a sequence.

• uSeqable node appears in sequence/collection; uColable node appears only in a collection.

• Each kind of intrusive list has associated iterators: uStackIter, uQueueIter, uSeqIter.

• See µC++ reference manual Appendix C for details and examples.

• Concurrency pattern shows how threads use intrusive lists to prevent dynamic allocation.

if (. . .) {
Node n{ . . . } // allocate on thread stack
queue.add(n);
// block
queue.drop(); // node n must be at head/tail of list

} // automatically free n

• Lifetime of node is duration of blocked thread (see above pattern in shadow queue page 125

and private semaphore page 129).

8.9 Counting Semaphore, V, P vs. Condition, Signal, Wait

• There are several important differences between these mechanisms:

◦ P only blocks if semaphore = 0, wait always blocks

◦ V before P affects the P, while signal before wait is lost (no state)

◦ multiple Vs may start multiple tasks simultaneously, while multiple signals only start

one task at a time because each task must exit serially through the monitor

• Possible to simulate P and V using a monitor:

https://plg.uwaterloo.ca/~usystem/pub/uSystem/uC++.pdf

154 CHAPTER 8. INDIRECT COMMUNICATION

_Monitor semaphore {
int sem;
uCondition semcond;

public:
semaphore(int cnt = 1) : sem(cnt) {}
void P() {

if (sem == 0) semcond.wait();
sem -= 1;

}
void V() {

sem += 1;
semcond.signal();

}
};

• Can this simulation be reduced?

8.10 Monitor Types

• explicit scheduling occurs when:

◦ An accept statement blocks the active task on the acceptor stack and makes a task ready

from the specified mutex member queue.

◦ A signal moves a task from the specified condition to the signalled stack.

• implicit scheduling occurs when a task waits in or exits from a mutex member, and a new

task is selected first from the A/S stack, then the entry queue.

• explicit scheduling
internal scheduling (signal)

external scheduling (accept)

implicit scheduling monitor selects (wait/exit)

• Monitors are classified by the implicit scheduling (who gets control) of the monitor when a

task waits or signals or exits.

• Implicit scheduling can select from the calling (C), signalled (W), and signaller (S) queues.

8.10. MONITOR TYPES 155

mutex

object

variables
conditions

signalled (W)

signaller (S)

exit
blocked taskactive task

calling (C)

◦ Assigning different relative priorities to these queues creates different monitors (e.g.,

C < W < S).

relative priority

1 C < W < S Useful, has Prevention

2 C < S < W no barging

3 C = W < S Usable, needs Avoidance

4 C = S < W barging, prevent starvation

5 C = W = S Rejected, Confusing

6 C < W = S arbitrary selection

7 S = W < C Rejected, Unsound

8 W < S = C uncontrolled barging, starvation

9 W < C < S

10 S < W = C

11 S < C < W

12 W < S < C

13 S < W < C

• Implicit Signal

◦ Monitors either have an explicit signal (statement) or an implicit signal (automatic

signal).

◦ The implicit signal monitor has no condition variables or explicit signal statement.

◦ Instead, there is a waitUntil statement, e.g.:

waitUntil logical-expression

156 CHAPTER 8. INDIRECT COMMUNICATION

◦ The implicit signal causes a task to wait until the conditional expression is true.

_Monitor BoundedBuffer {
int front = 0, back = 0, count = 0;
int elements[20];

public:
_Nomutex int query() const { return count; }
void insert(int elem) {

waitUntil count != 20; // not in uC++
elements[back] = elem;
back = (back + 1) % 20;
count += 1;

}
int remove() {

waitUntil count != 0; // not in uC++
int elem = elements[front];
front = (front + 1) % 20;
count -= 1;
return elem;

}
};

• Additional restricted monitor-type requiring the signaller exit immediately from monitor

(i.e., signal ⇒ return), called immediate-return signal.

◦ not powerful enough to handle all cases, e.g., dating service, but optimizes the most

common case of signal before return.

• Remaining monitor types:

signal type priority no priority

Blocking Priority Blocking (Hoare) No Priority Blocking

C < S < W (µC++ signalBlock) C = S < W

Nonblocking Priority Nonblocking No Priority Nonblocking

C < W < S (µC++ signal) C = W < S (Java/C#)

Implicit Priority No Priority

Signal Implicit Signal Implicit Signal

C < W C = W

◦ no-priority blocking requires the signaller task to recheck the waiting condition in case

of a barging task.

⇒ use a while loop around a signal

◦ no-priority non-blocking requires the signalled task to recheck the waiting condition

in case of a barging task.

⇒ use a while loop around a wait

◦ implicit (automatic) signal is good for prototyping but have poor performance.

8.11. JAVA MONITOR 157

◦ priority-nonblocking has no barging and optimizes signal before return (supply coop-

eration).

◦ priority-blocking has no barging and handles internal cooperation within the monitor

(wait for cooperation).

• coroutine monitor (_Cormonitor)

◦ coroutine with implicit mutual exclusion on calls to specified member routines:

_Mutex _Coroutine C { // _Cormonitor
void main() {

. . . suspend() . . .

. . . suspend() . . .
}

public:
void m1(. . .) { . . . resume(); . . . } // mutual exclusion
void m2(. . .) { . . . resume(); . . . } // mutual exclusion
. . . // destructor is ALWAYS mutex

};

◦ can use resume(), suspend(), condition variables (wait(), signal(), signalBlock()) or

_Accept on mutex members.

◦ coroutine can now be used by multiple threads, e.g., coroutine print-formatter accessed

by multiple threads.

8.11 Java Monitor

• Java has synchronized class members (i.e., _Mutex members but incorrectly named), and a

synchronized statement.

• All classes have one implicit condition variable and these routines to manipulate it:

public wait();
public notify();
public notifyAll()

• Java concurrency library has multiple conditions but incompatible with language condition

(see Section 11.5.1, p. 212).

• Internal scheduling is no-priority nonblocking ⇒ barging

◦ wait statements must be in while loops to recheck conditions.

• Bounded buffer:

158 CHAPTER 8. INDIRECT COMMUNICATION

class Buffer {
// buffer declarations
private int count = 0;
public synchronized void insert(int elem) {

while (count == Size) wait(); // busy-waiting
// add to buffer
count += 1;
if (count == 1) notifyAll();

}
public synchronized int remove() {

while (count == 0) wait(); // busy-waiting
// remove from buffer
count -= 1;
if (count == Size - 1) notifyAll();
return elem;

}
}

• Only one condition queue, producers/consumers wait together ⇒ unblock all tasks.

• Only one condition queue ⇒ certain solutions are difficult or impossible.

• Erroneous Java implementation of barrier:

class Barrier { // monitor
private int N, count = 0;
public Barrier(int N) { this.N = N; }
public synchronized void block() {

count += 1; // count each arriving task
if (count < N)

try { wait(); } catch(InterruptedException e) {}
else // barrier full

notifyAll(); // wake all barrier tasks
count -= 1; // uncount each leaving task

}
}

◦ Nth task does notifyAll, leaves monitor and performs its ith step, and then races back

(barging) into the barrier before any notified task restarts.

◦ It sees count still at N and incorrectly starts its ith+1 step before the current tasks have

completed their ith step.

• Fix by modifying code for Nth task to set count to 0 (barging avoidance) and removing

count -= 1.

else { // barrier full
count = 0; // reset count
notifyAll(); // wake all barrier tasks

}

• Technically, still wrong because of spurious wakeup ⇒ requires loop around wait.

8.11. JAVA MONITOR 159

if (count < N)
while (???) // cannot be count < N as count is always < N

try { wait(); } catch(InterruptedException e) {}

• Requires more complex implementation.

class Barrier { // monitor
private int N, count = 0, generation = 0;
public Barrier(int N) { this.N = N; }
public synchronized void block() {

int mygen = generation;
count += 1; // count each arriving task
if (count < N) // barrier not full ? => wait

while (mygen == generation)
try { wait(); } catch(InterruptedException e) {}

else { // barrier full
count = 0; // reset count
generation += 1; // next group
notifyAll(); // wake all barrier tasks

}
}

}

• Misconception of building condition variables in Java with nested monitors:

class Condition { // try to build condition variable
public synchronized void Wait() {

try { wait(); } catch(InterruptedException ex) {};
}
public synchronized void Notify() { notify(); }

}
class BoundedBuffer {

// buffer declarations
private Condition full = new Condition(), empty = new Condition();
public synchronized void insert(int elem) {

while (count == NoOfElems) empty.Wait(); // block producer
// add to buffer
count += 1;
full.Notify(); // unblock consumer

}
public synchronized int remove() {

while (count == 0) full.Wait(); // block consumer
// remove from buffer
count -= 1;
empty.Notify(); // unblock producer
return elem;

}
}

• Deadlocks at empty.Wait()/full.Wait() as buffer monitor-lock is not released.

160 CHAPTER 8. INDIRECT COMMUNICATION

9 Direct Communication

• Monitors work well for passive objects that require mutual exclusion because of sharing.

• However, communication among tasks with a monitor is indirect.

• Problem: point-to-point with reply indirect communication:

monitorTask1 Task2

copy data

copy data

copy result

copy result

process
data

• Point-to-point with reply direct communication:

rendezvous
copy data

copy result

Task1 Task2

process data

• Tasks can communicate directly by calling each others member routines.

9.1 Task

• A task is like a coroutine because it has a distinguished member, (task main), which has its

own execution state.

• A task is unique because it has a thread of control, which begins execution in the task main

when the task is created.

• A task is like a monitor because it provides mutual exclusion (and synchronization) so only

one thread is active in the object.

◦ public members of a task are implicitly mutex and other kinds of members can be made

explicitly mutex.

161

162 CHAPTER 9. DIRECT COMMUNICATION

◦ external scheduling allows direct calls to mutex members (task’s thread blocks while

caller’s executes).

◦ without external scheduling, tasks must call out to communicate ⇒ third party, or

somehow emulate external scheduling with internal.

• In general, basic execution properties produce different abstractions:

object properties member routine properties

thread stack No S/ME S/ME

No No 1 class 2 monitor

No Yes 3 coroutine 4 coroutine-monitor

Yes No 5 reject 6 reject

Yes Yes 7 reject? 8 task

• When thread or stack is missing it comes from calling object.

• Abstractions are not ad-hoc, rather derived from basic properties.

• Each of these abstractions has a particular set of problems it can solve, and therefore, each

has a place in a programming language.

9.2 Scheduling

• A task may want to schedule access to itself by other tasks in an order different from the

order in which requests arrive.

• As for monitors, there are two techniques: external and internal scheduling.

9.2.1 External Scheduling

• As for a monitor (see Section 8.4.1, p. 144), the accept statement can be used to control

which mutex members of a task can accept calls.

9.2. SCHEDULING 163

_Task BoundedBuffer {
int front = 0, back = 0, count = 0;
int Elements[20];

public:
_Nomutex int query() const { return count; }
void insert(int elem) {

Elements[back] = elem;
back = (back + 1) % 20;
count += 1;

}
int remove() {

int elem = Elements[front];
front = (front + 1) % 20;
count -= 1;
return elem;

}
private:

void main() {
for (;;) { // INFINITE LOOP!!!

// _Accept(insert || remove);
_When (count != 20) _Accept(insert) { // after call
} or _When (count != 0) _Accept(remove) { // after call
} // _Accept

}
}

};

• _Accept(m1 | | m2) S1 ≡ _Accept(m1) S1; or _Accept(m2) S1;

if (C1 | | C2) S1 ≡ if (C1) S1; else if (C2) S1; // S2

• Extended version allows different _When/code after call for each accept.

• The _When clause is like the condition of conditional critical region:

◦ The condition must be true (or omitted) and a call to the specified member must exist

before a member is accepted.

• If all the accepts are conditional and false, the statement does nothing (like switch with no

matching case).

• If some conditionals are true, but there are no outstanding calls, the acceptor is blocked until

a call to an appropriate member is made.

• If several members are accepted and outstanding calls exist to them, a call is selected based

on the order of the _Accepts.

◦ Hence, the order of the _Accepts indicates their relative priority for selection if there

are several outstanding calls.

• Is there a potential starvation problem?

164 CHAPTER 9. DIRECT COMMUNICATION

• Why are accept statements moved from member routines to the task main?

• Why is BoundedBuffer::main defined at the end of the task?

• Equivalence using if statements:

if (0 < count && count < 20) _Accept(insert | | remove); // not full/empty
else if (count < 20) _Accept(insert); // not full
else /* if (0 < count) */ _Accept(remove); // not empty

• Generalize from 2 to 3 conditionals/members:

if (C1 && C2 && C3) _Accept(M1 | | M2 | | M3);
else if (C1 && C2) _Accept(M1 | | M2);
else if (C1 && C3) _Accept(M1 | | M3);
else if (C2 && C3) _Accept(M2 | | M3);
else if (C1) _Accept(M1);
else if (C2) _Accept(M2);
else if (C3) _Accept(M3);

• Necessary to ensure that for every true conditional, only the corresponding members are

accepted.

• 2N −1 if statements needed to simulate N accept clauses.

• The acceptor is pushed on the top of the A/S stack and normal implicit scheduling occurs (C

< W < S).

d

b

b

a c

d

duplicateblocked taskactive task

a

c

exit

A

condition
B

stack

acceptor/
signalled

condition

X Y

entry
queue

arrival
order of

shared

variables

mutex
queues

9.2. SCHEDULING 165

• Once accepted call completes or caller wait()s, the statement after the accepting _Accept

clause is executed and the accept statement is complete.

