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1 Advanced Control Flow (Review)

• Within a routine, basic and advanced control structures allow virtually any control flow.

• For predicate only, while and for are interchangeable.

GOOD GOOD

while ( predicate ) {
S1

}

for ( ; predicate ; ) {
S1

}

for allows adding/removing loop index for debugging.

• Do not use while to simulate for.

BAD GOOD

int i = 0;
while ( i < 10 ) {

S1
i += 1;

}

for ( int i = 0; i < 10; i +=1 ) {
S1

}

• Multi-exit loop (or mid-test loop) has one or more exit locations occurring within the body

of the loop, not just top (while) or bottom (do-while).

for ( ;; ) { // infinite loop, while ( true )
. . .

if ( . . . ) break; // middle exit
. . .

}

• Exit condition reversed from while and outdented (eye-candy) for readability

• Eliminates priming (duplicated) code necessary with while.

cin >> d; // priming
while ( ! cin.fail() ) {

. . .
cin >> d;

}

for ( ;; ) {
cin >> d;

if ( cin.fail() ) break;
. . .

}

• Do not use multi-exit to simulate while/for, especially for loop index.

BAD GOOD

for ( int i = 0; ; i += 1 ) {
if ( i == 10 ) break;

S1
}

for ( int i = 0; i < 10; i += 1 ) {

S1
}

• A loop exit NEVER needs an else clause.

1
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BAD GOOD

for ( ;; ) {
S1
if ( C1 ) {

S2
} else {

break;
}
S3

}

for ( ;; ) {
S1

if ( ! C1 ) break;
S2

S3
}

BAD GOOD

for ( ;; ) {
S1
if ( C1 ) {

break;
} else {

S2
}
S3

}

for ( ;; ) {
S1

if ( C1 ) break;

S2

S3
}

S2 is logically part of loop body not part of an if.

• Allow multiple exit conditions.

for ( ;; ) {
S1

if ( i >= 10 ) { E1; break; }

S2
if ( j >= 10 ) { E2; break; }

S3
}

bool flag1 = false, flag2 = false;
while ( ! flag1 & ! flag2 ) {

S1
if ( C1 ) flag1 = true;
} else {

S2
if ( C2 ) flag2 = true;
} else {

S3
}

}
}
if ( flag1 ) E1;
else E2;

• Eliminate flag variables used solely to affect control flow, i.e., variable does not contain data

associated with computation.

• Flag variables are the variable equivalent to a goto because they can be set/reset/tested at

arbitrary locations in a program.

1.1 Static multi-level exit

• Static multi-level exit exits multiple control structures where exit point is known at compile

time.

• Labelled exit (break/continue) provides this capability.
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µC++ / Java C / C++

L1: { // good eye-candy
. . . declarations . . .
L2: switch ( . . . ) {

L3: for ( . . . ) {
. . . break L1; . . . // exit block
. . . break L2; . . . // exit switch
. . . break L3; . . . // exit loop

}
. . .

}
. . .

}

{
. . . declarations . . .
switch ( . . . ) {

for ( . . . ) {
. . . goto L1; . . .
. . . goto L2; . . .
. . . goto L3; . . . // or break

} L3: ;
. . .

} L2: ; // bad eye-candy
. . .

} L1: ;

• Why is it good practice to label all exits?

• Eliminate all flag variables with multi-level exit!

B1: for ( i = 0; i < 10; i += 1 ) {

B2: for ( j = 0; j < 10; j += 1 ) {

. . .
if ( . . . ) break B2; // outdent

. . . // rest of loop
if ( . . . ) break B1; // outdent

. . . // rest of loop

} // for

. . . // rest of loop

} // for

bool flag1 = false;
for ( i = 0; i < 10 && ! flag1; i += 1 ) {

bool flag2 = false;
for ( j = 0; j < 10 &&

! flag1 && ! flag2; j += 1 ) {
. . .
if ( . . . ) flag2 = true;
else {

. . . // rest of loop
if ( . . . ) flag1 = true;
else {

. . . // rest of loop
} // if

} // if
} // for
if ( ! flag1 ) {

. . . // rest of loop
} // if

} // for

• Occasionally a flag variable is necessary!

// Retain state from one inner lexical (static) scope to another.
int val; bool valDefault = false;
switch ( argv ) {

. . .
case 3:

if ( strcmp( argc[4], "d" ) ) valDefault = true; // default ?
else val = stoi( argc[4] ); // value

. . .
} // switch

http://proxy.lib.uwaterloo.ca/login?url=http://portal.acm.org/ft_gateway.cfm?id=362337&type=pdf&coll=ACM&dl=ACM&CFID=19394860&CFTOKEN=33044646
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for ( ;; ) {
. . .
if ( valDefault ) // do something
else // do another
. . .

} // for

• Other uses of multi-level exit to remove duplicate code.

duplication no duplication

if ( C1 ) {
S1;
if ( C2 ) {

S2;
if ( C3 ) {

S3;
} else

S4;
} else

S4;
} else

S4;

C: {
if ( C1 ) {

S1;
if ( C2 ) {

S2;
if ( C3 ) {

S3;
break C;

}
}

}
S4; // only once

}

{
if ( C1 ) {

S1;
if ( C2 ) {

S2;
if ( C3 ) {

S3;
goto C;

}
}

}
S4; // only once

} C: ;

• Normal and labelled break are a goto with limitations.

1. Cannot loop (only forward branch) ⇒ only loop constructs branch back.

2. Cannot branch into a control structure.

• Only use goto to perform static multi-level exit, e.g., simulate labelled break and continue.

1.2 Dynamic Memory Allocation

• Stack allocation eliminates explicit storage-management and is more efficient than heap al-

location — “Use the STACK, Luke Skywalker.”

{ // GOOD, use stack
cin >> size;
int arr[size]; // VLA, g++
. . . // use arr[i]

}

{ // BAD, unnecessary dynamic allocation
cin >> size;
int * arr = new int[size];
. . . // use arr[i]
delete [ ] arr; // why “[ ]”?

}

• These are the situations where dynamic allocation (heap) is necessary.

1. When storage must outlive the block in which it is allocated (ownership change).

Type * rtn(. . .) {
Type * tp = new Type; // MUST USE HEAP
. . . // initialize/compute using tp
return tp; // storage outlives block

} // tp deleted later
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Similar to necessary flag variable: to retain state from a lower level.

2. When the amount of data read is unknown.

vector<int> input;
int temp;
for ( ;; ) {

cin >> temp;
if ( cin.fail() ) break;

input.push_back( temp ); // implicit dynamic allocation
}

Does switching to emplace_back help?

3. When an array of objects must be initialized via the object’s constructor and each ele-

ment has a different value.

struct Obj {
const int id; . . .
Obj( int id ) : id( id ) { . . . }

}
cin >> size;
Obj * objs[size];
for ( int id = 0; id < size; id += 1 )

objs[id] = new Obj( id );
. . .
for ( int id = 0; id < size; id += 1 )

delete objs[id];

#include <memory>

{
unique_ptr<Obj> objs[size];
for ( int id = 0; id < size; id += 1 )

objs[id] = make_unique<Obj>( id );
. . .

} // automatically delete objs

µC++ alternative using uNoCtor (uses placement new like emplace_back).

cin >> size;
uNoCtor<Obj> objs[size]; // objs on stack and no constructor calls
for ( int id = 0; id < size; id += 1 )

objs[id].ctor( id ); // placement allocation & call initialization constructor

As for new and unique_ptr, fields accessed using ->

for ( int id = 0; id < size; id += 1 )
cout << objs[id]->id << endl; // MUST USE -> NOT . FOR FIELD ACCESS

4. When large local variables are allocated on a small stack.

_Coroutine C {
void main() { // 64K stack

int arr[100000]; // overflow
. . .

}
};

_Coroutine C {
void main() {

int * arr = new int[100000];
. . .

}
};

Alternatives are large stacks (waste virtual space) or dynamic stack growth (complex

and pauses).
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2 Nonlocal Transfer

• Routine activation (call/invocation) introduces complex control flow.

• Among routines, control flow is controlled by call/return mechanism.

g

h

f stack

◦ routine h calls g calls f

◦ cannot return from f to h, terminating g’s activation

• Modularization: from software engineering, any contiguous code block can be factored into

a (helper) routine and called in the program (modulo scoping rules).

• Modularization fails when factoring exits, e.g., multi-level exits:

B1: for ( i = 0; i < 10; i += 1 ) {
. . .

B2: for ( j = 0; j < 10; j += 1 ) {
. . .
if ( . . . ) break B1;
. . .

}

. . .
}

int rtn( . . . ) {

B2: for ( j = 0; j < 10; j += 1 ) {
. . .
if ( . . . ) break B1;
. . .

}

}
B1: for ( i = 0; i < 10; i += 1 ) {

. . . w = rtn( . . . ) . . .
}

Does this compile?

• Software pattern: many routines have multiple outcomes.

◦ normal: return normal result and transfer after call

◦ exceptional: return alternative result and not transfer after call

• Nonlocal transfer allows a routine to transfer back to its caller but not after the call.

C Two alternate return parameters, denoted by * and implicitly named 1 and 2
subroutine AltRet( c, *, * )

integer c

if ( c == 0 ) return ! normal return
if ( c == 1 ) return 1 ! alternate return

if ( c == 2 ) return 2 ! alternate return
end

7
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C Statements labelled 10 and 20 are alternate return points
call AltRet( 0, *10, *20 )
print *, "normal return 1"
call AltRet( 1, *10, *20 )
print *, "normal return 2"
return

10 print *, "alternate return 1"
call AltRet( 2, *10, *20 )
print *, "normal return 3"
return

20 print *, "alternate return 2"
stop
end

$ gfortran AltRtn.for
$ a.out
normal return 1
alternate return 1
alternate return 2

• Generalization of multi-exit loop and multi-level exit.

◦ Control structures ends normally or with an exceptional transfer.

• Pattern acknowledges:

◦ algorithms can have multiple outcomes

◦ separating outcomes makes it easy to read and maintain a program

• Pattern does not handle multiple levels of nested modularization.

• If AltRet is further modularized, new routine has an alternate return to AltRet, which retains

its alternate return to its caller.