• If there is a terminating _Else clause and no _Accept can be executed immediately, the

terminating _Else clause is executed.

_Accept(. . .) {
} or _Accept(. . .) {
} _Else { . . . } // executed if no callers

◦ Hence, the terminating _Else clause allows a conditional attempt to accept a call with-

out the acceptor blocking.

• To achieve greater concurrency in the bounded buffer, change to:

void insert(int elem) {
Elements[back] = elem;

}
int remove() {

return Elements[front];
}

private:
void main() {

for (;;) {
_When (count != 20) _Accept(insert) {

back = (back + 1) % 20;
count += 1;

} or _When (count != 0) _Accept(remove) {
front = (front + 1) % 20;
count -= 1;

} // _Accept
}

}

9.2.2 Internal Scheduling

• Scheduling among tasks inside the monitor.

• As for monitors, condition, signal and wait are used.

166 CHAPTER 9. DIRECT COMMUNICATION

_Task BoundedBuffer {
uCondition full, empty;
int front = 0, back = 0, count = 0;
int Elements[20];

public:
_Nomutex int query() const { return count; }
void insert(int elem) {

if (count == 20) empty.wait();
Elements[back] = elem;
back = (back + 1) % 20;
count += 1;
full.signal();

}

int remove() {
if (count == 0) full.wait();
int elem = Elements[front];
front = (front + 1) % 20;
count -= 1;
empty.signal();
return elem;

}

private:
void main() {

for (;;) {
_Accept(insert | | remove);
// do other work

}
}

};

• Requires combination of internal and external scheduling.

• Rendezvous is logically pending when wait restarts _Accept task, but post _Accept

statement still executed (no RendezvousFailure).

◦ Acceptor must eventually complete rendezvous for waiting caller.

• Try moving code to achieve greater concurrency.

9.2. SCHEDULING 167

void insert(int elem) {
if (count == 20) empty.wait(); // only wait if necessary
Elements[back] = elem;

}
int remove() {

if (count == 0) full.wait(); // only wait if necessary
return Elements[front];

}
private:

void postInsert() { // helper members
back = (back + 1) % size;
count += 1;

}
void postRemove() {

front = (front + 1) % size;
count -= 1;

}

void main() {
for (;;) {

_Accept(insert) {
if (count != 20) { // producer did not wait ?

postInsert();
if (! full.empty()) { // waiting consumers ?

full.signal(); // wake and adjust
postRemove();

}
}

} or _Accept(remove) {
if (count != 0) { // consumer did not wait ?

postRemove();
if (! empty.empty()) { // waiting producers ?

empty.signal(); // wake and adjust
postInsert();

}
}

} // _Accept
} // for

}

• Must prevent starvation by producers (use _When or flip _Accept clauses).

• Must change signal to signalBlock.

168 CHAPTER 9. DIRECT COMMUNICATION

P

P

C

P PB

P

PP

C

B

shared data shared data

calling

signalled

signal

exit
full

empty

calling

signalled

exit
full

empty

signalBlock

◦ Signalled tasks cannot leave because buffer task continues in monitor.

◦ Signal-blocked tasks leave immediately because buffer-task blocks.

9.2.3 Accepting the Destructor

• Common way to terminate a task is to have a stop member:

_Task BoundedBuffer {
public:

. . .
void stop() {} // empty

private:
void main() {

// start up
for (;;) {

_Accept(stop) { // terminate ?
break;

} or _When (count != 20) _Accept(insert) {
. . .

} or _When (count != 0) _Accept(remove) {
. . .

} // _Accept
}
// close down

}
}

• Call stop when task is to stop:

int main() {
BoundedBuffer buf;
// create producer & consumer tasks
// delete producer & consumer tasks
buf.stop(); // no outstanding calls to buffer
// maybe do something else with buf (print statistics)

} // delete buf

9.3. INCREASING CONCURRENCY 169

• If termination and deallocation follow one another, accept destructor:

void main() {
for (;;) {

_Accept(~BoundedBuffer) {
break;

} or _When (count != 20) _Accept(insert) { . . .
} or _When (count != 0) _Accept(remove) { . . .
} // _Accept

}
// close down

}

• However, the semantics for accepting a destructor are different from accepting a normal

mutex member.

• When the call to the destructor occurs, the caller blocks immediately if there is thread active

in the task because a task’s storage cannot be deallocated while in use.

• When the destructor is accepted, the caller is blocked and pushed onto the A/S stack instead

of the acceptor.

• Therefore, control restarts at the accept statement without executing the destructor member.

• Allows mutex object to clean up before termination (monitor or task).

• Task now behaves like a monitor because its thread is halted.

• Only when the caller to the destructor is popped off the A/S stack by the implicit scheduling

is the destructor executed.

• The destructor can reactivate any blocked tasks on condition variables and/or the accep-

tor/signalled stack.

9.3 Increasing Concurrency

• 2 task involved in direct communication: client (caller) & server (callee)

• possible to increase concurrency on both the client and server side

9.3.1 Server Side

• Server manages a resource and server thread should introduce additional concurrency (as-

suming no return value).

170 CHAPTER 9. DIRECT COMMUNICATION

No Concurrency Some Concurrency

_Task server1 {
public:

void mem1(. . .) { S1 }
void mem2(. . .) { S2 }
void main() {

. . .
_Accept(mem1);
or _Accept(mem2);

}
}

_Task server2 {
public:

void mem1(. . .) { S1.copy-in }
int mem2(. . .) { S2.copy-out }
void main() {

. . .
_Accept(mem1) { S1.work }
or _Accept(mem2) { S2.work };

}
}

• No concurrency in left example as server is blocked, while client does work.

• Alternatively, client blocks in member, server does work, and server unblocks client.

• Some concurrency possible in right example if service can be factored into administrative

(S1.copy) and work (S1.work) code.

◦ i.e., move code from the member to statement executed after member is accepted.

• Small overlap between client and server (client gets away earlier) increasing concurrency.

9.3.1.1 Internal Buffer

• The previous technique provides buffering of size 1 between the client and server.

• Use a larger internal buffer to allow clients to get in and out of the server faster?

• I.e., an internal buffer can be used to store the arguments of multiple clients until the server

processes them.

• However, there are several issues:

◦ Unless the average time for production and consumption is approximately equal with

only a small variance, the buffer is either always full or empty.

◦ Because of the mutex property of a task, no calls can occur while the server is working,

so clients cannot drop off their arguments.

The server could periodically accept calls while processing requests from the buffer

(awkward).

◦ Clients may need to wait for replies, in which case a buffer does not help unless there

is an advantage to processing requests in non-FIFO order.

• Only way to free server’s thread to receive new requests and return finished results to clients

is add another thread.

• Additional thread is a worker task that calls server to get work from buffer and return results

to buffer.

• Note, customer (client), manager (server) and employee (worker) relationship.

9.3. INCREASING CONCURRENCY 171

• Number of workers has to balance with number of clients to maximize concurrency (bounded-

buffer problem).

9.3.1.2 Administrator

• An administrator is a server managing multiple clients and worker tasks.

• The key is that an administrator does little or no “real” work; its job is to manage.

• Management means delegating work to others, receiving and checking completed work, and

passing completed work on.

• An administrator is called by others, so an administrator is always accepting calls.

Administrator
call

return

• An administrator makes no call to another task because calling may block the administrator.

• An administrator usually maintains a list of work to pass to worker tasks.

• Typical workers are:

timer - prompt the administrator at specified time intervals

notifier - perform a potentially blocking wait for an external event (key press)

simple worker - do work given to them by and return the result to the administrator

complex worker - do work given to them by administrator and interact directly with client

of the work

courier - perform a potentially blocking call on behalf of the administrator

172 CHAPTER 9. DIRECT COMMUNICATION

call

notifier
call

event

call

Admin
call

courier Admin

worker1 worker2 workern

timer

calls

Clienti

Clients

result

signalBlock

(arg)

work
(return)

use

return return

call

return

9.3.2 Client Side

• While a server can attempt to make a client’s delay as short as possible, not all servers do it.

• In some cases, a client may not have to wait for the server to process a request (pro-

ducer/consumer problem)

• This can be accomplished by an asynchronous call from the client to the server, where the

caller does not wait for the call to complete.

• Asynchronous call requires implicit buffering between client and server to store the client’s

arguments from the call.

• µC++ provides only synchronous call, i.e., the caller is delayed from the time the arguments

are delivered to the time the result is returned (like a procedure call).

• It is possible to build asynchronous facilities out of the synchronous ones and vice versa.

9.3.2.1 Returning Values

• If a client only drops off data to be processed by the server, the asynchronous call is simple.

• However, if a result is returned from the call, i.e., from the server to the client, the asyn-

chronous call is significantly more complex.

• To achieve asynchrony in this case, a call must be divided into two calls:

callee.start(arg); // provide arguments
// caller performs other work asynchronously
result = callee.wait(); // obtain result

• Not same as START/WAIT because server thread exists.

9.3. INCREASING CONCURRENCY 173

◦ many-to-one versus one-to-one

• Time between calls allows calling task to execute asynchronously with task performing op-

eration on the caller’s behalf.

• If result is not ready when second call is made

◦ caller blocks

◦ caller has to call again (poll).

• However, this requires a protocol so when the client makes the second call, the correct result

can be found and returned.

9.3.2.2 Tickets

• One form of protocol is the use of a token or ticket.

• The first part of the protocol transmits the arguments specifying the desired work and a ticket

(like a laundry ticket) is returned immediately.

• The second call pulls the result by passing the ticket.

• The ticket is matched with a result, and the result is returned if available or the caller is

blocks or polls until the result is available.

• However, protocols are error prone because the caller may not obey the protocol (e.g., never

retrieve a result, use the same ticket twice, forged ticket).

9.3.2.3 Call-Back Routine

• Another protocol is to transmit (register) a routine on the initial call.

• When the result is ready, the routine is called by the task generating the result, passing it the

result.

• The call-back routine cannot block the server; it can only store the result and set an indicator

(e.g., V a semaphore) known to the client.

• The original client must poll the indicator or block until the indicator is set.

• The advantage is that the server can push the result back to the client faster (nagging the

client to pickup).

• Also, the client can write the call-back routine, so they can decide to poll or block or do both.

174 CHAPTER 9. DIRECT COMMUNICATION

9.3.2.4 Futures

• A future provides the same asynchrony as above but without an explicit protocol.

• The protocol becomes implicit between the future and the task generating the result.

• Further, it removes the difficult problem of when the caller should try to retrieve the result.

• In detail, a future is an object that is a subtype of the result type expected by the caller.

• Instead of two calls as before, a single call is made, passing the appropriate arguments, and

a future is returned.

future = callee.work(arg); // provide arguments, return future
// perform other work asynchronously
i = future + . . .; // obtain result, may block if not ready

• The future is returned immediately and it is empty.

• The caller “believes” the call completed and continues execution with an empty result value.

• The future is filled in at some time in the “future”, when the result is calculated.

• If the caller tries to use the future before its value is filled in, the caller is implicitly blocked.

• The general design for a future is:

class Future : public ResultType {
friend _Task server; // allow server to access internal state
ResultType result; // place result here
uSemaphore avail; // wait here if no result
Future * link; // intrusive data structure

public:
Future() : avail(0) {}

ResultType get() {
avail.P(); // wait for result
return result;

}
};

◦ the semaphore is used to block the caller if the future is empty

◦ the link field is used to chain the future onto a server work-list.

• Unfortunately, the syntax for retrieving the value of the future is awkward as it requires a

call to the get routine.

• Also, in languages without garbage collection, the future must be explicitly deleted.

• µC++ provides two forms of template futures, which differ in storage management (like Ac-

tors/Messages).

9.3. INCREASING CONCURRENCY 175

◦ Explicit-Storage-Management future (Future_ESM<T>) must be allocated and deallo-

cated explicitly by the client.

◦ Implicit-Storage-Management future (Future_ISM<T>) automatically allocates and frees

storage (when future no longer in use, GC).

• Focus on Future_ISM as simpler to use but less efficient in certain cases.

• Basic set of operations for both types of futures, divided into client and server operations.

Client

• Future value:

#include <uFuture.h>
Server server; // server thread handles async calls
Future_ISM<int> f[10];
for (int i = 0; i < 10; i += 1) {

f[i] = server.perform(i); // asynchronous server call
}
// work asynchronously while server processes requests
for (int i = 0; i < 10; i += 1) { // retrieve async results

int v = f[i](); // synchronize, read, and copy
osacquire(cout) << v << ’ ’ << f[i] + i << endl; // cheap read after synchronize

}
f[3] = 3; // DISALLOWED: OTHER THREADS READING VALUE
. . .
f[3].reset(); // reset future => empty and can be reused (be careful)
. . .
f[3].cancel(); // attempt to stop server and clients from usage

• Why not combine: osacquire(cout) << f[i]() << ’ ’ << f[i] + 1 << endl;?

• Future pointer:

#include <uFuture.h>
Server server; // server thread handles async calls
int val
Future_ISM<int *> fval;
fval = server.perform(val); // async call to server (change val by reference)
// work asynchronously while server processes requests
osacquire(cout) << *fval() << endl; // synchronize on retrieve value
val = 3; // ALLOWED: BUT FUTURE POINTER IS STILL READ-ONLY

available – returns true if asynchronous call completed, otherwise false. complete ⇒ result

available, server raised exception, or call cancelled

operator() – (function call) returns read-only copy of future result.

block if future unavailable; raise exception if exception returned by server.

future result can be retrieved multiple times by any task (⇒ read-only) until the future is

reset or destroyed.