C Two alternate return parameters, denoted by * and implicitly named 1 and 2
subroutine AltRet2( c, *, * )

integer c

if ( c == 0 ) return ! normal return
if ( c == 1 ) return 1 ! alternate return

return 2
end

C Two alternate return parameters, denoted by * and implicitly named 1 and 2
subroutine AltRet( c, *, * )

integer c
call AltRet2( c, *30, *40 )
return

30 return 1
40 if ( c == 2 ) return 2 ! alternate return

end

• Why not call AltRet2( c, *10, *20 )?
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2.1 Traditional Approaches

• What are the traditional approaches for handling the multiple-outcome pattern?

• return code: returns value indicating normal or exceptional execution. e.g., printf() returns

number of bytes transmitted or negative value.

• status flag: set shared (global) variable indicating normal or exceptional execution; the value

remains as long as it is not overwritten. e.g., errno variable in UNIX.

• fix-up routine: a global and/or local routine called for an exceptional event to fix-up and

return a corrective result so a computation can continue.

int fixup( int i, int j ) { . . . } // local routine
rtn( a, b, fixup ); // fixup called for exceptional event

e.g., C++ has global routine-pointer new_handler called when new fails.

• Techniques are often combined, e.g.:

if ( printf(. . .) < 0 ) { // check return code for error
perror( "printf:"); // errno describes specific error
abort(); // terminate program

}

• return union: modern approach combining result/return-code and requiring return-code

check on result access.

• ALL routines must return an appropriate union.

optional< int * > Malloc( size_t size ) {
if ( random() % 2 ) return (int *)malloc( sizeof( int ) );
return nullopt; // no storage

}
optional< int > rtn( ) {

optional< int * > p = Malloc( sizeof( int ) );
if ( ! p ) return nullopt; // malloc successful (true/false) ?

**p = 7; // compute
if ( random() % 2 ) return **p;
return nullopt; // bad computation

}
int main() {

srandom( getpid() );
optional< int > ret = rtn();
if ( ret ) cout << *ret << endl; // rtn successful?
else cout << "no storage or bad computation" << endl;

}
$ repeat 5 a.out
no storage or bad computation
7
no storage or bad computation
7
7
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enum Alloc { NoStorage };
variant< int *, Alloc > Malloc( size_t size ) {

if ( random() % 2 ) return (int *)malloc( sizeof( int ) );
return NoStorage;

}
enum Comp { BadComp };
variant< int, Alloc, Comp > rtn( ) {

variant< int *, Alloc > p = Malloc( sizeof( int ) );
if ( ! holds_alternative<int *>(p) ) return NoStorage; // malloc successful ?

*get<int *>(p) = 7;
if ( random() % 2 ) return *get<int *>(p);
return BadComp;

}

int main() {
srandom( getpid() );
variant< int, Alloc, Comp > ret = rtn();
if ( holds_alternative<int>(ret) ) cout << get<int>(ret) << endl;
else if ( holds_alternative<Comp>(ret) ) cout << "bad computation" << endl;
else cout << "no storage" << endl;

}
$ repeat 5 a.out
no storage
bad computation
no storage
bad computation
7

• Forces checking, unless explicitly access without holds_alternative.

• Like Fortran, only returns one level.

• Drawbacks of traditional techniques:

◦ checking return code or status flag is optional ⇒ can be delayed or omitted, i.e., passive

versus active

◦ return code mixes exceptional and normal values ⇒ enlarges type or value range; nor-

mal/exceptional type/values should be independent

• Testing and handling of return code or status flag is often done locally (inline), otherwise

information may be lost; but local testing/handling:

◦ makes code difficult to read; each call results in multiple statements

◦ can be inappropriate, e.g., library routines should not terminate program

• Nonlocal testing from nested routine calls is difficult as multiple codes are returned for anal-

ysis, compounding the mixing problem.

• Status flag can be overwritten before examined, and cannot be used in a concurrent environ-

ment because of sharing issues (e.g., save errno)
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• Local fix-up routines increases the number of parameters.

◦ increase cost of each call

◦ must be passed through multiple levels enlarging parameter lists even when the fix-up

routine is not used

• Nonlocal (global) fix-up routines, implemented with global routine pointer, have identical

problems with status flags (e.g., new_handler).

2.2 Dynamic Multi-level Exit

• Rather than returning one level at a time, simpler for new modularized routine to bypass

intermediate steps and transfer directly to original caller.

◦ e.g., AltRet2 transfers directly to program main, instead of AltRet2 to AltRet to program

main.

• Dynamic multi-level exit (DME) extend call/return semantics to transfer in the reverse di-

rection to normal routine calls, requiring nonlocal transfer.

label L;
void f( int i ) {

// nonlocal return
if ( i == . . . ) goto L;

}
void g( int i ) {

if ( i > 1 ) { g( i - 1 ); return; }
f( i );

}
void h( int i ) {

if ( i > 1 ) { h( i - 1 ); return; }
L = L1; // set dynamic transfer-point
f( 1 ); goto S1;

L1: // handle L1 nonlocal return
S1: // continue normal execution

L = L2; // set dynamic transfer-point
g( 1 ); goto S2;

L2: // handle L2 nonlocal return
S2: // continue normal execution

}

h

L2

L1

g

f
goto L

h

L2

L1

f
goto L

L

stack

hh
L1

L2

L1

L2

L

call from h to g to f

L

call from h to f

• label variable contains:

1. pointer to a block activation on the stack;

2. transfer point within the block.

• Nonlocal transfer, goto L, is a two-step operation.

1. direct control flow to the specified activation on the stack;

2. then go to the transfer point (label constant) within the routine.
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• Therefore, a label value is not statically/lexically determined.

◦ recursion in g ⇒ unknown distance between f and h on stack.

◦ what if L is set during the recursion of h?

• This complexity is why label constants have local scope.

• Transfer between goto and label value causes termination of stack block.

• First, nonlocal transfer from f transfers to the label L1 in h’s routine activation, terminating

f’s activation.

• Second, nonlocal transfer from f transfers to the static label L2 in the stack frame for h,

terminating the stack frame for f and g.

• Termination is implicit for direct transferring to h or requires stack unwinding if activations

contain objects with destructors or finalizers.

• DME is possible in C using:

◦ jmp_buf to declare a label variable,

◦ setjmp to initialize a label variable,

◦ longjmp to goto a label variable.

• DME allows multiple forms of returns to any level.

◦ Normal return transfers to statement after the call, often implying completion of rou-

tine’s algorithm.

◦ Exceptional return transfers to statement not after the call, indicating an ancillary com-

pletion (but not necessarily an error).

• Unfortunately, nonlocal transfer is too general, allowing branching to almost anywhere, i.e.,

the goto problem.

• Simulate nonlocal transfer with return codes.

http://proxy.lib.uwaterloo.ca/login?url=http://portal.acm.org/ft_gateway.cfm?id=362947&type=pdf&coll=GUIDE&dl=GUIDE&CFID=17962264&CFTOKEN=40004382
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label L;
void f( int i, int j ) {

for ( . . . ) {
int k;
. . .

if ( i < j && k > i ) goto L;
. . .

}

}
void g( int i ) {

for ( . . . ) {
int j;
. . . f( i, j ); . . .

}

}
void h() {

L = L1;
for ( . . . ) {

int i;
. . . g( i ); . . .

}
. . . return; // normal
L1: . . . // exceptional

}

int f( int i, int j ) {
bool flag = false;
for ( ! flag && . . . ) {

int k;
. . .

if ( i < j && k > i ) flag = true;
else { . . . }

}
if ( ! flag ) { . . . }
return flag ? -1 : 0;

}
int g( int i ) {

bool flag = false;
for ( ! flag && . . . ) {

int j;
. . . if ( f( i, j ) == -1 ) flag = true
else { . . . }

}
if ( ! flag ) { . . . }
return flag ? -1 : 0;

}
void h() {

bool flag = false;
for ( ! flag && . . . ) {

int i;
. . . if ( g( i ) == -1 ) flag = true;
else { . . . }

}
if ( ! flag ) { . . . return; }
. . .

}

2.3 Exception Handling

• DME, i.e., nonlocal transfer among routines, is often called exception handling.

• Exception handling is more than error handling.

• An exceptional event is an event that is (usually) known to exist but which is ancillary to

an algorithm.

◦ an exceptional event usually occurs with low frequency

◦ e.g., division by zero, I/O failure, end of file, pop empty stack

• An exception handling mechanism (EHM) provides some or all of the alternate kinds of

control-flow.

• Very difficult to simulate EHM with simpler control structures.

• Exceptions are supposed to make certain programming tasks easier, like robust programs.
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• Robustness results because exceptions are active versus passive, forcing programs to react

immediately when an exceptional event occurs.

• An EHM is not a panacea and only as good as the programmer using it.

2.4 Terminology

• execution is the language unit in which an exception can be raised, usually any entity with

its own runtime stack.

• exception type is a type name representing an exceptional event.

• exception is an instance of an exception type, generated by executing an operation indicating

an ancillary (exceptional) situation in execution.

• raise (throw) is the special operation that creates an exception.

• source execution is the execution raising an exception.

• faulting execution is the execution changing control flow due to a raised exception.

• local exception is when an exception is raised and handled by the same execution ⇒ source

= faulting.

• nonlocal exception is when an exception is raised by a source execution but delivered to a

different faulting execution ⇒ source 6= faulting.

• concurrent exception is a nonlocal exception, where the source and faulting executions are

executing concurrently.

• propagation directs control from a raise in the source execution to a handler in the faulting

execution.

• propagation mechanism is the rules used to locate a handler.

◦ most common propagation-mechanisms give precedence to handlers higher in the lex-

ical/call stack

* specificity versus generality

* efficient linear search during propagation

• handler is inline (nested) routine responsible for handling raised exception.

◦ handler catches exception by matching with one or more exception types

◦ after catching, a handler executes like a normal subroutine

◦ handler can return, reraise the current exception, or raise a new exception

◦ reraise terminate current handling and continue propagation of caught exception.

* useful if a handler cannot deal with an exception but needs to propagate same

exception to handler further down the stack.
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* provided by a raise statement without an exception type:

. . . throw; // no exception type

where a raise must be in progress.

◦ an exception is handled only if the handler returns rather than reraises

• guarded block is a language block with associated handlers, e.g., try-block in C++/Java.

• unguarded block is a block with no handlers.

• termination means control cannot return to the raise point.

◦ all blocks on the faulting stack from the raise block to the guarded block handling the

exception are terminated, called stack unwinding

• resumption means control returns to the raise point ⇒ no stack unwinding.

• EHM = Exception Type + Raise (exception) + Propagation + Handlers

2.5 Execution Environment

• The execution environment has a significant effect on an EHM.

• An object-oriented concurrent environment requires a more complex EHM than a non-

object-oriented sequential environment.

• E.g., objects may have destructors that must be executed no matter how the object ends, i.e.,

by normal or exceptional termination.

class T {
int *i;
T() { i = new int[10]; . . . }
~T() { delete [ ] i; . . . } // must free storage

};
L: {

T t; // constructor must be executed
. . . if ( . . . ) break L;
. . .

} // destructor must be executed

• Control structures with finally clauses must always be executed (e.g., Java/µC++).

Java µC++

L: try {
infile = new Scanner( new File( "abc" ) );
. . . if ( . . . ) break L;
. . .

} finally { // always executed
infile.close(); // must close file

}

L: try {
infile = new ifstream( "abc" );
. . . if ( . . . ) break L; // alt 1
. . . // alt 2

} _Finally { // always executed
infile.close(); // must close file
delete infile; // deallocate

}
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• Hence, terminating a block complicates the EHM as object destructors (and recursively for

nested objects) and finally clauses must be executed.

• For C++, a direct nonlocal transfer is often impossible, because of local objects with destruc-

tors, requiring linear stack unwinding.

• Also, complex execution-environment involving continuation, coroutine, task, each with its

own execution stack.

• Given multiple stacks, an EHM can be more sophisticated, resulting in more complexity.

◦ e.g., if no handler is found in one stack, it is possible to continue propagating the

exception in another stack.

2.6 Implementation

• DME is limited in most programming languages using exception handling.

struct E {}; // label
void f(. . .) {

. . .
throw E(); // raise
// control never returns here

}
int main() {

try {
f(. . .);

} catch( E ) {. . .} // handler 1
try {

f(. . .);
} catch( E ) {. . .} // handler 2
. . .

}

label L;
void f(. . .) {

. . .
goto L;

}
int main() {

L = L1; // set transfer-point
f(. . .); goto S1;

L1: // handle nonlocal return
S1: L = L2; // set transfer-point

f(. . .); goto S2;
L2: // handle nonlocal return
S2: ; . . .

}

• To implement throw/catch, the throw must know the last guarded block with a handler for

the raised exception type.

• One approach is to:

◦ associate a label variable with each exception type

◦ set label variable on entry to each guarded block with handler for the type

◦ reset label variable on exit to previous value, i.e., previous guarded block for that type

• However, setting/resetting label variable on try block entry/exit has a cost (small).

◦ rtn called million times but exception E never raised ⇒ million unnecessary operations.

void rtn( int i ) {
try { // set label on entry

. . .
} catch( E ) { . . . } // reset label on exit

}
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◦ Instead, catch/destructor data is stored once externally for each block and handler

found by linear search during a stack walk (no direct transfer).

◦ Advantage, millions of try entry/exit, but only tens of exceptions raised.

• Hence, termination is often implemented using zero cost on guarded-block entry but an

expensive approach on raise.

2.7 Static/Dynamic Call/Return

• All routine/exceptional control-flow can be characterized by two properties:

1. static/dynamic call: routine/exception name at the call/raise is looked up statically

(compile-time) or dynamically (runtime).

2. static/dynamic return: after a routine/handler completes, it returns to its static (defini-

tion) or dynamic (call) context.

call/raise

return/handled static dynamic

static 1) sequel 3) termination exception

dynamic 2) routine 4) routine pointer, virtual routine, resumption

• E.g., case 2) is a normal routine, with static name lookup at the call and a dynamic return.

2.8 Static Propagation (Sequel)

• Case 1) is called a sequel, which is a routine with no return value, where:

◦ the sequel name is looked up lexically at the call site, but

◦ control returns to the end of the block in which the sequel is declared.

A: for ( ;; ) {

B: for ( ;; ) {

C: for ( ;; ) {

. . .
if ( . . . ) { break A; }

. . .

if ( . . . ) { break B; }

. . .
if ( . . . ) { break C; }

. . .
}

}
}

for ( ;; ) {
sequel S1( . . . ) { . . . } // nested
void M1( . . . ) {

. . . if ( . . . ) S1( . . . ); . . .
}
for ( ;; ) {

sequel S2( . . . ) { . . . } // nested
C: for ( ;; ) {

M1( . . . ); // modularize

if ( . . . ) S2( . . . ); // modularize
. . .

if ( . . . ) break C;
. . .

}
} // S2 static return

} // S1 static return
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• Without a sequel, it is impossible to modularize code with static exits.

• ⇒ propagation is along the lexical structure

• Adheres to the termination model, as the stack is unwound.

• Sequel handles termination for a non-recoverable event (simple exception handling).

{ // new block
sequel StackOverflow(. . .) { . . . } // handler

class stack {
void push( int i ) {

if (. . .) StackOverflow(. . .); // 2nd outcome
} // 1st outcome
. . .

};

stack s;
. . . s.push( 3 ); . . . // overflow ?

} // sequel returns here

• The advantage of the sequel is the handler is statically known (like static multi-level exit),

and can be as efficient as a direct transfer.

• The disadvantage is that the sequel only works for monolithic programs because it must be

statically nested at the point of use.

◦ Fails for modular (library) code as the static context of the module and user code are

disjoint.

◦ E.g., if stack is separately compiled, the sequel call in push no longer knows the static

blocks containing calls to it.

2.9 Dynamic Propagation

• Cases 3) and 4) are called termination and resumption, and both have dynamic raise with

static/dynamic return, respectively.

• Dynamic propagation/static return (case 3) is also called dynamic multi-level exit (see Sec-

tion 2.2, p. 11).

• The advantage is that dynamic propagation works for separately-compiled programs.

• The disadvantage (advantage) of dynamic propagation is the handler is not statically known.

◦ without dynamic handler selection, the same action and context for that action is exe-

cuted for every exceptional change in control flow.
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2.9.1 Termination

• For termination:

◦ control transfers from the start of propagation to a handler ⇒ dynamic raise (call)

◦ when handler returns, it performs a static return ⇒ stack is unwound (like sequel)

• There are 2 basic termination forms for a non-recoverable operation: terminate and retry.

• terminate provides limited mechanism for block transfer on the call stack, like labelled

break.

struct E {}; // label
void f(. . .) {

. . .
throw E(); // raise
// control never returns here

}
int main() {

try {
f(. . .);

} catch( E ) {. . .} // handler 1
try {

f(. . .);
} catch( E ) {. . .} // handler 2
. . .

}

• No intermediate code to forward alternative outcome (see return union examples page 9).

struct NoStorage {};
struct BadComp {};
int * Malloc( size_t size ) {

if ( random() % 2 ) return (int *)malloc( sizeof( int ) );
throw NoStorage();

}
int rtn( ) {

int * p = Malloc( sizeof( int ) );
// DO NOT HAVE TO FORWARD NoStorage

*p = 7; // compute
if ( random() % 2 ) return *p;
throw BadComp();

}
int main() {

srandom( getpid() );
try { cout << rtn() << endl; }
catch( BadComp ) { cout << "bad computation" << endl; }
catch( NoStorage ) { cout << "no storage" << endl; }

}
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• C++ I/O can be toggled to raise exceptions versus return codes (like µC++).

C++ µC++

ifstream infile;
ofstream outfile;
outfile.exceptions( ios_base::failbit );
infile.exceptions( ios_base::failbit );
switch ( argc ) {

case 3:
try {

outfile.open( argv[2] );
} catch( ios_base::failure & ) {. . .}
// fall through to handle input file

case 2:
try {

infile.open( argv[1] );
} catch( ios_base::failure & ) {. . .}
break;

default:
. . .

} // switch
string line;
try {

for ( ;; ) { // loop until end-of-file
getline( infile, line );
outfile << line << endl;

}
} catch ( ios_base::failure & ) {}

ifstream infile;
ofstream outfile;

switch ( argc ) {
case 3:

try {
outfile.open( argv[2] );

} catch( uFile::Failure & ) {. . .}
// fall through to handle input file

case 2:
try {

infile.open( argv[1] );
} catch( uFile::Failure & ) {. . .}
break;

default:
. . .

} // switch
string line;

for ( ;; ) {
getline( infile, line );

if ( infile.fail() ) break; // no eof exception
outfile << line << endl;

}

• ios::exception mask indicates stream state-flags throw an exception if set

• failure exception raised after failed open or end-of-file when failbit set in exception mask

• µC++ provides exceptions for I/O errors, but no exception for eof.

• retry is a combination of termination with special handler semantics, i.e., restart the guarded

block handling the exception (Eiffel). (Pretend end-of-file is an exception of type Eof.)

https://www.student.cs.uwaterloo.ca/~cs343/examples/IOexp.cc
https://www.student.cs.uwaterloo.ca/~cs343/examples/uIO.cc


2.9. DYNAMIC PROPAGATION 21

Retry Simulation

char readfiles( char *files[ ], int N ) {
int i = 0, value;
ifstream infile;
infile.open( files[i] );

try {
. . . infile >> value; . . .

} retry( Eof ) {
i += 1;
infile.close();

if ( i == N ) goto Finished;
infile.open( files[i] );

}
Finished: ;

}

char readfiles( char *files[ ], int N ) {
int i = 0, value;
ifstream infile;
infile.open( files[i] );
while ( true ) {

try {
. . . infile >> value; . . .

} catch( eof ) {
i += 1;
infile.close();

if ( i == N ) break;
infile.open( files[i] );

}
}

}

• Because retry can be simulated, it is seldom supported directly.