176 CHAPTER 9. DIRECT COMMUNICATION

operator T – (conversion to type T) returns read-only copy of future result.

Only allowed after blocking access or call to available returns true.

Low-cost way to get future result after the result is delivered; raise exception if exception

returned by server.

reset – mark future as empty ⇒ current future value is unavailable ⇒ future can be reused.

cancel – attempts to cancel the asynchronous call the future refers to.

Clients waiting for the result are unblocked, and exception of type uCancellation is raised

at them.

cancelled – returns true if the future is cancelled and false otherwise.

Server

_Task Server {
struct Work {

int i; // argument(s)
Future_ISM<int> result; // result
Work(int i) : i(i) {}

};
Future_ISM<int> perform(int i) { // called by clients

Work *w = new Work(i); // create work request
requests.push_back(w); // add to list of requests
return w->result; // return future in request

}

// server or server’s worker does
Work *w = requests.front(); // take next work request
requests.pop_front(); // remove request
int r = . . . w->i . . .; // compute result using argument w->i
w->result.delivery(r); // insert result into future
delete w; // CLIENT FUTURE NOT DELETED (REF COUNTING)

};

delivery(T result) – copy result to be returned to the client(s) into the future, unblocking

clients waiting for the result.

delivery(uBaseEvent * cause) – copy a server-generated exception into the future, and the

exception cause is thrown at waiting clients.

_Event E {};
Future_ISM<int> result;
result.delivery(new E); // deleted by future

exception deleted by reset or when future deleted

9.3. INCREASING CONCURRENCY 177

Complex Future Access (client side)

• select statement waits for one or more heterogeneous futures based on logical selection-

criteria.

• Simplest select statement has a single _Select clause, e.g.:

_Select(selector-expression);

• Selector-expression must be satisfied before execution continues.

• For a single future, the expression is satisfied if and only if the future is available.

_Select(f1);
x = f1; // value or exception

≡ x = f1(); // value or exception

• Selector is only select blocked until f1.available() is true.

• Does not return future value or throw exception.

• Multiple futures may appear in a compound selector-expression, related using logical oper-

ators | | and &&:

_Select(f1 | | f2 && f3);

• Normal operator precedence applies: _Select((f1 | | (f2 && f3))).

• Execution waits until either future f1 is available or both futures f2 and f3 are available.

• For any selector expression containing an | | operator, some futures in the expression may be

unavailable after the selector expression is satisfied.

• E.g., in the above, if future f1 becomes available, neither, one or both of f2 and f3 may be

available.

• or and and keywords relate the _Select clauses like operators | | and && relate futures in a

select-expression, including precedence.

_Select(f1 | | f2 && f3); ≡ _Select(f1)
or _Select(f2)
and _Select(f3);

• Parentheses may be used to specify evaluation order.

_Select((f1 | | (f2 && f3)) ≡ (_Select(f1)
or (_Select(f2)
and _Select(f3)));

178 CHAPTER 9. DIRECT COMMUNICATION

• A _Select clause may be guarded with a logical expression and have code executed after a

future receives a value:

_When (conditional-expression) _Select(f1)
statement-1 // action, future available

or
_When (conditional-expression) _Select(f2)

statement-2 // action, future available
and _When (conditional-expression) _Select(f3)

statement-3 // action, future available

• Each _Select-clause action is executed when its sub-selector expression is satisfied, i.e.,

when each future becomes available.

• However, control does not continue until the selector expression associated with the entire

statement is satisfied.

• E.g., if f2 becomes available, statement-2 is executed but the selector expression for the entire

statement is not satisfied so control blocks again.

• When either f1 or f3 become available, statement-1 or 3 is executed, and the selector expres-

sion for the entire statement is satisfied so control continues.

• Within the action statement, it is possible to access the future using the non-blocking access-

operator since the future is known to be available.

• If a guard is false, execution continues without waiting for that future to become available

(like future is available).

• Assume only f3 becomes available:

_When(true) _Select(f1) {. . .}
or _When(false) _Select(f2) {. . .}
and _When(true) _Select(f3) {. . .}

execution continues.

• An action statement is triggered only once for its selector expression, even if the selector

expression is compound.

_Select(f1)
statement-1

or _Select(f2 && f3)
statement-2 // triggered once after both available

• In statement-2, both futures f2 and f3 are available (non-blocking access for both).

• However, for | |:

_Select(f1 | | f2)
statement-1 // triggered once after one available

and _Select(f3)
statement-2

9.3. INCREASING CONCURRENCY 179

• In statement-1, only one future f1 or f2 caused the action to be triggered.

• Hence, it is necessary to check which of the two futures is available.

• A select statement can be non-blocking using a terminating _Else clause, e.g.:

_Select(selector-expression)
statement // action

_When (conditional-expression) _Else // terminating clause
statement // action

• The _Else clause must be the last clause of a select statement.

• If its guard is true or omitted and the select statement is not immediately true, then the action

for the _Else clause is executed and control continues.

• If the guard is false, the select statement blocks as if the _Else clause is not present.

Future_ISM<int> fi;
Future_ISM<double> fd;
struct Msg { int i, j; }; Future_ISM<Msg> fm;
struct Stop {}; Future_ISM<Stop> fs;
struct Cont {}; Future_ISM<Cont> fc;
_Task Worker {

void main() {
for (;;) {

_Select(fi) { cout << fi() << endl; fi.reset(); }
and _Select(fd) { cout << fd() << endl; fd.reset(); }
and _Select(fm) { Msg m = fm();

cout << m.i << " " << m.j << endl; fm.reset(); }
or _Select(fs) { cout << "stop" << endl; break; }
fc.delivery((Cont){}); // synchronize

}
}

};
int main() {

Worker worker;
for (int i = 0; i < 10; i += 1) {

fi.delivery(i);
fd.delivery(i + 2.5);
fm.delivery((Msg){ i, 2 });
fc(); fc.reset(); // wait for 3 futures to be processed

}
fs.delivery((Stop){});

} // wait for worker to terminate

180 CHAPTER 9. DIRECT COMMUNICATION

10 Optimization

• A computer with infinite memory and speed requires no optimizations to use less memory

or run faster (space/time).

• With finite resources, optimization is useful/necessary to conserve resources and for good

performance.

• Furthermore, most programs are not written in optimal order or in minimal form.

◦ OO, Functional, SE are seldom optimal approaches on von Neumann machine.

• General forms of optimizations are:

◦ reordering: data and code are reordered to increase performance in certain contexts.

◦ eliding: removal of unnecessary data, data accesses, and computation.

◦ replication: processors, memory, data, code are duplicated because of limitations in

processing and communication speed (speed of light).

• Optimized program must be isomorphic to original ⇒ produce same result for fixed input.

• Kinds of optimizations are restricted by the kind of execution environment.

10.1 Sequential Optimizations

• Most programs are sequential; even concurrent programs are

◦ (large) sections of sequential code per thread connected by

◦ small sections of concurrent code where threads interact (protected by synchronization

and mutual exclusion (SME))

• Sequential execution presents simple semantics for optimization.

◦ operations occur in program order, i.e., sequentially

• Dependencies result in partial ordering among a set of statements (precedence graph):

◦ data dependency (R ⇒ read, W ⇒ write)

Rx → Rx Wx → Rx Rx → Wx Wx → Wx

y = x;
z = x;

x = 0;
y = x;

y = x;
x = 3;

x = 0;
x = 3;

Which statements can be reordered?

◦ control dependency

1 if (x == 0)
2 y = 1;

Statements cannot be reordered as line 1 determines if 2 is executed.

181

182 CHAPTER 10. OPTIMIZATION

• To achieve better performance, compiler/hardware make changes:

1. reorder disjoint (independent) operations (variables have different addresses)

Rx → Ry Wx → Ry Rx → Wy Wx → Wy

t = x;
s = y;

x = 0;
y == 1;

x == 1;
y = 3;

y = 0;
x = 3;

Which statements can be reordered?

2. elide unnecessary operations (transformation/dead code)

x = 0; // unnecessary, immediate change
x = 3;

for (int i = 0; i < 10000; i += 1); // unnecessary, no loop body

int factorial(int n, int acc) { // tail recursion
if (n == 0) return acc;
return factorial(n - 1, n * acc); // convert to loop

}

3. execute in parallel if multiple functional-units (adders, floating units, pipelines, cache)

• Very complex reordering, reducing, and overlapping of operations allowed.

• Overlapping implies micro-parallelism, but limited capability in sequential execution.

10.2 Memory Hierarchy

• Complex memory hierarchy:

x z
memory

x

CPU

registers

replication x z

x z
memory

x

CPU

registers

cache
replication

• Optimizing data flow along this hierarchy defines a computer’s speed.

• Hardware aggressively optimizes data flow for sequential execution.

• Having basic understanding of cache is essential to understanding performance of both se-

quential and concurrent programs.

10.2. MEMORY HIERARCHY 183

10.2.1 Cache Review

• Problem: CPU 100(0) times faster than memory (100,00(0) times faster than disk).

• Solution: copy data from general memory into very, very fast local-memory (registers).

• Problem: billions of bytes of memory but only 6–256 registers.

• Solution: move highly accessed data within a program from memory to registers for as long

as possible and then back to memory.

• Problem: quickly run out of registers as more data accessed.

◦ ⇒ must rotate data from memory through registers dynamically.

◦ compiler attempts to keep highly used variables in registers (LRU, requires oracle)

• Problem: does not handle highly accessed data among programs (threads).

◦ each context switch saves and restores most registers to memory

◦ registers are private and cannot be shared

• Solution: use hardware cache (automatic registers) to stage data without pushing to memory

and allow sharing of data among programs.

int x, y, z;
x += 1; ld r1,0xa3480 // load register 1 from x

add r1,#1 // increment
st r1,0xa3480 // store register 1 to x

2

1 0xa3480 x y z

Cache line (64/128/256 bytes)

memory hierarchy (L1, L2, L3)

0xa3480 x y z

Associative Cache

Key

(hash table)

Memory

256

registers CPU

◦ Caching transparently hides the latency of accessing main memory.

◦ Cache loads in 64/128/256 bytes, called cache line, with addresses multiple of line

size.

184 CHAPTER 10. OPTIMIZATION

◦ When x is loaded into register 1, a cache line containing x, y, and z are implicitly copied

up the memory hierarchy from memory through caches.

◦ When cache is full, data evicted, i.e., remove old cache-lines to bring in new (LRU).

◦ When program ends, its addresses are flushed from the memory hierarchy.

• In theory, cache can eliminate registers, but registers provide small addressable area (register

window) with short addresses (3-8 bits for 8-256 registers) ⇒ shorter instructions.

10.2.2 Cache Coherence

• Multi-level caches used, each larger but with diminishing speed (and cost).

• E.g., 64K L1 cache (32K Instruction, 32K Data) per core, 256K L2 cache per core, and 8MB

L3 cache shared across cores.

L3 Cache

L1 Cache

Core 4
registers

L1 Cache

Core 3
registers

L2 Cache

L2 Cache L2 Cache

L2 Cache

L1 Cache

registers
Core 1

L1 Cache

Core 2
registers

Processor1 Processor2

Memory

System Bus

optional

• Data reads logically percolate variables from memory up the memory hierarchy, making

cache copies, to registers.

• Why is it necessary to eagerly move reads up the memory hierarchy?

• Data writes from registers to variables logically percolate down the memory hierarchy through

cache copies to memory.

• Why is it advantageous to lazily move writes down the memory hierarchy?

• If OS moves program to another processor, all caching information is invalid and the pro-

gram’s data-hierarchy reforms.

10.2. MEMORY HIERARCHY 185

• Unlike registers, all cache values are shared across the computer.

• Hence, variable can be replicated in a large number of locations.

• Without cache coherence for shared variable x (madness)

core

processor1

16registers 34 90

T1 T2 T3

12 4

1

memory 90

7

3

16 90L1

L2

L3

34

processor2

x

• With cache coherence for shared variable x

core

processor1

16registers 34 90

T1 T2 T3

L2 90 90

L3 90

memory 90

90

90

L1 90

processor2

9090

x

• Cache coherence is hardware protocol ensuring update of duplicate data.

• Cache consistency addresses when processor sees update ⇒ bidirectional synchronization.

• Prevent flickering and scrambling during simultaneous R/W or W/W.

0 1

Core 1

0xa34d0

Core N

0xa34d0L1L1 update invalid

1
update

acknowledge

0 1

• Eager cache-consistency means data changes appear instantaneous by waiting for acknowl-

edge from all cores (complex/expensive).

186 CHAPTER 10. OPTIMIZATION

• Lazy cache-consistency allows reader to see own write before acknowledgement ⇒ concur-

rent programs read stale data!

◦ writes eventually appear in (largely) same over as written

◦ critical section works as writes to shared variable appear before write to lock release

◦ otherwise, spin (lock) until write appears

• If threads continually read/write same memory locations, they invalidate duplicate cache

lines, resulting in excessive cache updates.

◦ called cache thrashing

◦ updated value bounces from one cache to the next

• Because cache line contains multiple variables, cache thrashing can occur inadvertently,

called false sharing.

• Thread 1 read/writes x while Thread 2 read/writes y ⇒ no direct shared access, but indirect

sharing as x and y share cache line.

◦ Fix by separating x and y with sufficient storage (padding) to be in next cache line.