2.9.2 Resumption

• resumption provides a limited mechanism to generate new blocks on the call stack:

◦ control transfers from the start of propagation to a handler ⇒ dynamic raise (call)

◦ when handler returns, it is dynamic return ⇒ stack is NOT unwound (like routine)

• A resumption handler is a corrective action so a computation can continue.

void f() {
resume E(); // raise
// control returns here

}
int main() {

try {
f(); // no parameters

} catch( E ) {
// handler 1

}
try {

f(); // no parameters
} catch( E ) {

// handler 2
}

}

void f( void (*fixup)() ) {
fixup();
// control returns here

}
void fixup1() {

// handler 1
}
void fixup2() {

// handler 2
}
int main() {

f( fixup1 ); // parameters
f( fixup2 ); // parameters

}

• No intermediate code to forward fixup down to raise point.
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2.10 Exceptional Example

B1 {
B2 try {
B3 try {
B4 try {
B5 {
B6 try {

. . . throw E5(); . . .
C1 } catch( E7 ) { . . . }
C2 catch( E8 ) { . . . }
C3 catch( E9 ) { . . . }

}
C4 } catch( E4 ) { . . . }
C5 catch( E5 ) { . . . throw; . . . }
C6 catch( E6 ) { . . . }
C7 } catch( E3 ) { . . . }
C8 } catch( E5 ) { . . . resume/retry/terminate }
C9 catch( E2 ) { . . . }

}

propagation
call

throw

guarded / unguarded blocks

stack

handlers

catch

catch

handled
resumption
retry

terminate

throw

B1

B2

B3

B4

B5

C2 C3

C4 C5 C6

C9C8

C7

C1

E5

B6



3 Coroutine

• A coroutine is a routine that can also be suspended at some point and resumed from that

point when control returns.

• The state of a coroutine consists of:

◦ an execution location, starting at the beginning of the coroutine and remembered at

each suspend.

◦ an execution state holding the data created by the code the coroutine is executing. ⇒
each coroutine has its own stack, containing its local variables and those of any routines

it calls.

◦ an execution status—active or inactive or terminated—which changes as control

resumes and suspends in a coroutine.

• Hence, a coroutine does not start from the beginning on each activation; it is activated at the

point of last suspension.

• In contrast, a routine always starts execution at the beginning and its local variables only

persist for a single activation.

suspend

suspend

resume

resume

return

cocaller

state program

10

20

30

10
20
30

cocall
coroutine

program state
15

15

25

25

active

terminated

• A coroutine handles the class of problems that need to retain state between calls (e.g. plugin,

device driver, finite-state machine).

• A coroutine executes synchronously with other coroutines; hence, no concurrency among

coroutines.

• Coroutines are the precursor to concurrent tasks, and introduce the complex concept of sus-

pending and resuming on separate stacks.

• Two different approaches are possible for activating another coroutine:

1. A semi-coroutine acts asymmetrically, like non-recursive routines, by implicitly reac-

tivating the coroutine that previously activated it.

23
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2. A full coroutine acts symmetrically, like recursive routines, by explicitly activating

a member of another coroutine, which directly or indirectly reactivates the original

coroutine (activation cycle).

• These approaches accommodate two different styles of coroutine usage.

3.1 Semi-Coroutine

3.1.1 Fibonacci Sequence

f (n) =







0 n = 0

1 n = 1

f (n−1)+ f (n−2) n ≥ 2

• 3 states, producing unbounded sequence: 0, 1, 1, 2, 3, 5, 8, 13, 21, . . .

3.1.1.1 Direct

• Compute and print Fibonacci numbers.

int main() {

int fn, fn1, fn2;
fn = 0; fn1 = fn; // 1st case
cout << fn << endl;
fn = 1; fn2 = fn1; fn1 = fn; // 2nd case
cout << fn << endl;
for ( ;; ) { // infinite loop

fn = fn1 + fn2; fn2 = fn1; fn1 = fn; // general case
cout << fn << endl;

}

}

• Convert to routine that generates a sequence of Fibonacci numbers on each call (no output):

int main() {
for ( int i = 1; i <= 10; i += 1 ) { // first 10 Fibonacci numbers

cout << fibonacci() << endl;
}

}

• Examine different solutions.
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3.1.1.2 Routine

int fn1, fn2, state = 1; // global variables
int fibonacci() {

int fn;
switch ( state ) {

case 1:
fn = 0; fn1 = fn; state = 2;
break;

case 2:
fn = 1; fn2 = fn1; fn1 = fn; state = 3;
break;

case 3:
fn = fn1 + fn2; fn2 = fn1; fn1 = fn;
break;

}
return fn;

}

• unencapsulated global variables necessary to retain state between calls

• only one fibonacci generator can run at a time

• execution state must be explicitly retained

#define FIB_INIT { 0, 1 } /* first two Fibonacci numbers */
struct Fibonacci { int fn2, fn1; };
int fib( Fibonacci & f ) {

int ret = f.fn2;
int fn = f.fn1 + f.fn2; // only last state (3) in Fibonacci definition
f.fn2 = f.fn1; f.fn1 = fn;
return ret;

}
int main() {

Fibonacci f1 = FIB_INIT, f2 = FIB_INIT; // multiple instances
for ( int i = 1; i <= 10; i += 1 ) {

cout << fib( f1 ) << " " << fib( f2 ) << endl;
}

}

• unencapsulated program global variables become encapsulated structure variables

• multiple fibonacci generators (objects) can run at a time

• execution state removed by precomputing first 2 Fibonacci numbers and returning f (n−2)
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3.1.1.3 Class

class Fibonacci {
int fn, fn1, fn2, state = 1; // global class variables

public:
int operator()() { // functor

switch ( state ) {
case 1:

fn = 0; fn1 = fn; state = 2;
break;

case 2:
fn = 1; fn2 = fn1; fn1 = fn; state = 3;
break;

case 3:
fn = fn1 + fn2; fn2 = fn1; fn1 = fn;
break;

}
return fn;

}
};
int main() {

Fibonacci f1, f2; // multiple instances
for ( int i = 1; i <= 10; i += 1 ) {

cout << f1() << " " << f2() << endl;
} // for

}

• unencapsulated program global variables become encapsulated object global variables

• multiple fibonacci generators (objects) can run at a time

• execution state still explicit or use initialization trick

3.1.1.4 Coroutine

_Coroutine Fibonacci { // : public uBaseCoroutine
int fn; // used for communication
void main() { // distinguished member

int fn1, fn2; // retained between resumes
fn = 0; fn1 = fn;
suspend(); // return to last resume
fn = 1; fn2 = fn1; fn1 = fn;
suspend(); // return to last resume
for ( ;; ) {

fn = fn1 + fn2; fn2 = fn1; fn1 = fn;
suspend(); // return to last resume

}

}
public:

int operator()() { // functor
resume(); // transfer to last suspend
return fn;

}
};
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int main() {
Fibonacci f1, f2; // multiple instances
for ( int i = 1; i <= 10; i += 1 ) {

cout << f1() << " " << f2() << endl;
}

}

• no explicit execution state! (see direct solution)

• _Coroutine type wraps coroutine and provides all class properties

• distinguished member main (coroutine main) can be suspended and resumed

• no parameters or return value (supplied by public members and communication variables).

• coroutine main can be called (even recursively), but normally a private/protected member.

Why?

• compile with u++ command

• All coroutines inherit from base type uBaseCoroutine:

class uBaseCoroutine {
protected:

void resume(); // context switch to this
void suspend(); // context switch to last resumer
virtual void main() = 0; // starting routine for coroutine

public:
uBaseCoroutine();
uBaseCoroutine( unsigned int stackSize ); // set stack size
void verify(); // check stack
const char * setName( const char * name ); // printed in error messages
const char * getName() const;
uBaseCoroutine & starter() const; // coroutine performing first resume
uBaseCoroutine & resumer() const; // coroutine performing last resume

};

• Program main called from hidden coroutine ⇒ has coroutine properties.

• resume/suspend cause a context switch between coroutine stacks

f2{fn}
f1{fn}

i

()() resume

main

resume

fn1, fn2

f1

context switch

fn1, fn2

f2

main

stacks

suspend suspend
::main

• first resume starts main on new stack (cocall); subsequent resumes reactivate last suspend.
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• suspend reactivates last resume

• object becomes a coroutine on first resume; coroutine becomes an object when main ends

• routine frame at the top of the stack knows where to activate execution

• suspend/resume are protected members to prevent external calls. Why?

• Coroutine main does not have to return before a coroutine object is deleted.

• When deleted, a coroutine’s stack is always unwound and any destructors executed. Why?

• Warning, do not use catch(. . .) in a coroutine, if it may be deleted before terminating,

because a cleanup exception is raised to force stack unwinding (implementation issue).

3.1.2 Format Output

Unstructured input:

abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyz

Structured output:

abcd efgh ijkl mnop qrst

uvwx yzab cdef ghij klmn

opqr stuv wxyz

blocks of 4 letters, separated by 2 spaces, grouped into lines of 5 blocks.

3.1.2.1 Direct

• Read characters and print formatted output.

int main() {
int g, b;
char ch;
cin >> noskipws; // turn off white space skipping

for ( ;; ) { // for as many characters
for ( g = 0; g < 5; g += 1 ) { // groups of 5 blocks

for ( b = 0; b < 4; b += 1 ) { // blocks of 4 chars
for ( ;; ) { // for newline characters

cin >> ch; // read one character
if ( cin.fail() ) goto fini; // eof ? multi-level exit

if ( ch != ’\n’ ) break; // ignore newline
}
cout << ch; // print character

}
cout << " "; // print block separator

}
cout << endl; // print group separator

}

fini: ;
if ( g != 0 | | b != 0 ) cout << endl; // special case

}
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• Convert to routine passed one character at a time to generate structured output (no input).

3.1.2.2 Routine

int g, b; // global variables
void fmtLines( char ch ) {

if ( ch != -1 ) { // not EOF ?
if ( ch == ’\n’ ) return; // ignore newline
cout << ch; // print character
b += 1;
if ( b == 4 ) { // block of 4 chars

cout << " "; // block separator
b = 0;
g += 1;

}
if ( g == 5 ) { // group of 5 blocks

cout << endl; // group separator
g = 0;

}
} else {

if ( g != 0 | | b != 0 ) cout << endl; // special case
}

}
int main() {

char ch;
cin >> noskipws; // turn off white space skipping
for ( ;; ) { // for as many characters

cin >> ch;
if ( cin.fail() ) break; // eof ?

fmtLines( ch );
}
fmtLines( -1 ); // indicate EOF

}

• must retain variables b and g between successive calls.

• only one instance of formatter

• linearize (flatten) loops: one loop, lots of if statements

3.1.2.3 Class

class Format {
int g, b; // global class variables

public:
Format() : g( 0 ), b( 0 ) {}
~Format() { if ( g != 0 | | b != 0 ) cout << endl; }
void prt( char ch ) {

if ( ch == ’\n’ ) return; // ignore newline
cout << ch; // print character
b += 1;
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if ( b == 4 ) { // block of 4 chars
cout << " "; // block separator
b = 0;
g += 1;

}
if ( g == 5 ) { // group of 5 blocks

cout << endl; // group separator
g = 0;

}
}

};

int main() {
Format fmt;
char ch;
cin >> noskipws; // turn off white space skipping
for ( ;; ) { // for as many characters

cin >> ch; // read one character
if ( cin.fail() ) break; // eof ?

fmt.prt( ch );
}

}

• Solves encapsulation and multiple instances issues, but explicitly managing execution state.

3.1.2.4 Coroutine

_Coroutine Format {
char ch; // used for communication
int g, b; // global because used in destructor
void main() {

for ( ;; ) { // for as many characters
for ( g = 0; g < 5; g += 1 ) { // groups of 5 blocks

for ( b = 0; b < 4; b += 1 ) { // blocks of 4 characters
for ( ;; ) { // for newline characters

suspend();
if ( ch != ’\n’ ) break; // ignore newline

}
cout << ch; // print character

}
cout << " "; // print block separator

}
cout << endl; // print group separator

}

}
public:

Format() { resume(); } // start coroutine
~Format() { if ( g != 0 | | b != 0 ) cout << endl; }
void prt( char ch ) { Format::ch = ch; resume(); }

};
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int main() {
Format fmt;
char ch;
cin >> noskipws; // turn off white space skipping
for ( ;; ) {

cin >> ch; // read one character
if ( cin.fail() ) break; // eof ?

fmt.prt( ch );
}

}

• resume in constructor allows coroutine main to get to 1st input suspend.

fmt{ch, g, b}
::main

chprt resume

ch

fmt

main

suspend

3.1.3 Correct Coroutine Usage

• Eliminate computation or flag variables retaining information about execution state.

• E.g., sum even and odd digits of 10-digit number, where each digit is passed to coroutine:

BAD: Explicit Execution State GOOD: Implicit Execution State

for ( int i = 0; i < 10; i += 1 ) {
if ( i % 2 == 0 ) // even ?

even += digit;
else

odd += digit;
suspend();

}

for ( int i = 0; i < 5; i += 1 ) {

even += digit;
suspend();
odd += digit;
suspend();

}

• Right example illustrates coroutine “Zen”; let it do the work.

• E.g., a BAD solution for the previous Fibonacci generator is:
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void main() {
int fn1, fn2, state = 1;
for ( ;; ) {

switch (state) { // no Zen
case 1:

fn = 0; fn1 = fn;
state = 2;
break;

case 2:
fn = 1; fn2 = fn1; fn1 = fn;
state = 3;
break;

case 3:
fn = fn1 + fn2; fn2 = fn1; fn1 = fn;
break;

}
suspend(); // no Zen

}
}

• Coroutine’s capabilities not used:

◦ explicit flag variable controls execution state

◦ original program structure lost in switch statement

• Must do more than just activate coroutine main to demonstrate understanding of retaining

data and execution state within a coroutine.

3.1.4 Coroutine Construction

• Fibonacci and formatter coroutines express original algorithm structure (no restructuring).

• When possible, simplest coroutine construction is to write a direct (stand-alone) program.

• Convert to coroutine by:

◦ putting processing code into coroutine main,

◦ converting reads if program is consuming or writes if program is producing to suspend,

* Fibonacci consumes nothing and produces (generates) Fibonacci numbers ⇒ con-

vert writes (cout) to suspends.

* Formatter consumes characters and only indirectly produces output (as side-effect)

⇒ convert reads (cin) to suspends.

◦ use interface members and communication variables to transfer data in/out of coroutine.

• This approach is impossible for advanced coroutine problems.
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3.2 µC++ EHM

The following features characterize the µC++ EHM:

• exceptions must be generated from a specific kind of type.

• supports two kinds of raising: throw and resuming.

• supports two kinds of handlers, termination and resumption, which match with the kind of

raise.

• supports propagation of nonlocal and concurrent exceptions.

• all exception types (user, runtime, and I/O) are grouped into a hierarchy.

3.3 Exception Type

• C++ allows any type to be used as an exception type.

• µC++ restricts exception types to those types defined by _Event.

_Event exception-type-name { . . . };

• An exception type has all the properties of a class.

• Every exception type must have a public default and copy constructor.

• An exception is the same as a class-object with respect to creation and destruction.

_Event D { . . . };
D d; // local creation
_Resume d;
D *dp = new D; // dynamic creation
_Resume *dp;
delete dp;
_Throw D(); // temporary local creation

3.4 Inherited Members

• Each exception type inherits the following members from uBaseEvent:

class uBaseEvent { // like std::exception
uBaseEvent( const char *const msg = "" );
const char *const message() const;
const uBaseCoroutine &source() const;
const char *sourceName() const;
virtual void defaultTerminate();
virtual void defaultResume();

};

• uBaseEvent( const char *const msg = "" ) – msg is printed if the exception is not caught.
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◦ Message string is copied so it is safe to use within an exception even if the context of

the raise is deleted.

• message returns the string message associated with an exception.

• source returns the coroutine/task that raised the exception.

◦ coroutine/task may be deleted when the exception is caught so this reference may be

undefined.

• sourceName returns the name of the coroutine/task that raised the exception.

◦ name is copied from the raising coroutine/task when exception is created.

• defaultTerminate is implicitly called if an exception is thrown but not handled.

◦ default action is to forward an UnhandledException exception to resumer/joiner.

• defaultResume is implicitly called if an exception is resumed but not handled.

◦ default action is to throw the exception.

3.5 Raising

• There are two raising mechanisms: throwing and resuming.

_Throw [ exception-type ] ;
_Resume [ exception-type ] [ _At uBaseCoroutine-id ] ;

• If _Throw has no exception-type, it is a rethrow.

• If _Resume has no exception-type, it is a reresume.

• The optional _At clause allows the specified exception or the currently propagating exception

to be raised at another coroutine or task.

• Nonlocal/concurrent raise restricted to resumption as raising execution-state is often unaware

of the handling execution-state.

• Resumption allows faulting execution greatest flexibility: it can process the exception as a

resumption or rethrow the exception for termination.

• Exceptions in µC++ are propagated differently from C++.

C++ µC++

class B {};
class D : public B {};
void f( B & t ) { . . . throw t; . . . }
try {

D m;
f( m );

} catch (D &) { cout << "D" << endl; }
catch (B &) { cout << "B" << endl; }

_Event B {};
_Event D : public B {};
void f( B & t ) { . . . _Throw t; . . .}
try {

D m;
f( m );

} catch (D &) { cout << "D" << endl; }
catch (B &) { cout << "B" << endl; }
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◦ In C++, routine f is passed an object of derived type D but throws an object of base type

B.

◦ In µC++, routine f is passed an object of derived type D and throws the original object

of type D.

◦ This change allows handlers to catch the specific (derived) rather than the general (base)

exception-type.

3.6 Handler

• µC++ has two kinds of handlers, termination and resumption, which match with the kind of

raise.

3.6.1 Termination

• The µC++ termination handler is the catch clause of a try block, i.e., same as in C++.

3.6.2 Resumption

• µC++ extends the try block to include resumption handlers.

• Resumption handler is denoted by a _CatchResume clause after try body:

try {
. . .

} _CatchResume( E1 ) { . . . } // must appear before catch clauses
// more _CatchResume clauses
_CatchResume( . . . ) { . . . } // must be last _CatchResume clause
catch( E2 ) { . . . } // must appear after _CatchResume clauses
// more catch clauses
catch( . . . ) { . . . } // must be last catch clause

• Any number of resumption handlers can be associated with a try block.

• All _CatchResume handlers must precede any catch handlers.

• Like catch(. . .) (catch-any), _CatchResume(. . .) must appear at the end of the list of the

resumption handlers.

• Resumption handler can access types and variables visible in its local scope.

typedef int Foo;
Foo i;
try {

f(. . .) // f is recursive and raises Foo
} _CatchResume( Foo & e ) { // handler H

Foo fix = i; // use type and variable in local scope
. . . e = fix . . . // change _Resume block

}
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H

f raise Foolexical
link

CatchResume( Foo )

i

4 21 3

1. call f

2. propagation from f to handler H

3. call handler

4. dereference lexical link to i

• lexical link is like this but to declaration block rather than object.

• Resumption handler cannot perform a break, continue, goto, or return.

◦ Resumption handler is corrective action so computation can continue.

◦ If correction impossible, handler should throw an exception not step into an enclosing

block to cause the stack to unwind.

B: try {
f(); // recursive calls and _Resume E()

} _CatchResume( E e ) { // handler H
. . . break B; // force static return (disallowed)
_Throw e; // force recovery (allowed)

}

◦ Handler H above makes recursive calls to f, so goto must unwind stack to transfer into

stack frame B (nonlocal transfer).

◦ Throw may find another recovery action closer to raise point than B that can deal with

the problem.

3.6.3 Termination/Resumption

• The raise dictates set of handlers examined during propagation:

◦ terminating propagation (_Throw) only examines termination handlers (catch),

◦ resuming propagation (_Resume) only examines resumption handlers (_CatchResume).

• Exception types in each set can overlap.

_Event E {};
void rtn() {

try {
_Resume E();

} _CatchResume( E & e ) { . . . _Throw e; } // H1
catch( E & e ) { . . . } // H2

}

• Resumption handler H1 is invoked by the resume in the try block generating call stack:

rtn → try{}_CatchResume( E ), catch( E )→ H1
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• Handler H1 throws E and the stack is unwound until the exception is caught by termination-

handler catch( E ) and handler H2 is invoked.

rtn → H2

• The termination handler is available as resuming does not unwind the stack.

• Note interaction between resuming, defaultResume, and throwing:

_Event R {};
void rtn() {

try {
_Resume R(); // resume not throw

} catch( R & ) { . . . } // H1, no _CatchResume!!!
}

• This generates the following call stack as there is no eligible resumption handler (or there is

a handler but marked ineligible):

rtn → try{}catch( R ) → defaultResume

• When defaultResume is called, the default action throws R (see Section 3.4, p. 33).

rtn → H1

• Terminating propagation unwinds the stack until there is a match with the catch clause in

the try block.