◦ Difficult for dynamically allocated variables as memory allocator positions storage.

thread 1 thread 2
int *x = new int int *y = new int;

x and y may or may not be on same cache line.

10.3 Concurrent Optimizations

• In sequential execution, strong memory ordering: reading always returns last value written.

• In concurrent execution, weak memory ordering: reading can return previously written

value or value written in future.

◦ happens on multi-processor because of scheduling and buffering (see scrambling/-

flickering in Section 5.18.6, p. 85 and freshness/staleness in Section 6.4.4.4, p. 123).

◦ notion of current value becomes blurred for shared variables unless everyone can see

values assigned simultaneously.

• SME control order and speed of execution, otherwise non-determinism causes random re-

sults or failure (e.g., race condition, Section 7.1, p. 133).

• Sequential sections accessing private variables can be optimized normally but not across

concurrent boundaries.

• Concurrent sections accessing shared variables can be corrupted by sequential optimizations

⇒ restrict optimizations to ensure correctness.

• For correctness and performance, identify concurrent code and only restrict its optimization.

10.3. CONCURRENT OPTIMIZATIONS 187

• What/how to restrict depends on what sequential assumptions are implicitly applied by hard-

ware and compiler (programming language).

• Following examples show how sequential optimizations cause failures in concurrent code.

10.3.1 Disjoint Reordering

• Rx → Ry allows Ry → Rx

Reordering disjoint reads does not cause problems. Why?

• Wx → Ry allows Ry → Wx

◦ In Dekker entry protocol (see Section 5.18.6, p. 85)

1 me = WantIn; // W
2 while (you == WantIn) { // R
3 . . .

temp = you; // R
1 me = WantIn; // W
2 while (temp == WantIn) {
3 . . .

both threads read DontWantIn, both set WantIn, both see DontWantIn, and proceed.

• Rx → Wy allows Wy → Rx

◦ In synchronization flags (see Section 5.12, p. 79), allows interchanging lines 1 & 3 for

Cons:

Cons
1 while (! Insert); // R
2 Insert = false;
3 data = Data; // W

Cons
3 data = Data; // W
1 while (! Insert); // R
2 Insert = false;

allows reading of uninserted data

• Wx → Wy allows Wy → Wx

◦ In synchronization flags (see Section 5.12, p. 79), allows interchanging lines 1 & 2 in

Prod and lines 3 & 4 in Cons:

Prod
1 Data = i; // W
2 Insert = true; // W

Prod
2 Insert = true; // W
1 Data = i; // W

allows reading of uninserted data

◦ In Peterson’s entry protocol, allows interchanging lines 1 & 2 (see Section 5.18.7, p. 87):

1 me = WantIn; // W
2 ::Last = &me; // W

2 ::Last = &me; // W
1 me = WantIn; // W

allows race before either task sets its intent and both proceed

• Compiler uses all of these reorderings to break mutual exclusion:

lock.acquire()
// critical section
lock.release();

// critical section
lock.acquire()
lock.release();

lock.acquire()
lock.release();
// critical section

188 CHAPTER 10. OPTIMIZATION

◦ moves lock entry/exit after/before critical section because entry/exit variables not used

in critical section.

◦ E.g., double-check locking for singleton-pattern:

int * ip = nullptr; // shared (volatile for correctness)
. . .
if (ip == nullptr) { // no storage ?

lock.acquire(); // attempt to get storage (race)
if (ip == nullptr) { // still no storage ? (double check)

ip = new int(0); // obtain and initialize storage
}
lock.release();

}

Why do the first check? Why do the second check?

◦ Fails if last two writes are reordered, Wmalloc and Wip, disjoint variables:

call malloc // new storage address returned in r1
st #0,(r1) // initialize storage
st r1,ip // initialize pointer

see ip but uninitialized.

10.3.2 Eliding

• For high-level language, compiler decides when/which variables are loaded into registers

and for how long.

• Elide reads (loads) by copying (replicating) value into a register:

Task1
. . .
flag = false // write

Task2
register = flag; // one read, auxiliary variable
while (register); // cannot see change by T1

• Hence, variable logically disappears for duration in register.

• ⇒ task spins forever in busy loop if R before W.

• Also, elide meaningless sequential code:

sleep(1); // unnecessary in sequential program

⇒ task misses signal by not delaying

10.3.3 Replication

• Why is there a benefit to reorder R/W?

• Modern processors increase performance by executing multiple instructions in parallel (data

flow, precedence graph (see 6.4.1)) on replicated hardware.

◦ internal pool of instructions taken from program order

◦ begin simultaneous execution of instructions with inputs

10.4. MEMORY MODEL 189

◦ collect results from finished instructions

◦ feed results back into instruction pool as inputs

◦ ⇒ instructions with independent inputs execute out-of-order

• From sequential perspective, disjoint reordering is unimportant, so hardware starts many

instruction simultaneously.

• From concurrent perspective, disjoint reordering is important.

10.4 Memory Model

• Manufacturers define set of optimizations performed implicitly by processor.

• Set of optimizations indirectly define a memory model.

Relaxation W → R R → W W → W Lazy cache

Model update

atomic consistent (AT)

sequential consistency (SC)
√

total store order (TSO)
√ √

partial store order (PSO)
√ √ √

weak order (WO)
√ √ √ √

release consistency (RC)
√ √ √ √

• AT has events occur instantaneously ⇒ slow or impossible (distributed).

• SC accepts all events cannot occur instantaneously ⇒ may read old values

• SC still strong enough for software mutual-exclusion (Dekker 5.18.6 / Peterson 5.18.7).

◦ SC often considered minimum model for concurrency (Java provides SC)

• No hardware supports just AT/SC.

◦ TSO (x86/SPARC), PSO, WO (ARM, Alpha), RC (PowerPC)

10.5 Preventing Optimization Problems

• All optimization problems result from races on shared variables.

• If shared data is protected by locks (implicit or explicit),

◦ locks define the sequential/concurrent boundaries,

◦ boundaries must preclude optimizations that affect concurrency.

• Called race free as synchronization and mutual exclusion preclude races.

• However, race free does have races.

190 CHAPTER 10. OPTIMIZATION

• Races are internal to locks, which lock programmer must deal with.

• Two approaches:

◦ ad hoc: programmer manually augments all data races with pragmas to restrict com-

piler/hardware optimizations: not portable but often optimal.

◦ formal: language has memory model and mechanisms to abstractly define races in

program: portable but often baroque and suboptimal.

• data access / compiler (C/C++): volatile qualifier

◦ Force variable loads and stores to/from registers (at sequence points)

◦ created for longjmp or force access for memory-mapped devices

◦ for architectures with few registers, practically all variables are implicitly volatile.

Why?

◦ Java volatile / C++11 atomic stronger ⇒ prevent eliding and disjoint reordering.

• program order / compiler (static): disable inlining, asm("" ::: "memory");

• memory order / runtime (dynamic): sfence, lfence, mfence (x86)

◦ guarantee previous stores and/or loads are completed, before continuing.

• atomic operations test-and-set, which often imply fencing

• cache is normally invisible and does not cause issues (except for DMA)

• mechanisms to fix issues are specific to compiler or platform

◦ difficult, low-level, diverse semantics, not portable ⇒ tread carefully!

• Dekker for TSO:

10.5. PREVENTING OPTIMIZATION PROBLEMS 191

#define CALIGN __attribute__((aligned (64))) // cache-line alignment
#define Pause() __asm__ __volatile__ ("pause" : : :) // efficient busy wait
#define Fence() __asm__ __volatile__ ("mfence") // prevent hardware reordering
#include <atomic>
enum Intent { DontWantIn, WantIn } Last;
_Task Dekker {

volatile Intent / std::atomic<Intent> & me, & you, *& Last;

void main() {
for (int i = 1; i <= 1000; i += 1) {

for (;;) { // entry protocol
me = WantIn; // high priority
Fence();

if (you == DontWantIn) break;
if (Last == &me) { // high priority ?

me = DontWantIn;
while (Last == &me) Pause(); // low priority

}
Pause();

}
CriticalSection(); // critical section
Last = &me; // exit protocol
me = DontWantIn;

}
}

public:
Dekker(volatile Intent & me, volatile Intent & you, volatile Intent *& Last) :

me(me), you(you), Last(Last) {}
};
int main() {

volatile Intent me CALIGN = DontWantIn, you CALIGN = DontWantIn,

*Last CALIGN = rand() % 2 ? &me : &you;
Dekker t0(me, you, Last), t1(you, me, Last);

};

• C++ atomic automatically fences shared variables, but can be suboptimal.

• Locks built with these features ensure SC for protected shared variables.

◦ no user races and strong locks ⇒ SC memory model

192 CHAPTER 10. OPTIMIZATION

11 Other Approaches

11.1 Atomic (Lock-Free) Data-Structure

• Lock free data-structure have operations, which are critical sections, but performed without

ownership.

◦ e.g., add/remove node without any blocking duration (operation takes constant atomic

time)

• Lock-free is still locking (misnomer) ⇒ spin for conceptual lock ⇒ busy-waiting (starva-

tion).

• If guarantees eventual progress, called wait free.

11.1.1 Compare and Set Instruction

• The compare-and-set(assign) instruction performs an atomic compare and conditional as-

signment CAS (erroneously called compare-and-swap).

int Lock = OPEN; // shared

bool CAS(int & val,
int comp, int nval) {

// begin atomic
if (val == comp) {

val = nval;
return true;

}
return false;
// end atomic

}

void Task::main() { // each task does
while (! CAS(Lock, OPEN, CLOSED));
// critical section
Lock = OPEN;

}

◦ if compare/assign returns true ⇒ loop stops and lock is set to closed

◦ if compare/assign returns false ⇒ loop executes until the other thread sets lock to open

◦ Alternative implementation assigns comparison value with the value when not equal.

bool CAV(int & val, int & comp, int nval) {
// begin atomic
if (val == comp) {

val = nval;
return true;

}
comp = val; // return changed value
return false;
// end atomic

}

◦ Assignment when unequal useful to restart operations with new changed value.

193

194 CHAPTER 11. OTHER APPROACHES

11.1.2 Lock-Free Stack

• E.g., build a stack with lock-free push and pop operations.

class Stack {
Node * top; // pointer to stack top

public:
struct Node {

// data
Node * next; // pointer to next node

};
void push(Node & n);
Node * pop();

};

• Use CAS to atomically update top pointer when nodes pushed or popped concurrently.

void Stack::push(Node & n) {
for (;;) { // busy wait

n.next = top; // link new node to top node
if (CAS(top, n.next, &n)) break; // attempt to update top node

}
}

top

0x4ffb8

n

0x4ffb8

0x211d8

0x211d8

0x211d8

0x384e0

top = n

n.next = top

◦ Create new node, n, at 0x4ffb8 to be added.

◦ Set n.next to top.

◦ CAS tries to assign new top &n to top.

◦ CAS fails if top changed since copied to n.next

◦ If CAS failed, update n.next to top, and try again.

◦ CAS succeeds when top == n.next, i.e., no push or pop between setting n.next and

trying to assign &n to top.

◦ CAV copies changed value to n.next, so eliminates resetting t = top in busy loop.

11.1. ATOMIC (LOCK-FREE) DATA-STRUCTURE 195

Node * Stack::pop() {
Node * t;
for (;;) { // busy wait

t = top; // copy current top
if (t == nullptr) return t; // empty list ?
if (CAS(top, t, t->next)) return t; // attempt to update top node

}
}

top

0x211d8

0x211d8

0x384e0

0x384e0t

t->next0x384e0

0x211d8

t = top

◦ Copy top node, 0x4ffb8, to t for removal.

◦ If not empty, attempt CAS to set new top to next node, t->next.

◦ CAS fails if top changed since copied to t.

◦ If CAS failed, update t to top, and try again.

◦ CAS succeeds when top == t->next, i.e., no push or pop between setting t and trying

to assign t->next to top.

◦ CAV copies the changed value into t, so eliminates resetting t = top in busy loop.

• Note, load of top->next can access stolen node, and fail if storage freed and address-space

shortened.

11.1.3 ABA problem

• Pathological failure for series of pops and pushes, called ABA problem.

• Given stack with 3 nodes:

top → A → B → C

• Popping task, Ti, sets t to A and dereferenced t->next to get next node B for argument to

CAS.

• Ti is now time-sliced before the CAS, and while blocked, nodes A and B are popped, and A

is pushed again:

top → A → C // B is gone!

• When Ti restarts, CAS successfully removes A as same header before time-slice.

196 CHAPTER 11. OTHER APPROACHES

• But now incorrectly sets top to its next node B:

top → B → ???

stack is now corrupted!!!

11.1.4 Hardware Fix

• Probabilistic solution for stack exists using double-wide CAVD instruction, which compares

and assigns 64/128-bit values for 32/64-bit architectures.

bool CAVD(uintS_t &val, uintS_t &comp, uintS_t nval) {
// begin atomic
if (val == comp) { // 64/128-bit compare

val = nval; // 64/128-bit assignment
return true;

}
comp = val; // 64/128-bit assignment
return false;
// end atomic

}

• Now, associate counter (ticket) with header node:

class Stack {
union Link {

struct { // 32/64-bit x 2
Node * top; // pointer to stack top
uintptr_t count; // count each push

};
uintS_t atom; // 64/128-bit integer

} link;
public:

struct Node {
// resource data
Link next; // pointer to next node/count (resource)

};
Stack() { link.atom = 0; }
void push(Node & n);
Node * pop();

};

• Increment counter in push so pop can detect ABA if node re-pushed.

void Stack::push(Node & n) {
n.next = link; // atomic assignment unnecessary
for (;;) { // busy wait

if (CAVD(link.atom, n.next.atom,
(Link){ &n, n.next.count + 1 }.atom)) break;

}
}

◦ CAVD used to copy entire header to n.next, as structure assignment (2 fields) is not

atomic.