3.7 Nonlocal Exceptions

• Nonlocal exceptions are exceptions raised by a source execution at a faulting execution.

• Nonlocal exceptions are possible because each coroutine (execution) has its own stack.

• Nonlocal exceptions are raised using _Resume . . . _At . . ..
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_Event E {};
_Coroutine C {

void main() {
// initialization, no nonlocal delivery
try { // setup handlers

_Enable { // allow nonlocal exceptions
. . . suspend(); . . . // inside suspend is _Resume E();

} // disable all nonlocal exceptions
} catch( E ) {

// handle nonlocal exception
}
// finalization, no nonlocal delivery

}
public:

C() { resume(); } // prime try (not always possible)
void mem() { resume(); }

};
int main() {

C c;
_Resume E() _At c; // exception pending
c.mem(); // trigger exception

}

• For nonlocal resumption, _Resume is a proxy for actual raise in the faulting coroutine ⇒
non-local resumption becomes local resumption.

c

Resume E
Enable

suspend
resume

faulting

E

source

::main

Resume E
At c

activate

• While source delivers nonlocal exception immediately, propagation only occurs when fault-

ing becomes active.

⇒ must suspend back to or call a member that does a resume of the faulting coroutine

• Faulting coroutine performs local _Resume implicitly at detection points for nonlocal ex-

ceptions, e.g., in _Enable, suspend, resume.

• Handler does not return to the proxy raise; control returns to the implicit local raise at ex-

ception delivery, e.g., back in _Enable, suspend, resume.

• Multiple nonlocal exceptions are queued and delivered in FIFO order depending on the cur-

rent enabled exceptions.

• Nonlocal delivery is initially disabled for a coroutine, so handlers can be set up before any

exception can be delivered (also see Section 5.11, p. 77).
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• Hence, nonlocal exceptions must be explicitly enabled before delivery can occur with _Enable.

• µC++ allows dynamic enabling and disabling of individual exception types versus all excep-

tion types.

_Enable <E1><E2>. . . {
// exceptions E1, E2 are enabled

}
_Disable <E1><E2>. . . {

// exceptions E1, E2 are disabled
}

• Specifying no exceptions is shorthand for specifying all nonlocal exceptions.

• _Enable and _Disable blocks can be nested, turning delivery on/off on entry and reestab-

lishing the delivery state to its prior value on exit.

• An unhandled exception raised by a coroutine raises a nonlocal exception of type

uBaseCoroutine::UnhandledException at the coroutine’s last resumer and then terminates

the coroutine.

_Event E {};
_Coroutine C {

void main() { _Throw E(); } // unwind
// defaultTerminate ⇒ _Resume UnhandledException() _At resumer()
// ⇒ coroutine activates last resumer (not starter) and terminates

public:
void mem() { resume(); } // nonlocal exception? ⇒ _Resume UnhandledException()

}; // _CatchResume continues after resume()
int main() {

C c;
try {

c.mem();
} _CatchResume( uBaseCoroutine::UnhandledException & ) {. . .} // one of

catch( uBaseCoroutine::UnhandledException & ) {. . .}
// catch continues after try

}

• Call to c.mem resumes coroutine c and then coroutine c throws exception E but does not

handle it.

• When the base of c’s stack is reached, an exception of type uBaseCoroutine::UnhandledException

is raised at ::main, since it last resumed c.

E

source

c

Resume Unh...(E)

::main

Unh...

faulting

Resume Unh...(E)
At resumer()

activate
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• _CatchResume continues from resume (dynamic return, fixup)

• catch continues after handler (static return, recover)

• Forwarding can occur across any number of coroutines, until a task main forwards and then

the program terminates by calling main’s set_terminate.

• The original E exception is in the UnhandledException exception and can be thrown by

uh.triggerCause().

• If the original (E) exception has a default-terminate routine, it can override UnhandledException

behaviour (e.g., abort), or return and let it happen.

• While the coroutine terminates, control returns to its last resumer rather than its starter.

• Exception UnhandledException (and a few others) are always enabled.

3.8 Memory Management

Normal Program Stack Multiple Coroutine Stacks

stack heapfree stack1 heap stack2free heapstack3

• Normally program stack expands to heap; but coroutine stacks expand to next stack.

• In fact, coroutine stacks are normally allocated in the heap.

• Default µC++ coroutine stack size is 256K and it does not grow.

• Adjust coroutine stack-size through coroutine constructor:

_Coroutine C {
public:

C() : uBaseCoroutine( 8192 ) {}; // default 8K stack
C( int size ) : uBaseCoroutine( size ) {}; // user specified stack size
. . .

};
C x, y( 16384 ); // x has an 8K stack, y has a 16K stack

• Check for stack overflow using coroutine member verify:

void main() {
. . . // declarations
verify(); // check for stack overflow
. . . // code

}

• Be careful allocating arrays in the coroutine main; sometimes necessary to allocate large

arrays in heap. (see Point 4, p. 5)
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3.9 Semi-Coroutine Examples

3.9.1 Same Fringe

• Two binary trees have same fringe if all leafs are equals from left to right.

3 5 7

1 3

5

7

1

2

4

6

2

4

6

• Requires iterator to traverse a tree, return the value of each leaf, and continue the traversal.

• No direct solution without additional data-structure (e.g., stack) to manage tree traversal.

• Coroutine uses recursive tree-traversal but suspends during traversal to return value.

template< typename T > class Btree {
struct Node { . . . }; . . . // other members

public:
_Coroutine Iterator {

Node * cursor;
void walk( Node * node ) { // walk tree

if ( node == nullptr ) return;
if ( node->left == nullptr && node->right == nullptr ) { // leaf?

cursor = node;
suspend(); // multiple stack frames

} else {
walk( node->left ); // recursion
walk( node->right ); // recursion

}
}
void main() { walk( cursor ); cursor = nullptr; }

public:
Iterator( Btree<T> & btree ) : cursor( &btree.root ) {}
T * next() {

resume();
return cursor;

}
};
. . . // other members

};

template<class T> bool sameFringe( BTree<T> & tree1, BTree<T> & tree2 ) {
Btree<T>::Iterator iter1( btree1 ), iter2( btree2 ); // iterator for each tree
T * t1, * t2;
for ( ;; ) {

t1 = iter1.next(); t2 = iter2.next();
if ( t1 == nullptr | | t2 == nullptr ) break; // one traversal complete ?

if ( *t1 != *t2 ) return false; // elements not equal ?
}
return t1 == nullptr && t2 == nullptr; // both traversals completed ?

}
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3.9.2 Device Driver

• Parse transmission protocol and return message text, e.g.:

. . . STX . . . message . . . ESC ETX . . . message . . . ETX 2-byte CRC . . .

3.9.2.1 Direct

int main() {
enum { STX = ’\002’, ESC = ’\033’, ETX = ’\003’ };
enum { MaxMsgLnth = 64 };
unsigned char msg[MaxMsgLnth];
. . .
try {

msg: for ( ;; ) { // parse messages
int lnth = 0, checkval;
do {

byte = input( infile ); // read bytes, throw Eof on eof
} while ( byte != STX ); // message start ?

eom: for ( ;; ) { // scan message data
byte = input( infile );
switch ( byte ) {

case STX:
. . . // protocol error
continue msg; // uC++ labelled continue

case ETX: // end of message
break eom; // uC++ labelled break

case ESC: // escape next byte
byte = input( infile );
break;

} // switch
if ( lnth >= MaxMsgLnth ) { // buffer full ?

. . . // length error
continue msg; // uC++ labelled continue

} // if
msg[lnth] = byte; // store message
lnth += 1;

} // for
byte = input( infile ); // gather check value
checkval = byte;
byte = input( infile );
checkval = (checkval << 8) | byte;
if ( ! crc( msg, lnth, checkval ) ) . . . // CRC error

} // for
} catch( Eof ) {}
. . .

} // main

3.9.2.2 Coroutine

• Called by interrupt handler for each byte arriving at hardware serial port.
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_Coroutine DeviceDriver {
enum { STX = ’\002’, ESC = ’\033’, ETX = ’\003’ };
enum { MaxMsgLnth = 64 };
unsigned char byte;
unsigned char * msg;

public:
DeviceDriver( unsigned char * msg ) : msg( msg ) { resume(); }
void next( unsigned char b ) { // called by interrupt handler

byte = b;
resume();

}

private:
void main() {

msg: for ( ;; ) { // parse messages
int lnth = 0, checkval;
do {

suspend();
} while ( byte != STX ); // message start ?

eom: for ( ;; ) { // scan message data
suspend();

switch ( byte ) {
case STX:

. . . // protocol error
continue msg; // uC++ labelled continue

case ETX: // end of message
break eom; // uC++ labelled break

case ESC: // escape next byte
suspend(); // get escaped character
break;

} // switch

if ( lnth >= MaxMsgLnth ) { // buffer full ?
. . . // length error
continue msg; // uC++ labelled continue

} // if
msg[lnth] = byte; // store message
lnth += 1;

} // for

suspend(); // gather check value
checkval = byte;
suspend();
checkval = (checkval << 8) | byte;
if ( ! crc( msg, lnth, checkval ) ) . . . // CRC error

} // for
} // main

}; // DeviceDriver
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3.9.3 Producer-Consumer

_Coroutine Cons {
int p1, p2, status; bool done;
void main() { // starter prod

// 1st resume starts here
int money = 1;
for ( ; ! done; ) {

cout << "cons " << p1 << " "
<< p2 << " pay $"

<< money << endl;
status += 1;
suspend(); // activate delivery or stop
money += 1;

}
cout << "cons stops" << endl;

} // suspend / resume(starter)
public:

Cons() : status(0), done(false) {}
int delivery( int p1, int p2 ) {

Cons::p1 = p1; Cons::p2 = p2;
resume(); // activate main
return status;

}
void stop() { done = true; resume(); } // activate main

};

_Coroutine Prod {
Cons & c;
int N;
void main() { // starter ::main

// 1st resume starts here
for ( int i = 0; i < N; i += 1 ) {

int p1 = rand() % 100; // products
int p2 = rand() % 100;
cout << "prod " << p1

<< " " << p2 << endl;
int status = c.delivery( p1, p2 );
cout << " stat " << status << endl;

}
c.stop();
cout << "prod stops" << endl;

} // suspend / resume(starter)

public:
Prod( Cons & c ) : c(c) {}
void start( int N ) {

Prod::N = N;
resume(); // activate main

}
};
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int main() {
Cons cons; // create consumer
Prod prod( cons ); // create producer
prod.start( 5 ); // start producer

}

prod{c, N}

cons{p1, p2,
status, done}

start N

main

delivery p1, p2

i,p1,p2,status main money

resume

suspend

resume

prod cons

::main

• Do both Prod and Cons need to be coroutines?

• When coroutine main returns, it activates the coroutine that started main.

• The starter coroutine is the coroutine that does the first resume (cocall).

◦ prod started cons.main, so control goes to prod suspended in stop.

◦ ::main started prod.main, so control goes to ::main suspended in start.

• For semi-coroutines, the starter is often the last (only) resumer, so it seems coroutine main

implicitly suspends on termination.

::main
start main

resume(1) resume(2)

stop

resume(3)

delivery

prod cons

main

suspend

◦ dashed red ⇒ create stack and resume coroutine main

◦ solid red ⇒ resume coroutine at last suspend

◦ solid blue ⇒ resume last resumer

◦ dashed blue ⇒ resume starter
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3.10 Full Coroutines

• Semi-coroutine activates the member routine that activated it.

• Full coroutine has a resume cycle; semi-coroutine does not form a resume cycle.

call
return

resume
resume

suspend
resume

routine

stack(s)

semi-coroutine full coroutine

• A full coroutine is allowed to perform semi-coroutine operations because it subsumes the

notion of semi-coroutine.

_Coroutine Fc {
void main() { // starter ::main

mem(); // ?
resume(); // ?
suspend(); // ?

} // ?
public:

void mem() { resume(); }
};
int main() {

Fc fc;
fc.mem();

}

inactive active

control flow semantics

resume this

uThisCoroutine()

suspend last resumer

context switch

fc

mem mem

main

fc

::main

::main

mainmem

resume

fc

suspend

resume
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• Suspend inactivates the current active coroutine (uThisCoroutine), and activates last resumer.

• Resume inactivates the current active coroutine (uThisCoroutine), and activates the current

object (this).

• Hence, the current object must be a non-terminated coroutine.

• Note, this and uThisCoroutine change at different times.

• Exception: last resumer not changed when resuming self because no practical value.

• Full coroutines can form an arbitrary topology with an arbitrary number of coroutines.

• There are 3 phases to any full coroutine program.

1. starting the cycle

2. executing the cycle

3. stopping the cycle (return to the program main)

• Starting the cycle requires each coroutine to know at least one other coroutine.

• The problem is mutually recursive references.

Fc x(y), y(x); // does not compile, why?

• One solution is to make closing the cycle a special case.

Fc x, y(x);
x.partner( y );

• Once the cycle is created, execution around the cycle can begin.

• Stopping can be as complex as starting, because a coroutine goes back to its starter.

• For full-coroutines, the starter is often not the last resumer, so coroutine main does not appear

to implicitly suspend on termination.

• But it is necessary to activate the program main to finish (unless exit is used).

• The starter stack always gets back to the program main.

• Again, it is unnecessary to terminate all coroutines, just delete them.
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3.10.1 Ping/Pong

• Full-coroutine control-flow with 2 identical coroutines:

creation

::main

ping pong

starter

::main

ping

pong

execution

::main

ping pong

_Coroutine PingPong {
const char * name;
const unsigned int N;
PingPong * part;
void main() { // ping’s starter ::main, pong’s starter ping

for ( unsigned int i = 0; i < N; i += 1 ) {
cout << name << endl;
part->cycle();

}
}

public:
PingPong( const char * name, unsigned int N, PingPong & part )

: name( name ), N( N ), part( & part ) {}
PingPong( const char * name, unsigned int N ) : name( name ), N( N ) {}
void partner( PingPong & part ) { PingPong::part = &part; }
void cycle() { resume(); }

};
int main() {

enum { N = 20 };
PingPong ping( "ping", N ), pong( "pong", N, ping );
ping.partner( pong );
ping.cycle();

}

• ping created without partner; pong created with partner.

• ping makes pong partner, closing cycle.

• Why is PingPong::part a pointer rather than reference?

• cycle resumes ping ⇒ ::main is ping’s starter

• ping calls pong’s cycle member, resuming pong so ping is pong’s starter.

• pong calls ping’s cycle member, resuming ping in pong’s cycle member.

• Each coroutine cycles N times, becoming inactive in the other’s cycle member.

◦ ping ends first, because it started first, resuming its starter ::main in ping’s cycle member.
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◦ ::main terminates with terminated coroutine ping and unterminated coroutine pong.

• Assume ping’s declaration is changed to ping( "ping", N + 1 ).

◦ pong ends first, resuming its starter ping in pong’s cycle member.

◦ ping ends second, resuming its starter ::main in ping’s cycle member.

◦ ::main terminates with terminated coroutines ping and pong.

ping{"ping",N,pong}

pong{"pong",N,ping}

cycle ping

main

cycle

resume

i

ping

resume

main

cycle

i

pong

::main

main

resume1

cycle
::main

maincycle

resume2

ping pong

3.10.2 Producer-Consumer

• Full-coroutine control-flow and bidirectional communication with 2 non-identical corou-

tines:

_Coroutine Prod {
Cons * c;
int N, money, receipt;
void main() { // starter ::main

// 1st resume starts here
for ( int i = 0; i < N; i += 1 ) {

int p1 = rand() % 100; // products
int p2 = rand() % 100;
cout << "prod " << p1

<< " " << p2 << endl;
int status = c->delivery(p1, p2);
cout << "prod rec $" << money

<< " stat " << status << endl;
receipt += 1;

}
c->stop();
cout << "prod stops" << endl;

}

public:
int payment( int money ) {

Prod::money = money;
resume(); // Prod::main 1st time, then
return receipt; // prod in Cons::delivery

}
void start( int N, Cons & c ) {

Prod::N = N; Prod::c = &c;
receipt = 0;
resume(); // activate main

}
};
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_Coroutine Cons {
Prod & p;
int p1, p2, status;
bool done;
void main() { // starter prod

// 1st resume starts here
int money = 1, receipt;
for ( ; ! done; ) {

cout << "cons " << p1 << " "
<< p2 << " pay $"
<< money << endl;

status += 1;
receipt = p.payment(money);
cout << "cons #"

<< receipt << endl;
money += 1;

}
cout << "cons stops" << endl;

}

public:
Cons(Prod & p) : p(p), status(0), done(false) {}
int delivery( int p1, int p2 ) {

Cons::p1 = p1; Cons::p2 = p2;
resume(); // Cons::main 1st time, then
return status; // cons in Prod::payment

}
void stop() {

done = true;
resume(); // activate Prod::payment

}
};
int main() {

Prod prod;
Cons cons( prod );
prod.start( 5, cons );

}

• Cheat using forward reference for Cons at c->delivery and c->stop. Fix by?

money, receipt}

status, done}
cons{p,p1,p2,

prod{c, N,

start N, c

i,p1,p2,status

p1, p2

main

delivery

cons

moneymain

payment

resumeresume

prod

::main

main main

resume(1)
::main

payment

resume(3)

resume(2)

stop

resume(4)

prod cons

deliverystart

• Black dashed-line same control flow as ping/pong.

• Remove flag variable from full-coroutine producer-consumer.



3.11. COROUTINE LANGUAGES 51

_Event Stop {};
_Coroutine Prod {

Cons * c;
int N, money, receipt;
void main() {

for ( int i = 0; i < N; i += 1 ) {
int p1 = rand() % 100;
int p2 = rand() % 100;
cout << "prod " << . . .
int status = c->delivery(p1, p2);
cout << "prod rec $" << . . .
receipt += 1;

}
_Resume Stop() _At resumer();
suspend(); // restart cons
cout << "prod stops" << endl;

}
public:

int payment( int money ) {
Prod::money = money;
resume();
return receipt;

}
void start( int N, Cons & c ) {

Prod::N = N; Prod::c = &c;
receipt = 0;
resume();

}
};

_Coroutine Cons {
Prod & p;
int p1, p2, status = 0;
void main() {

int money = 1, receipt;
try {

for ( ;; ) {
cout << "cons " << p1 << . . .
status += 1;
receipt = p.payment( money );
cout << "cons #" << . . .
money += 1;
_Enable; // trigger exception

}
} catch( Stop & ) {}
cout << "cons stops" << endl;

}
public:

Cons( Prod & p ) : p( p ) {}
int delivery( int p1, int p2 ) {

Cons::p1 = p1; Cons::p2 = p2;
resume();
return status;

}
};

3.11 Coroutine Languages

• Coroutine implementations have two forms:

1. stackless: use the caller’s stack and a fixed-sized local-state

2. stackful: separate stack and a fixed-sized local-state

• Stackless coroutines cannot call other routines and then suspend, i.e., only suspend in the

coroutine main.

• Generators/iterators are often simple enough to be stackless using yield.

• Simula, CLU, C#, Ruby, Python, JavaScript, Lua, F# all support yield constructs.

3.11.1 Python 3.5

• Stackless, semi coroutines, routine versus class, no calls, single interface

• Fibonacci (see Section 3.1.1.4, p. 26)
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def Fibonacci( n ): # coroutine main
fn = 0; fn1 = fn
yield fn # suspend
fn = 1; fn2 = fn1; fn1 = fn
yield fn # suspend
# while True: # for infinite generator
for i in range( n - 2 ):

fn = fn1 + fn2; fn2 = fn1; fn1 = fn
yield fn # suspend

f1 = Fibonacci( 10 ) # objects
f2 = Fibonacci( 10 )
for i in range( 10 ):

print( next( f1 ), next( f2 ) ) # resume
for fib in Fibonacci( 15 ): # use generator as iterator

print( fib )

• Format (see Section 3.1.2.4, p. 30)

def Format():
try:

while True:
for g in range( 5 ): # groups of 5 blocks

for b in range( 4 ): # blocks of 4 characters
print( (yield), end=’’ ) # receive from send

print( ’ ’, end=’’ ) # block separator
print() # group separator

except GeneratorExit: # destructor
if g != 0 | b != 0: # special case

print()

fmt = Format()
next( fmt ) # prime generator
for i in range( 41 ):

fmt.send( ’a’ ) # send to yield

• send takes only one argument, and no cycles ⇒ no full coroutine

3.11.2 JavaScript

• Similar to Python: stackless, semi coroutines, routine versus class, no calls, single interface

• Embedded in HTML with I/O from web browser.