11.1. ATOMIC (LOCK-FREE) DATA-STRUCTURE 197

◦ In busy loop, copy local idea of top to next of new node to be added.

◦ CAVD tries to assign new top-header to (h).

◦ If top has not changed since copied to n.next, update top to n (new top), and increment

counter.

◦ If top has changed, CAVD copies changed values to n.next, so try again.

Node * Stack::pop() {
Link t = link; // atomic assignment unnecessary
for (;;) { // busy wait

if (t.top == nullptr) return nullptr; // empty stack ?
if (CAVD(link.atom, t.atom,

(Link){ t.top->next.top, t.count }.atom)) return t.top;
}

}

◦ CAVD used to copy entire header to t, as structure assignment (2 fields) is not atomic.

◦ In busy loop, check if pop on empty stack and return nullptr.

◦ If not empty, CAVD tries to assign new top t.top->next.top,t.count to h.

◦ If top has not changed since copied to t, update top to t.top->next.top (new top).

◦ If top has changed, CAVD copies changed values to t, so try again.

• ABA problem (mostly) fixed:

top,3 → A → B → C

• Popping task, Ti, has t set to A,3 and dereferenced B from t.top->next in argument of CAVD.

• Ti is time-sliced, and while blocked, nodes A and B are popped, and A is pushed again:

top,4 → A → C // adding A increments counter

• When Ti restarts, CAVD fails as header A,3 not equal top A,4.

• Only probabilistic correct as counter finite (like ticket counter).

◦ task Ti is time-sliced and sufficient pushes wrap counter to value stored in Ti’s header,

◦ node A just happens to be at the top of the stack when Ti unblocks.

◦ doubtful if failure arises, given 32/64-bit counter and pathological case.

• Finally, none of the programs using CAS ensure eventual progress; therefore, rule 5 is bro-

ken.

198 CHAPTER 11. OTHER APPROACHES

11.1.5 Hardware/Software Fix

• Fixing ABA with CAS/V and more code is extremely complex (100s of lines of code), as is

implementing more complex data structures (queue, deque, hash).

• All solutions require complex determination of when a node has no references (like garbage

collection).

◦ each thread maintains a list of accessed nodes, called hazard pointers

◦ thread updates its hazard pointers while other threads are reading them

◦ thread removes a node by hiding it on a private list and periodically scans the hazard

lists of other threads for references to that node

◦ if no pointers are found, the node can be freed

• For lock-free stack: x, y, z are memory addresses

◦ first thread puts x on its hazard list

◦ second thread cannot reuse x, because of hazard list

◦ second thread must create new object at different location

◦ first thread detects change

• Summary: locks versus lock-free

◦ lock-free has no ownership (hold-and-wait) ⇒ no deadlock

◦ lock-free can only handle limited set of critical sections

lock can protect arbitrarily complex critical section versus

◦ lock-free no panacea, performance unclear

◦ combine lock and lock-free?

11.2 Exotic Atomic Instruction

• VAX computer has instructions to atomically insert and remove a node to/from the head or

tail of a circular doubly linked list.

struct links {
links *front, *back;

}
bool INSQUE(links &entry, links &pred) { // atomic execution

// insert entry following pred
return entry.front == entry.back; // first node inserted ?

}
bool REMQUE(links &entry) { // atomic execution

// remove entry
return entry.front == null; // last node removed ?

}

11.2. EXOTIC ATOMIC INSTRUCTION 199

• MIPS processor has two instructions that generalize atomic read/write cycle: LL (load locked)

and SC (store conditional).

◦ LL instruction loads (reads) a value from memory into a register, and sets a hardware

reservation on the memory from which the value is fetched.

◦ Register value can be modified, even moved to another register.

◦ SC instruction stores (writes) new value back to original or another memory location.

◦ However, store is conditional and occurs only if no interrupt, exception, or write has

occurred at LL reservation.

◦ Failure indicated by setting the register containing the value to be stored to 0.

◦ E.g., implement test-and-set with LL/SC:

int testSet(int &lock) { // atomic execution
int temp = lock; // read
lock = 1; // write
return temp; // return previous value

}

testSet: // register $4 contains pointer to lock
ll $2,($4) // read and lock location
or $8,$2,1 // set register $8 to 1 (lock | 1)
sc $8,($4) // attempt to store 1 into lock
beq $8,$0,testSet // retry if interference between read and write
j $31 // return previous value in register $2

◦ Does not suffer from ABA problem.

Node *pop(Header &h) {
Node *t, next;
for (;;) { // busy wait

t = LL(top);
if (t == nullptr) break; // empty list ?

next = t->next
if (SC(top, next)) break; // attempt to update top node

}
return t;

}

◦ SC detects any change to top, whereas CAS only detects a specific value change to top

(is top not equal to A).

◦ However, most architectures support weak LL/SC.

* reservation granularity may be cache line or memory block rather than word

* no nesting or interleaving of LL/SC pairs, and prohibit memory access between

LL and SC.

◦ Cannot implement atomic swap of 2 memory locations as two reservations are neces-

sary (register to memory swap is possible).

• Hardware transactional memory allows 4, 6, 8 reservations, e.g., Advanced Synchronization

Facility (ASF) proposal in AMD64.

200 CHAPTER 11. OTHER APPROACHES

• Like database transaction that optimistically executes change, and either commits changes,

or rolls back and restarts if interference.

◦ SPECULATE : start speculative region and clear zero flag ; next instruction checks for

abort and branches to retry.

◦ LOCK : MOV instructions indicates location for atomic access, but moves not visible to

other CPUs.

◦ COMMIT : end speculative region

* if no conflict, make MOVs visible to other CPUs.

* if conflict to any move locations, set failure, discard reservations and restore reg-

isters back to instruction following SPECULATE

• Can implement several data structures without ABA problem.

• Software Transactional Memory (STM) allows any number of reservations.

◦ atomic blocks of arbitrary size:

void push(header & h, node & n) {
atomic { // SPECULATE

n.next = top; // LOCK/MOV
top = &n

} // COMMIT
}

◦ records all memory locations read and written, and all values mutated.

* bookkeeping costs and rollbacks typically result in performance degradation

◦ alternative implementation inserts locks to protect shared access

* finding all access is difficult and ordering lock acquisition is complex

11.3 General-Purpose GPU (GPGPU)

• Graphic Processing Unit (GPU) is a coprocessor to main computer, with separate memory

and processors.

• GPU is a Single-Instruction Multiple-Data(Thread) (SIMD(T)) architecture versus Multiple-

Instruction Multiple-Data (MIMD)

MIMDSIMD

code

data

11.3. GENERAL-PURPOSE GPU (GPGPU) 201

• In branching code

if (a[i] % 2 == 0) {
a[i] /= 2; // true threads

} else {
a[i] += 3; // false threads

}

◦ all threads test the condition (create mask of true and false)

◦ true mask

◦ true threads execute instructions

◦ false threads execute NOP (no-operation)

◦ negate mask

◦ false threads execute instructions

◦ true threads execute NOP

• In general, critical path is time to execute both clauses of if (no speedup).

• Complex contortions to eliminate different forms of branching.

• GPU structure

◦ kernel manages multiple blocks (loaded/controlled by CPU)

◦ block executes the same code

◦ warp synchronizes execution (one instruction decoder per warp)

◦ thread computes value

threads

warp

threads

warp

threads

warp

threads

warp

threads

warp

threads

warp

blockblock

kernel

CPU GPU

input

output

◦ blocks may be barrier-synchronized

◦ synchronization among blocks ⇒ finishing kernel and launching new one

• Instead of cache to optimize latency in warp, large register file is used to optimize throughput.

◦ GPUs have enough duplicate registers to store state of several warps.

202 CHAPTER 11. OTHER APPROACHES

• Kernel is memory-bound ⇒ data layout extremely important performance consideration.

// kernel routine, handle contiguous matrix, different ID for each thread
kernel void GPUsum(float *matrix[], float subtotals[], int rows) {
define sub(m, r, c) ((typeof(m[0][0]) *)m)[r * rows + c]

subtotals[ID] = 0.0;
for (int r = 0; r < rows; r += 1)

subtotals[ID] += sub(matrix, r, ID);
}

• Add rows by columns.

threads

+

subtotals

warp
matrix rows

• Warps scheduled to run when their required data is loaded from memory.

• CPU sets up GPU memory, loads memory, launches code, retrieves results.

int main() {
int rows, cols;
cin >> rows >> cols; // matrix size
// optimal to use contiguous matrix
float matrix[rows][cols], subtotals[rows], total = 0.0;
// . . . fill matrix
float * matrix_d, * subtotals_d; // matrix/subtotals buffer on GPU
// allocate space on GPU
GPUMalloc(&matrix_d, sizeof(matrix));
GPUMalloc(&subtotals_d, sizeof(subtotals));
// copy matrix to GPU
GPUMemcpy(matrix_d, matrix, sizeof(matrix), GPUMemcpyHostToDevice);
// compute matrix sum on GPU
GPUsum<<< 1, cols >>>(matrix_d, substotals_d, rows);
// do asynchronous work!!!
// copy subtotals from GPU, may block
GPUMemcpy(subtotals, subtotals_d, sizeof(subtotals), GPUMemcpyDeviceToHost);
for (int i = 0; i < cols; i += 1) total += subtotals[i];
cout << total << endl;

}

• Most modern multi-core CPUs have similar model using vector-processing.

◦ Simulate warps and use concurrency framework (µC++) to schedule blocks.

11.4. CONCURRENCY LANGUAGES 203

11.4 Concurrency Languages

11.4.1 Ada 95

• E.g., monitor bounded-buffer, restricted implicit (automatic) signal:

protected type buffer is -- _Monitor
entry insert(elem : in ElemType) when count < Size is -- mutex member
begin

-- add to buffer
count := count + 1;

end insert;
entry remove(elem : out ElemType) when count > 0 is -- mutex member
begin

-- remove from buffer, return via parameter
count := count - 1;

end remove;
private:

. . . // buffer declarations
count : Integer := 0;

end buffer;

• The when clause is only be used at start of entry routine not within.

• The when expression can contain only global-object variables; parameter or local variables

are disallowed ⇒ no direct dating-service.

• Eliminate restrictions and dating service is solvable.

_Monitor DatingService {
AUTOMATIC_SIGNAL;
int girls[noOfCodes], boys[noOfCodes]; // count girls/boys waiting
bool exchange; // performing phone-number exchange
int girlPhoneNo, boyPhoneNo; // communication variables

public:
int girl(int phoneNo, int ccode) {

girls[ccode] += 1;
if (boys[ccode] == 0) { // no boy waiting ?

WAITUNTIL(boys[ccode] != 0, ,); // use parameter, not at start
boys[ccode] -= 1; // decrement dating pair
girls[ccode] -= 1;
girlPhoneNo = phoneNo; // girl’s phone number for exchange
exchange = false; // wake boy

} else {
girlPhoneNo = phoneNo; // girl’s phone number before exchange
exchange = true; // start exchange
WAITUNTIL(! exchange, ,); // wait until exchange complete, not at start

}
EXIT();
return boyPhoneNo;

}
// boy

};

204 CHAPTER 11. OTHER APPROACHES

• E.g., task bounded-buffer:

task type buffer is -- _Task
. . . -- buffer declarations
count : integer := 0;

begin -- thread starts here (task main)
loop

select -- _Accept
when count < Size => -- guard
accept insert(elem : in ElemType) do -- mutex member

-- add to buffer
count := count + 1;

end;
-- executed if this accept called

or
when count > 0 => -- guard
accept remove(elem : out ElemType) do -- mutex member
-- remove from buffer, return via parameter
count := count - 1;

end;
end select;

end loop;
end buffer;
var b : buffer -- create a task

• select is external scheduling and only appears in task main.

• Hence, Ada has no direct internal-scheduling mechanism, i.e., no condition variables.

• Instead a requeue statement can be used to make a blocking call to another (usually non-

public) mutex member of the object.

• The original call is re-blocked on that mutex member’s entry queue, which can be subse-

quently accepted when it is approriate to restart it.

• However, all requeue techniques suffer the problem of dealing with accumulated temporary

results:

◦ If a call must be postponed, its temporary results must be returned and bundled with

the initial parameters before forwarding to the mutex member handling the next step,

◦ or the temporary results must be re-computed at the next step (if possible).

• In contrast, waiting on a condition variable automatically saves the execution location and

any partially computed state.

11.4.2 SR/Concurrent C++

• SR and Concurrent C++ have tasks with external scheduling using an accept statement.

• But no condition variables or requeue statement.

• To ameliorate lack of internal scheduling add a when and by clause on the accept statement.

11.4. CONCURRENCY LANGUAGES 205

• when clause is allowed to reference caller’s arguments via parameters of mutex member:

select
accept mem(code : in Integer)

when code % 2 = 0 do . . . -- accept call with even code
or

accept mem(code : in Integer)
when code % 2 = 1 do . . . -- accept call with odd code

end select;

• when placed after the accept clause so parameter names are defined.

• when referencing parameter ⇒ implicit search of waiting tasks on mutex queue ⇒ locking

mutex queue.

• Select longest waiting if multiple true when clauses.

• by clause is calculated for each true when clause and the minimum by clause is selected.

select
accept mem(code : in Integer)

when code % 2 = 0 by -code do . . .-- accept largest even code
or

accept mem(code : in Integer)
when code % 2 = 1 by code do . . .-- accept smallest odd code

end select;

• Select longest waiting if multiple by clauses with same minimum.

• by clause exacerbates the execution cost of computing accept clause.

• While when/by removes some internal scheduling and/or requeues, constructing expressions

can be complex.

• Still situations that cannot be handled, e.g., if selection criteria involves multiple parameters:

◦ select lowest even value of code1 and highest odd value of code2 if there are multiple

lowest even values.

◦ selection criteria involves information from other mutex queues such as the dating ser-

vice (girl must search the boy mutex queue).

• Often simplest to unconditionally accept a call allowing arbitrarily examination, and possibly

postpone (internal scheduling).

11.4.3 Java

• Java’s concurrency constructs are largely derived from Modula-3.

206 CHAPTER 11. OTHER APPROACHES

class Thread implements Runnable {
public Thread();
public Thread(String name);
public String getName();
public void setName(String name);
public void run(); // uC++ main
public synchronized void start();
public static Thread currentThread();
public static void yield();
public final void join();

}

• Thread is like µC++ uBaseTask, and all tasks must explicitly inherit from it:

class MyTask extends Thread { // inheritance
private int arg; // communication variables
private int result;
public MyTask() {. . .} // task constructors
public void run() {. . .} // task main
public int result() {. . .} // return result
// unusual to have more members

}

• Thread starts in member run.

• Java requires explicit starting of a thread by calling start after the thread’s declaration.

⇒ coding convention to start thread or inheritance is precluded (can only start a thread once)

• Termination synchronization is accomplished by calling join.

• Returning a result on thread termination is accomplished by member(s) returning values

from the task’s global variables.

mytask th = new MyTask(. . .); // create and initialized task
th.start(); // start thread
// concurrency
th.join(); // wait for thread termination
a2 = th.result(); // retrieve answer from task object

• Like µC++, when the task’s thread terminates, it becomes an object, hence allowing the call

to result to retrieve a result.

• (see Section 8.11, p. 157 for monitors)

• While it is possible to have public synchronized members of a task:

◦ no mechanism to manage direct calls, i.e., no accept statement

◦ ⇒ complex emulation of external scheduling with internal scheduling for direct com-

munication

11.4. CONCURRENCY LANGUAGES 207

11.4.4 Go

• Non-object-oriented, light-weight (like µC++) non-preemptive threads (called goroutine).

◦ ⇒ busy waiting only on multicore (Why?)

• go statement (like start/fork) creates new user thread running in routine.

go foo(3, f) // start thread in routine foo

• Arguments may be passed to goroutine but return value is discarded.

• Cannot reference goroutine object ⇒ no direct communication.

• All threads terminate silently when program terminates.

• Threads synchronize/communicate via channel (CSP)

◦ ⇒ paradigm shift from routine call.

• Channel is a typed shared buffer with 0 to N elements.

ch1 := make(chan int, 100) // integer channel with buffer size 100
ch2 := make(chan string) // string channel with buffer size 0
ch2 := make(chan chan string) // channel of channel of strings

• Buffer size > 0 ⇒ up to N asynchronous calls; otherwise, synchronous call.

• Operator <- performs send/receive.

◦ send: ch1 <- 1

◦ receive: s <- ch2

• Channel can be constrained to only send or receive; otherwise bi-directional.

208 CHAPTER 11. OTHER APPROACHES

package main
import "fmt"

func main() {

type Msg struct{ i, j int }
ch1 := make(chan int)
ch2 := make(chan float32)
ch3 := make(chan Msg)
hand := make(chan string)
shake := make(chan string)
gortn := func() {

var i int; var f float32; var m Msg
L: for {

select { // wait for message
case i = <- ch1: fmt.Println(i)
case f = <- ch2: fmt.Println(f)
case m = <- ch3: fmt.Println(m)

case <- hand: break L // sentinel
}

}
shake <- "SHAKE" // completion

}

go gortn() // start thread in gortn
ch1 <- 0 // different messages
ch2 <- 2.5
ch3 <- Msg{1, 2}
hand <- "HAND" // sentinel value
<-shake // wait for completion

}

#include <iostream>
using namespace std;
_Task Gortn {

public:
struct Msg { int i, j; };
void mem1(int i) { Gortn::i = i; }
void mem2(float f) { Gortn::f = f; }
void mem3(Msg m) { Gortn::m = m; }

private:
int i; float f; Msg m;
void main() {

L: for (;;) {

_Accept(mem1) cout << i << endl;
or _Accept(mem2) cout << f << endl;
or _Accept(mem3) cout << "{" << m.i

<< " " << m.j << "}" << endl;
or_Accept(~Gortn) break L;

}
}

};
int main() {

Gortn gortn;
gortn.mem1(0);
gortn.mem2(2.5);
gortn.mem3((Gortn::Msg){ 1, 2 });

} // wait for completion

• Locks

type Mutex // mutual exclusion lock
func (m *Mutex) Lock()
func (m *Mutex) Unlock()

type Cond // synchronization lock
func NewCond(l Locker) *Cond
func (c *Cond) Broadcast()
func (c *Cond) Signal()
func (c *Cond) Wait()

type Once // singleton-pattern
func (o *Once) Do(f func())

type RWMutex // readers/writer lock
func (rw *RWMutex) Lock()
func (rw *RWMutex) RLock()
func (rw *RWMutex) RLocker() Locker
func (rw *RWMutex) RUnlock()
func (rw *RWMutex) Unlock()

type WaitGroup // countdown lock
func (wg *WaitGroup) Add(delta int)
func (wg *WaitGroup) Done()
func (wg *WaitGroup) Wait()

11.4. CONCURRENCY LANGUAGES 209

• Atomic operations

func AddInt32(val *int32, delta int32) (new int32)
func AddInt64(val *int64, delta int64) (new int64)
func AddUint32(val *uint32, delta uint32) (new uint32)
func AddUint64(val *uint64, delta uint64) (new uint64)
func AddUintptr(val *uintptr, delta uintptr) (new uintptr)
func CompareAndSwapInt32(val *int32, old, new int32) (swapped bool)
func CompareAndSwapInt64(val *int64, old, new int64) (swapped bool)
func CompareAndSwapPointer(val *unsafe.Pointer, old, new unsafe.Pointer) (swapped bool)
func CompareAndSwapUint32(val *uint32, old, new uint32) (swapped bool)
func CompareAndSwapUint64(val *uint64, old, new uint64) (swapped bool)
func CompareAndSwapUintptr(val *uintptr, old, new uintptr) (swapped bool)
func LoadInt32(addr *int32) (val int32)
func LoadInt64(addr *int64) (val int64)
func LoadPointer(addr *unsafe.Pointer) (val unsafe.Pointer)
func LoadUint32(addr *uint32) (val uint32)
func LoadUint64(addr *uint64) (val uint64)
func LoadUintptr(addr *uintptr) (val uintptr)
func StoreInt32(addr *int32, val int32)
func StoreInt64(addr *int64, val int64)
func StorePointer(addr *unsafe.Pointer, val unsafe.Pointer)
func StoreUint32(addr *uint32, val uint32)
func StoreUint64(addr *uint64, val uint64)
func StoreUintptr(addr *uintptr, val uintptr)

11.4.5 C++11 Concurrency

• C++11 library can be sound as C++ now has strong memory-model (SC).

• compile: g++ -std=c++11 -pthread . . .

• Thread creation: start/wait (fork/join) approach.

class thread {
public:

template <class Fn, class. . . Args>
explicit thread(Fn && fn, Args &&. . . args);

void join(); // termination synchronization
bool joinable() const; // true => joined, false otherwise
void detach(); // independent lifetime
id get_id() const; // thread id

};

• Passing multiple arguments uses C++11’s variadic template feature to provide a type-safe call

chain via thread constructor to the callable routine.

• Any entity that is callable (functor) may be started:

210 CHAPTER 11. OTHER APPROACHES

#include <thread>
void hello(const string & s) { // callable

cout << "Hello " << s << endl;
}
class Hello { // functor

int result;
public:

void operator()(const string & s) { // callable
cout << "Hello " << s << endl;

}
};

int main() {
thread t1(hello, "Peter"); // start thread in routine “hello”
Hello h; // thread object
thread t2(h, "Mary"); // start thread in functor “h”
// work concurrently
t1.join(); // termination synchronization
// work concurrently
t2.join(); // termination synchronization

} // must join before closing block

• Thread starts implicitly at point of declaration.

• Instead of join, thread can run independently by detaching:

t1.detach(); // “t1” must terminate for program to end

• Beware dangling pointers to local variables:

{
string s("Fred"); // local variable
thread t(hello, s);
t.detach();

} // “s” deallocated and “t” running with reference to “s”

• It is an error to deallocate thread object before join or detach.

• Locks

◦ mutex, recursive, timed, recursive-timed

class mutex {
public:

void lock(); // acquire lock
void unlock(); // release lock
bool try_lock(); // nonblocking acquire

};

◦ condition

11.4. CONCURRENCY LANGUAGES 211

class condition_variable {
public:

void notify_one(); // unblock one
void notify_all(); // unblock all
void wait(mutex &lock); // atomically block & release lock

};

• Scheduling is no-priority nonblocking ⇒ barging ⇒ wait statements must be in while loops

to recheck conditions.

#include <mutex>
class BoundedBuffer { // simulate monitor

// buffer declarations
mutex mlock; // monitor lock
condition_variable empty, full;
void insert(int elem) {

mlock.lock();
while (count == Size) empty.wait(mlock); // release lock
// add to buffer
count += 1;
full.notify_one();
mlock.unlock();

}

int remove() {
mlock.lock();
while(count == 0) full.wait(mlock); // release lock
// remove from buffer
count -= 1;
empty.notify_one();
mlock.unlock();
return elem;

}
};

• Futures

#include <future>
big_num pi(int decimal_places) {. . .}
int main() {

future<big_num> PI = async(pi, 1200); // PI to 1200 decimal places
// work concurrently
cout << "PI " << PI.get() << endl; // block for answer

}

• Atomic types/operations

atomic_flag, atomic_bool, atomic_char, atomic_schar, atomic_uchar, atomic_short, atomic_ushort,

atomic_int, atomic_uint, atomic_long, atomic_ulong, atomic_llong, atomic_ullong, atomic_wchar_t,

atomic_address, atomic<T>

212 CHAPTER 11. OTHER APPROACHES

typedef struct atomic_itype {
bool operator=(int-type) volatile;
void store(int-type) volatile;
int-type load() const volatile;
int-type exchange(int-type) volatile;
bool compare_exchange(int-type &old_value, int-type new_value) volatile;
int-type fetch_add(int-type) volatile;
int-type fetch_sub(int-type) volatile;
int-type fetch_and(int-type) volatile;
int-type fetch_or(int-type) volatile;
int-type fetch_xor(int-type) volatile;

int-type operator++() volatile;
int-type operator++(int) volatile;
int-type operator--() volatile;
int-type operator--(int) volatile;
int-type operator+=(int-type) volatile;
int-type operator-=(int-type) volatile;
int-type operator&=(int-type) volatile;
int-type operator|=(int-type) volatile;
int-type operator^=(int-type) volatile;

} atomic_itype;

11.5 Threads & Locks Library

11.5.1 java.util.concurrent

• Java library is sound because of memory-model and language is concurrent aware.

• Synchronizers : Semaphore (counting), CountDownLatch, CyclicBarrier, Exchanger, Condition,

Lock, ReadWriteLock

• Use new locks to build a monitor with multiple condition variables.

class BoundedBuffer { // simulate monitor
// buffer declarations
final Lock mlock = new ReentrantLock(); // monitor lock
final Condition empty = mlock.newCondition();
final Condition full = mlock.newCondition();
public void insert(Object elem) throws InterruptedException {

mlock.lock();
try {

while (count == Size) empty.await(); // release lock
// add to buffer
count += 1;
full.signal();

} finally { mlock.unlock(); } // ensure monitor lock is unlocked
}

11.5. THREADS & LOCKS LIBRARY 213

public Object remove() throws InterruptedException {
mlock.lock();
try {

while(count == 0) full.await(); // release lock
// remove from buffer
count -= 1;
empty.signal();
return elem;

} finally { mlock.unlock(); } // ensure monitor lock is unlocked
}

}

◦ Condition is nested class within ReentrantLock ⇒ condition implicitly knows its asso-

ciated (monitor) lock.

◦ Scheduling is still no-priority nonblocking ⇒ barging ⇒ wait statements must be in

while loops to recheck condition.

◦ No connection with implicit condition variable of an object.

◦ Do not mix implicit and explicit condition variables.

• Executor/Future :

◦ Executor is a server with one or more worker tasks (worker pool).

◦ Call to executor submit is asynchronous and returns a future.

◦ Future is closure with work for executor (Callable) and place for result.

◦ Result is retrieved using get routine, which may block until result inserted by executor.

import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.*;
public class Matrix {

public static void main(String[] args)
throws InterruptedException, ExecutionException {

class Adder implements Callable<Integer> {
int row[], cols; // communication
public Integer call() {

int subtotal = 0;
for (int c = 0; c < cols; c += 1) subtotal += row[c];
return subtotal;

}
Adder(int [] r, int c) { row = r; cols = c; }

}

214 CHAPTER 11. OTHER APPROACHES

int rows = 10, cols = 10;
int matrix[][] = new int[rows][cols], total = 0;
// read matrix
ExecutorService executor = Executors.newFixedThreadPool(4);
List<Future<Integer>> subtotals = new ArrayList<Future<Integer>>();
for (int r = 0; r < rows; r += 1) // send off work for executor

subtotals.add(executor.submit(new Adder(matrix[r], cols)));
for (int r = 0; r < rows; r += 1) // wait for results

total += subtotals.get(r).get(); // retrieve result
System.out.println(total);
executor.shutdown();

}
}

• µC++ also has fixed thread-pool executor (used with actors).

struct Adder { // routine, functor or lambda
int * row, cols; // communication
int operator()() { // functor-call operator

int subtotal = 0;
for (int c = 0; c < cols; c += 1) subtotal += row[c];
return subtotal;

}
Adder(int row[], int cols) : row(row), cols(cols) {}

};

int main() {
const int rows = 10, cols = 10;
int matrix[rows][cols], total = 0;
// read matrix
uExecutor executor(4); // kernel threads
Future_ISM<int> subtotals[rows];
Adder * adders[rows];
for (int r = 0; r < rows; r += 1) { // send off work for executor

adders[r] = new Adder(matrix[r], cols);
subtotals[r] = executor.sendrecv(*adders[r]);

}
for (int r = 0; r < rows; r += 1) { // wait for results

total += subtotals[r]();
delete adders[r];

}
cout << total << endl;

}

• Collections : LinkedBlockingQueue, ArrayBlockingQueue, SynchronousQueue,

PriorityBlockingQueue, DelayQueue, ConcurrentHashMap, ConcurrentSkipListMap,

ConcurrentSkipListSet, CopyOnWriteArrayList, CopyOnWriteArraySet.

◦ Create threads that interact indirectly through atomic data structures, e.g., producer/-

consumer interact via LinkedBlockingQueue.

• Atomic Types using compare-and-set (see Section 11.1.1, p. 193) (i.e., lock-free).

11.5. THREADS & LOCKS LIBRARY 215

AtomicBoolean, AtomicInteger, AtomicIntegerArray, AtomicLong, AtomicLongArray,

AtomicReference<V>, AtomicReferenceArray<E>

int v;
AtomicInteger i = new AtomicInteger();
i.set(1);
System.out.println(i.get());
v = i.addAndGet(1); // i += delta
System.out.println(i.get() + " " + v);
v = i.decrementAndGet(); // --i
System.out.println(i.get() + " " + v);
v = i.getAndAdd(1); // i =+ delta
System.out.println(i.get() + " " + v);
v = i.getAndDecrement(); // i--
System.out.println(i.get() + " " + v);

1
2 2
1 1
2 1
1 2

11.5.2 Pthreads

• Several libraries exist for C (pthreads) and C++ (µC++).

• C libraries built around routine abstraction and mutex/condition locks (“attribute” parameters

not shown).

int pthread_create(pthread_t * new_thread_ID,
void * (*start_func)(void *), void * arg);

int pthread_join(pthread_t target_thread, void ** status);
pthread_t pthread_self(void);
int pthread_yield(void);

int pthread_mutex_init(pthread_mutex_t * mp);
int pthread_mutex_lock(pthread_mutex_t * mp);
int pthread_mutex_unlock(pthread_mutex_t * mp);
int pthread_mutex_destroy(pthread_mutex_t * mp);

int pthread_cond_init(pthread_cond_t * cp);
int pthread_cond_wait(pthread_cond_t * cp, pthread_mutex_t * mutex);
int pthread_cond_signal(pthread_cond_t * cp);
int pthread_cond_broadcast(pthread_cond_t * cp);
int pthread_cond_destroy(pthread_cond_t * cp);

• Thread starts in routine start_func via pthread_create.

Initialization data is single void * value.

• Termination synchronization is performed by calling pthread_join.

• Return a result on thread termination by passing back a single void * value from pthread_join.

216 CHAPTER 11. OTHER APPROACHES

void * rtn(void * arg) { . . . }
int i = 3, r, rc;
pthread_t t; // thread id
rc = pthread_create(&t, rtn, (void *)i); // create and initialized task
if (rc != 0) . . . // check for error
// concurrency
rc = pthread_join(t, &r); // wait for thread termination and result
if (rc != 0) . . . // check for error

• All C library approaches have type-unsafe communication with tasks.

• No external scheduling ⇒ complex direct-communication emulation.

• Internal scheduling is no-priority nonblocking ⇒ barging ⇒ wait statements must be in

while loops to recheck conditions

typedef struct { // simulate monitor
// buffer declarations
pthread_mutex_t mutex; // mutual exclusion
pthread_cond_t full, empty; // synchronization

} buffer;

// write your own constructor/destructor
void ctor(buffer * buf) { // constructor

. . .
pthread_mutex_init(&buf->mutex);
pthread_cond_init(&buf->full);
pthread_cond_init(&buf->empty);

}

void dtor(buffer * buf) { // destructor
pthread_mutex_lock(&buf->mutex); // must be mutex
. . .
pthread_cond_destroy(&buf->empty);
pthread_cond_destroy(&buf->full);
pthread_mutex_destroy(&buf->mutex);

}

void insert(buffer * buf, int elem) {
pthread_mutex_lock(&buf->mutex);
while (buf->count == Size)

pthread_cond_wait(&buf->empty, &buf->mutex);
// add to buffer
buf->count += 1;
pthread_cond_signal(&buf->full);
pthread_mutex_unlock(&buf->mutex);

}

11.6. OPENMP 217

int remove(buffer * buf) {
pthread_mutex_lock(&buf->mutex);
while (buf->count == 0)

pthread_cond_wait(&buf->full, &buf->mutex);
// remove from buffer
buf->count -= 1;
pthread_cond_signal(&buf->empty);
pthread_mutex_unlock(&buf->mutex);
return elem;

}

• Since there are no constructors/destructors in C, explicit calls are necessary to ctor/dtor be-

fore/after use.

• All locks must be initialized and finalized.

• Mutual exclusion must be explicitly defined where needed.

• Condition locks should only be accessed with mutual exclusion.

• pthread_cond_wait atomically blocks thread and releases mutex lock, which is necessary to

close race condition on baton passing.

11.6 OpenMP

• Shared memory, implicit thread management (programmer hints), 1-to-1 threading model

(kernel threads), some explicit locking.

• Communicate with compiler with #pragma directives.

#pragma omp . . .

• fork/join model

◦ fork: initial thread creates a team of parallel threads (including itself)

◦ each thread executes the statements in the region construct

◦ join: when team threads complete, synchronize and terminate, except initial thread

which continues

• compile: gcc -std=c99 -fopenmp openmp.c -lgomp

• COBEGIN/COEND: each thread executes different section:

218 CHAPTER 11. OTHER APPROACHES

#include <omp.h>
. . . // declarations of p1, p2, p3
int main() {

int i;
#pragma omp parallel sections num_threads(4) // fork “4” threads
{ // COBEGIN

#pragma omp section
{ i = 1; } // BEGIN . . . END
#pragma omp section
{ p1(5); }
#pragma omp section
{ p2(7); }
#pragma omp section
{ p3(9); }

} // COEND (synchronize)
}

• for directive specifies each loop iteration is executed by a team of threads (COFOR)

int main() {
const unsigned int rows = 10, cols = 10; // sequential
int matrix[rows][cols], subtotals[rows], total = 0;
// read matrix
#pragma omp parallel for // fork “rows” threads
for (unsigned int r = 0; r < rows; r += 1) { // concurrent

subtotals[r] = 0;
for (unsigned int c = 0; c < cols; c += 1)

subtotals[r] += matrix[r][c];
}
for (unsigned int r = 0; r < rows; r += 1) // sequential

total += subtotals[r];
printf("total:%d\n", total);

} // main

• In this case, sequential code directly converted to concurrent via #pragma.

• Variables outside section are shared; variables inside are thread private.

• Programmer responsible for sharing in vector/matrix manipulation.

• barrier

int main() {
#pragma omp parallel num_threads(4) // fork “4” threads
{

sleep(omp_get_thread_num());
printf("%d\n", omp_get_thread_num());
#pragma omp barrier // wait for all block threads to arrive
printf("sync\n");

}
}

11.6. OPENMP 219

• Without omp section, all threads run same block (like omp parallel for).

• Barrier’s trigger is the number of block threads.

• Threads sleeps for different times, but all print "sync" at same time.

• Also critical section and atomic directives.

220 CHAPTER 11. OTHER APPROACHES

Index

_Accept, 144, 163, 165–167

destructor, 168

_At, 34, 78

_Coroutine, 27

_Disable, 39

_Enable, 38, 39

_Event, 33

_Monitor, 142

_Mutex, 142

_Nomutex, 144

_Resume, 34

_Select, 177

_Task, 71

_Throw, 34, 38, 78

_When, 163, 165

1:1 threading, 66

ABA problem, 195

activation, 7

active, 23

actor, 72, 214

Ada 95, 203

adaptive spin-lock, 96

administrator, 171

worker tasks, 171

allocation

heap, 4

stack, 4

allocation graphs, 138

alternation, 83

Amdahl’s law, 67

arbiter, 91

atomic, 80, 87, 143, 145, 217

atomic, 190

atomic consistent, 189

atomic instruction

compare/assign, 193

fetch-and-increment, 94

swap, 93

test/set, 93

automatic signal, 155

bakery, 89

banker’s algorithm, 137

barge, 99

barging, 82, 156, 216

barging avoidance, 100, 158

barging prevention, 100

barrier, 108, 110, 158

baton passing, 120

binary semaphore, 111, 112, 145

BinSem, 113

acquire, 113

release, 113

block activation, 11

bottlenecks, 62

bounded buffer, 118, 144, 145, 156, 163,

165–167

bounded overtaking, 87, 100

break, 4

labelled, 2

limitations, 4

buffering, 117

bounded, 118

unbounded, 117

busy wait, 79, 95, 97, 107

busy waiting, 82

C, 12

C++11, 209

atomic, 190

cache, 183

coherence, 185

consistency, 185

eviction, 184

flush, 184

221

222 CHAPTER 11. OTHER APPROACHES

cache coherence, 185

cache consistency, 185

cache line, 183

cache thrashing, 186

call, 7

call-back, 173

catch, 14

catch-any, 56

channel, 207

client side, 172

call-back, 173

future, 174

returning values, 172

ticket, 173

COBEGIN, 69, 71, 116

cocall, 45

COEND, 69, 71

coherence, 185

collection, 153

communication, 79

direct, 161

compare-and-set(assign) instruction, 193

concurrency, 61

difficulty, 61

increasing, 169

why, 61

Concurrent C++, 204

concurrent error

indefinite postponement, 133

live lock, 133

race condition, 133

starvation, 134

concurrent exception, 14, 34, 77

concurrent execution, 61

concurrent hardware

structure, 62

concurrent systems

explicit, 66

implicit, 66

structure, 66

condition, 144, 153

condition lock, 103, 107

conditional critical region, 142

consistency, 185

context switch, 27, 62

continue

labelled, 2

control dependency, 181

cooperation, 97, 100, 101, 109

coprocessor, 200

coroutine, 23

main, 27

coroutine main, 32, 51, 110

counter, 116

critical path, 68, 201

critical region, 141

critical section, 80, 95

hardware, 92

compare/assign, 193

fetch-and-increment, 94

swap, 93

test/set, 93

self testing, 82

CUDA, 200

data dependency, 181

dating service, 147

deadlock, 134, 135, 141

allocation graphs, 138

avoidance, 137

banker’s algorithm, 137

detection/recovery, 140

mutual exclusion, 135

ordered resource, 136

prevention, 135

synchronization, 134

declare intent, 83

Dekker, 85, 190

delivered, 14

dependent, 97

dependent execution, 69

derived exception-types, 55

destructor

_Accept, 168

detach, 210

detection/recovery, 140

direct communication, 161

disjoint, 187

distributed system, 63

divide-and-conquer, 75

11.6. OPENMP 223

double-check locking, 188

dynamic multi-level exit, 11, 18

dynamic propagation, 18

eliding, 181

empty, 108, 116, 145

entry queue, 146

exception, 14

concurrent, 14, 34

handling, 13

handling mechanism, 13

hierarchy, 33

inherited members, 33

list, 57

nonlocal, 14, 34

parameters, 56

type, 14, 33

exception handling, 13

exception handling mechanism, 13

exception list, 57

exception parameters, 56

exception type, 14

exceptional event, 13

execution, 14

execution location, 23

execution state, 23, 64

blocked, 64

halted, 64

new, 64

ready, 64

running, 64

execution status, 23

exit

dynamic multi-level, 11

static multi-exit, 2

static multi-level, 2

explicit scheduling, 154

explicit signal, 155

external scheduling, 144, 162

eye-candy, 1, 3

failed cooperation, 151

failure exception, 57

false sharing, 186

faulting execution, 14, 37

fetch-and-increment instruction, 94

Fibonacci, 24

fix-up routine, 9

flag, 123

flag variable, 2, 151

flickering, 185

forward branch, 4

freshness, 123

fresh, 124

front, 145

full coroutine, 24, 46

functor, 209

future, 174

Future_ISM

available, 176

cancel, 176

cancelled, 176

delivery, 176

exception, 176

operator T(), 176

operator()(), 176

reset, 176

garbage collection, 73

Gene Amdahl, 67

general-purpose GPU, 200

generalize kernel threading, 66

Go, 207

goroutine, 207

goto, 2, 4, 11, 12

GPGPU, 200

greedy scheduling, 69

guarded block, 15, 20, 55

handled, 15

handler, 14, 33

resumption, 21, 33, 35

termination, 33

hazard pointers, 198

heap, 4

Heisenbug, 62

Hesselink, 86

immediate-return signal, 156

implicit scheduling, 154

implicit signal, 155

224 CHAPTER 11. OTHER APPROACHES

inactive, 23

increasing concurrency, 169

indefinite postponement, 81, 133

independent, 97

independent execution, 69

inherited members

exception type, 33

internal scheduling, 144, 165

interrupt, 63, 64, 199

timer, 63

intrusive data-structures, 152

intrusive list, 152

invocation, 7

isacquire, 103

istream

isacquire, 103

iterator, 41

Java, 205

volatile, 190

Java monitor, 157

jmp_buf, 12

kernel threading, 66

kernel threads, 65

keyword, additions

_Accept, 144

_At, 34

_Coroutine, 27

_Disable, 39

_Enable, 39

_Event, 33

_Monitor, 142

_Mutex, 142

_Nomutex, 144

_Resume, 34

_Select, 177

_Task, 71

_Throw, 34

_When, 163

label variable, 11

lexical link, 36

lifo scheduling, 69

linear, 67

linear speedup, 67

livelock, 81

liveness, 81

local exception, 14

lock, 82

taxonomy, 95

techniques, 119

lock composition, 151

lock free, 193

lock programming

buffering, 117

bounded buffer, 118

unbounded buffer, 117

lock-release pattern, 102

longjmp, 12, 190

loop

mid-test, 1

multi-exit, 1

M:1 threading, 66

M:N threading, 66

main

coroutine, 27

task, 71, 161

match, 14

memory model, 189

mid-test loop, 1

modularization, 7

monitor, 142

condition, 144, 153

external scheduling, 144

internal scheduling, 144

scheduling, 143

signal, 145, 153

simulation, 142

wait, 145, 153

monitor type

no priority blocking, 156

no priority implicit signal, 156

no priority nonblocking, 156

priority blocking, 156

priority implicit signal, 156

priority nonblocking, 156

monitor types, 154

multi-exit

Multi-exit loop, 1

11.6. OPENMP 225

mid-test, 1

multi-level

dynamic, 18

multi-level exit

dynamic, 11

static, 2

multiple acquisition, 98

multiple outcomes, 7

multiprocessing, 62

multiprocessor, 63

multitasking, 62

mutex lock, 98, 99, 113, 143

mutex member, 142

MutexLock, 99, 143

acquire, 99, 143

release, 99, 143

mutual exclusion, 80, 118

alternation, 83

deadlock, 135

declare intent, 83

Dekker, 85

Dekker-Hesselink, 86

game, 81

lock, 82, 93

N-thread

arbiter, 91

bakery, 89

prioritized entry, 88

tournament, 90

Peterson, 87

prioritized retract intent, 84

retract intent, 84

N:N threading, 66

nano threads, 66

nested monitor problem, 151

no priority blocking, 156

no priority implicit signal, 156

no priority nonblocking, 156

non-linear, 67

speedup, 67

non-preemptive, 63

scheduling, 63

nonlocal exception, 14, 34, 37

nonlocal transfer, 7, 11, 16

object

threading, 71

OpenMP, 217

operating system, 65, 66

optimization, 181

ordered resource, 136, 140

ostream

osacquire, 103

owner, 102

owner lock, 98, 101

ownership, 4, 193

P, 111, 115, 134–136, 141, 153

parallel execution, 61

park, 99

partial store order, 189

passeren, 111

Peterson, 87

precedence graph, 116

preemptive, 63

scheduling, 63

prioritized entry, 88

prioritized retract intent, 84

priority blocking, 156

priority implicit signal, 156

priority nonblocking, 156

private semaphore, 128

process, 61

processor

multi, 63

uni, 62

program order, 181

prolagen, 111

propagation, 14, 33

dynamic, 18

static, 17

propagation mechanism, 14

pthreads, 215

race condition, 133

race free, 189

raise, 14, 33, 34

resuming, 33, 34

throwing, 33, 34

readers/writer, 147, 151

226 CHAPTER 11. OTHER APPROACHES

freshness, 123

monitor

solution 3, 147

solution 4, 149

solution 8, 150

semaphore, 120

solution 1, 121

solution 2, 122

solution 3, 123

solution 4, 123

solution 5, 125

solution 6, 127

solution 7, 129

staleness, 123

real time, 67

release consistency, 189

RendezvousFailure

failed cooperation, 151

reordering, 181

replication, 181

reraise, 14

reresume, 34

reservation, 199

resume, 27, 38, 46

resumption, 15, 21

resumption handler, 21, 35

rethrow, 34

retract intent, 84

retry, 20

return code, 9

return union, 9, 19

routine

activation, 7

routine abstraction, 215

rw-safe, 85

safety, 81

scheduling, 63, 143, 162

explicit, 154

external, 144, 162

implicit, 154

internal, 144, 165

scrambling, 185

select blocked, 177

select statement, 177

self testing, 82

semaphore, 134–136

binary, 112, 145

counting, 113, 153

integer, 113

P, 111, 134–136, 141, 153

private, 128

split binary, 119

V, 112, 141, 153

semi-coroutine, 23, 46

sequel, 17

sequence, 153

sequence points, 190

sequential consistency, 189

server side

administrator, 171

buffer, 170

setjmp, 12

shadow queue, 124, 149, 150

shared-memory, 65

signal, 153

automatic, 155

explicit, 155

immediate-return, 156

implicit, 155

signal, 145, 166, 167

signalBlock, 145

single acquisition, 98

software engineering, 7

software pattern, 7

software transactional memory, 200

source execution, 14, 37

speedup, 67

linear, 67

non-linear, 67

sub-linear, 67

super linear, 67

spin lock, 95

implementation, 96

split binary semaphore, 119

spurious wakeup, 158

SR, 204

stack allocation, 4

stack unwinding, 12, 15

staleness, 123

11.6. OPENMP 227

stale, 124

START, 70, 72, 116

starter, 45

starvation, 69, 81, 122, 134

state transition, 64

static exit

multi-exit, 2

multi-level, 2

static multi-level exit, 2

static propagation, 17

static variable, 80

status flag, 9

stream lock, 103

strong memory ordering, 186

sub-linear, 67

speedup, 67

super linear, 67

super-linear speedup, 67

suspend, 27

swap instruction, 93

synchronization, 118, 143

communication, 79

deadlock, 134

during execution, 79

termination, 74

synchronization lock, 103

SyncLock, 145

task, 61

exceptions, 77

external scheduling, 162

internal scheduling, 165

main, 71, 161

scheduling, 162

static variable, 80

temporal order, 124

terminate, 19

terminated, 23

termination, 15

termination synchronization, 74, 75, 109

test-and-set instruction, 93

thread, 61

communication, 69

creation, 69

synchronization, 69

thread graph, 69

thread object, 71

threading model, 65

throw, 14

ticket, 128, 173

time-slice, 95, 127, 128, 195, 197

timer interrupt, 63

times, 102

total store order, 189

tournament, 90

transaction, 200

tryacquire, 96

TSO, 190

uActor

Delete, 74

Destroy, 74

Finished, 74

Nodelete, 74

uBarrier, 110

block, 110

last, 110

reset, 110

total, 110

waiters, 110

uBaseEvent

defaultResume, 33

defaultTerminate, 33

message, 33

source, 33

sourceName, 33

µC++, 66

µC++, 20, 74, 172, 174

uCondition, 144, 166, 167

empty, 145

front, 145

signal, 145

signalBlock, 145

wait, 145

uCondLock, 107

broadcast, 107

empty, 107

signal, 107

wait, 107

uLock, 96

228 CHAPTER 11. OTHER APPROACHES

acquire, 96

release, 96

tryacquire, 96

unbounded buffer, 117

unbounded overtaking, 86

unfairness, 82

unguarded block, 15

uniprocessor, 62

unpark, 99

uOwnerLock, 101

acquire, 102

release, 102

times, 102

tryacquire, 102

uSemaphore, 115, 134–136

counter, 115

empty, 115

P, 115, 134–136

TryP, 115

V, 115

user threading, 66

user time, 67

uSpinLock, 96

acquire, 96

release, 96

tryacquire, 96

V, 112, 115, 141, 153

virtual machine, 66

virtual processors, 65

volatile, 190

WAIT, 70, 72

wait, 153

wait, 145, 166, 167

wait free, 193

weak memory ordering, 186

weak order, 189

worker task, 170

worker tasks, 171

complex, 171

courier, 171

notifier, 171

simple, 171

timer, 171

yield, 95

	Title
	Contents
	Advanced Control Flow (Review)
	Static multi-level exit
	Dynamic Memory Allocation

	Nonlocal Transfer
	Traditional Approaches
	Dynamic Multi-level Exit
	Exception Handling
	Terminology
	Execution Environment
	Implementation
	Static/Dynamic Call/Return
	Static Propagation
	Dynamic Propagation
	Termination
	Resumption

	Exceptional Example

	Coroutine
	Semi-Coroutine
	Fibonacci Sequence
	Direct
	Routine
	Class
	Coroutine

	Format Output
	Direct
	Routine
	Class
	Coroutine

	Correct Coroutine Usage
	Coroutine Construction

	uC++ EHM
	Exception Type
	Inherited Members
	Raising
	Handler
	Termination
	Resumption
	Termination/Resumption

	Nonlocal Exceptions
	Memory Management
	Semi-Coroutine Examples
	Same Fringe
	Device Driver
	Direct
	Coroutine

	Producer-Consumer

	Full Coroutines
	Ping/Pong
	Producer-Consumer

	Coroutine Languages
	Python 3.5
	JavaScript
	C++20 Coroutines

	More Exceptions
	Derived Exception-Type
	Catch-Any
	Exception Parameters
	Exception List
	Destructor
	Multiple Exceptions

	Concurrency
	Why Write Concurrent Programs
	Why Concurrency is Difficult
	Concurrent Hardware
	Execution States
	Threading Model
	Concurrent Systems
	Speedup
	Thread Creation
	COBEGIN/COEND
	START/WAIT
	Thread Object
	Actor

	Termination Synchronization
	Divide-and-Conquer
	Exceptions
	Synchronization and Communication During Execution
	Communication
	Critical Section
	Static Variables
	Mutual Exclusion Game
	Self-Testing Critical Section
	Software Solutions
	Lock
	Alternation
	Declare Intent
	Retract Intent
	Prioritized Retract Intent
	Dekker (modified retract intent)
	Peterson (modified declare intent)
	N-Thread Prioritized Entry
	N-Thread Bakery (Tickets)
	Tournament
	Arbiter

	Hardware Solutions
	Test/Set Instruction
	Swap Instruction
	Fetch and Increment Instruction

	Locks
	Lock Taxonomy
	Spin Lock
	Implementation

	Blocking Locks
	Mutex Lock
	Implementation
	uOwnerLock
	Mutex-Lock Release-Pattern
	Stream Locks

	Synchronization Lock
	Implementation
	uCondLock
	Programming Pattern

	Barrier
	uBarrier

	Binary Semaphore
	Implementation

	Counting Semaphore
	Implementation

	Lock Programming
	Precedence Graph
	Buffering
	Unbounded Buffer
	Bounded Buffer

	Lock Techniques
	Readers and Writer Problem
	Solution 1
	Solution 2
	Solution 3
	Solution 4
	Solution 5
	Solution 6
	Solution 7

	Concurrent Errors
	Race Condition
	No Progress
	Live-lock
	Starvation
	Deadlock
	Synchronization Deadlock
	Mutual Exclusion Deadlock

	Deadlock Prevention
	Synchronization Prevention
	Mutual Exclusion Prevention

	Deadlock Avoidance
	Banker's Algorithm
	Allocation Graphs

	Detection and Recovery
	Which Method To Chose?

	Indirect Communication
	Critical Regions
	Conditional Critical Regions
	Monitor
	Scheduling (Synchronization)
	External Scheduling
	Internal Scheduling

	Readers/Writer
	Exceptions
	Nested Monitor Calls
	Intrusive Lists
	Counting Semaphore, V, P vs. Condition, Signal, Wait
	Monitor Types
	Java Monitor

	Direct Communication
	Task
	Scheduling
	External Scheduling
	Internal Scheduling
	Accepting the Destructor

	Increasing Concurrency
	Server Side
	Internal Buffer
	Administrator

	Client Side
	Returning Values
	Tickets
	Call-Back Routine
	Futures

	Optimization
	Sequential Optimizations
	Memory Hierarchy
	Cache Review
	Cache Coherence

	Concurrent Optimizations
	Disjoint Reordering
	Eliding
	Replication

	Memory Model
	Preventing Optimization Problems

	Other Approaches
	Atomic (Lock-Free) Data-Structure
	Compare and Set Instruction
	Lock-Free Stack
	ABA problem
	Hardware Fix
	Hardware/Software Fix

	Exotic Atomic Instruction
	General-Purpose GPU (GPGPU)
	Concurrency Languages
	Ada 95
	SR/Concurrent C++
	Java
	Go
	C++11 Concurrency

	Threads & Locks Library
	java.util.concurrent
	Pthreads

	OpenMP

	Index