• Fibonacci (see Section 3.1.1.4, p. 26)

<!DOCTYPE html><html>
<head><meta charset="utf-8" /><title>Fibonacci Coroutine</title></head>
<body><button id="button">Click for next Fibonacci number!</button>

<p id="output"></p></body>
<script>
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function * Fibonacci() {
var fn = 0, fn1 = 0, fn2 = 0; // JS bug: initialize vars or lost on suspend
yield fn; // return fn to resumer
fn = 1; fn2 = fn1; fn1 = fn;
yield fn; // return fn to resumer
for ( ;; ) {

fn = fn1 + fn2; fn2 = fn1; fn1 = fn;
yield fn; // return fn to resumer

}
}

const button = document.getElementById( ’button’ );
const output = document.getElementById( ’output’ );
var count = 0, suffix;
var fib = Fibonacci();
button.addEventListener( "click", event => {

if (count % 10 == 1) suffix = "st";
else if (count % 10 == 2) suffix = "nd";
else suffix = "th";
output.textContent = count + suffix + " Fibonacci: " + fib.next().value;
count += 1;

});
</script></body></html>

• Format (see Section 3.1.2.4, p. 30)

<!DOCTYPE html><html>
<head><meta charset="utf-8" /><title>Format Coroutine</title></head>
<body><input placeholder="Type characters!" size=50><p id="output"></p></body>
<script>

function * Format() {
var g = 0, b = 0, ch = ’’; // JS bug: initialize vars or lost on suspend
for ( ;; ) {

for ( g = 0; g < 5; g += 1 ) {
for (b = 0; b < 4; b += 1) {

ch = yield;
output.innerHTML += ch; // console.log adds \n

}
output.innerHTML += " ";

}
output.innerHTML += "<br>";

}
}

const inputBox = document.querySelector( ’input’ );
const output = document.getElementById( ’output’ );
var format = Format();
format.next(); // prime generator
inputBox.addEventListener( ’keypress’, event => {

format.next( event.key );
});
</script></body></html>
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• FSM – detects 3 consecutive matching characters

<!DOCTYPE html><html>
<head><meta charset="utf-8" /><title>Consecutive characters</title></head>
<body><input placeholder="Type characters!" size=50><p id="output"></p></body>
<script>

function * HandleKeyEvent() {
var ch = ’’, prevCh = ’’; // JS bug: initialize vars or lost on suspend
for ( ;; ) {

prevCh = ch;
for ( var i = 1;; i += 1 ) {

ch = yield;
if ( ch != prevCh ) break;
if ( i == 2 ) {

output.textContent = "3 consecutive characters!";
ch = yield;
output.textContent = "";
i = 0;

}
}

}
}

const inputBox = document.querySelector( ’input’ );
const output = document.getElementById( ’output’ );
var handler = HandleKeyEvent();
handler.next(); // prime generator
inputBox.addEventListener( ’keypress’, event => {

handler.next( event.key );
});
</script></body></html>

3.11.3 C++20 Coroutines

• C++20 has an API for coroutines and outline code to build stackless, stackful, or even fibres

(tasks without preemption).

• This capability cannot be used directly. It requires writing significant low-level implementa-

tion code.



4 More Exceptions

4.1 Derived Exception-Type

• derived exception-types is a mechanism for inheritance of exception types, like inheritance

of classes.

• Provides a kind of polymorphism among exception types:

Exception

IO

NetworkFile

Arithmetic

UnderflowDivideByZero Overflow

• Provides ability to handle an exception at different degrees of specificity along the hierarchy.

• Possible to catch a more general exception-type in higher-level code where the implementa-

tion details are unknown.

• Higher-level code should catch general exception-types to reduce tight coupling to the spe-

cific implementation.

◦ tight coupling may force unnecessary changes in the higher-level code when low-level

code changes.

• Exception-type inheritance allows a handler to match multiple exceptions, e.g., a base han-

dler can catch both base and derived exception-type.

• To handle this case, most propagation mechanisms perform a linear search of the handlers

for a guarded block and select the first matching handler.

try { . . .
} catch( Arithmetic & ) { . . .
} catch( Overflow ) { . . . // never selected!!!
}

• When subclassing, it is best to catch an exception by reference:

struct B {};
struct D : public B {};
try {

throw D(); // _Throw in uC++
} catch( B e ) { // truncation

// cannot down-cast
}

try {
throw D(); // _Throw in uC++

} catch( B & e ) { // no truncation
. . . dynamic_cast<D>(e) . . .

}

◦ Otherwise, exception is truncated from its dynamic type to static type specified at the

handler, and cannot be down-cast to the dynamic type.

• Notice, catching truncation (see page 55) is different from raising truncation, which does not

occur in µC++ with _Throw.
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4.2 Catch-Any

• catch-any is a mechanism to match any exception propagating through a guarded block.

• With exception-type inheritance, catch-any can be provided by the root exception-type, e.g.,

catch( Exception ) in Java.

• Otherwise, special syntax is needed, e.g., catch( . . . ) in C++.

• For termination, catch-any is used as a general cleanup when a non-specific exception occurs.

• For resumption, this capability allows a guarded block to gather or generate information

about control flow (e.g., logging).

try {
. . .

} _CatchResume( . . . ) { // catch-any
. . . // logging
_Resume; // reresume for fixup

} catch( . . . ) { // catch-any
. . . // cleanup
_Throw; // rethrow for recovery

}

• Java finalization:

try { . . .
} catch( E ) { . . . }
. . . // other catch clauses
} finally { // always executed

. . . // cleanup
// possibly rethrow

}

provides catch-any capabilities and handles the non-exceptional case.

◦ difficult to mimic in C++, even with RAII, because of local variables.

4.3 Exception Parameters

• Exception parameters allow passing information from the raise to a handler.

• Inform a handler about details of the exception, and to modify the raise site to fix an excep-

tional situation.

• Different EHMs provide different ways to pass parameters.

• In C++/Java, parameters are defined inside the exception:
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struct E {
int i;
E( int i ) : i(i) {}

};
void f( . . . ) { . . . throw E( 3 ); . . . } // argument
int main() {

try {
f( . . . );

} catch( E p ) { // parameter, value or reference
. . . p.i . . .

}
}

• For resumption, values at raise modified via reference/pointer in caught exception:

_Event E {
public:

int & r;
E( int & r ) : r( r ) {}

};
void f() {

int x;
. . . _Resume E( x ); . . .

}
void g() {

try {
f();

} _CatchResume( E & e ) {
. . . e.r = 3; . . .

}
}

x

Resume

3

propagation

callf

recursion

CatchRe...try

g

handler e.r = 3;

fixup

4.4 Exception List

• Missing exception handler for arithmetic overflow in control software caused Ariane 5 rocket

to self-destruct ($370 million loss).

• exception list is part of a routine’s prototype specifying which exception types may propa-

gate from the routine to its caller.

int g() throw(E) { . . . throw E(); }

• This capability allows:

◦ static detection of a raised exception not handled locally or by its caller

◦ runtime detection where the exception may be converted into a special failure excep-

tion or the program terminated.

• 2 kinds of checking:

◦ checked/unchecked exception-type (Java, inheritance based, static check)

http://proxy.lib.uwaterloo.ca/login?url=http://portal.acm.org/ft_gateway.cfm?id=251992&amp;type=pdf&amp;coll=DL&amp;dl=ACM&amp;CFID=82623086&amp;CFTOKEN=15966575
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◦ checked/unchecked routines (C++, exception-list based, dynamic check)

(deprecated C++11, replaced with noexcept)

• While checked exception-types are useful for software engineering, reuse is precluded.

• E.g., consider the simplified C++ template routine sort:

template<class T> void sort( T items[ ] ) throw( ?, ?, ... ) {
// using bool operator<( const T &a, const T &b );

using the operator routine < in its definition.

• Impossible to know all exception types that propagated from routine < for every type.

• Since only a fixed set of exception types can appear in sort’s exception list, some sortable

types are precluded.

• Exception lists can preclude reuse for arguments of routine pointers (functional style) and/or

polymorphic methods/routines (OO style):

// throw NO exceptions
void f( void (*p)() throw() ) {

p();
}
void g() throw(E) { throw E(); }
void h() {

try { . . . f( g ); . . .
} catch( E ) {}

}

struct B { // throw NO exceptions
virtual void g() throw() {}
void f() { g(); }

};
struct D : public B {

void g() throw(E) { throw E(); }
void h() {

try { . . . f(); . . .
} catch( E ) {}

}
};

• Left example, routine h has an appropriate try block and passes the version of g to f that

raises exception-type E.

• However, checked exception-types preclude this case because the signature of argument g is

less restrictive than parameter p of f.

• Right example, member routine D::h calls B::f, which calls D::g that raises exception-type E.

• However, checked exception types preclude this case because the signature of D::g is less

restrictive than B::g.

• Finally, determining an exception list for a routine can become impossible for concurrent

exceptions because they can propagate at any time.

4.5 Destructor

• Destructor is implicitly noexcept ⇒ cannot raise an exception.
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• Destructor can raise an exception, if marked noexcept(false), or inherits from class with

noexcept(false) destructor.

struct E {};
struct C {

~C() noexcept(false) { throw E(); }
};
try { // outer try

C x; // raise on deallocation
try { // inner try

C y; // raise on deallocation
} catch( E ) {. . .} // inner handler

} catch( E ) {. . .} // outer handler

y’s destructor
| throw E

inner try x’s destructor
| y | throw E

outer try outer try
| x | x

◦ y’s destructor called at end of inner try block, it raises an exception E, which unwinds

destructor and try, and handled at inner catch

◦ x’s destructor called at end of outer try block, it raises an exception E, which unwinds

destructor and try, and handled at outer catch

4.6 Multiple Exceptions

• An exception handler can generated an arbitrary number of nested exceptions.

struct E {};
int cnt = 3;
void f( int i ) {

if ( i == 0 ) throw E();
try {

f( i - 1 );
} catch( E ) { // handler h

cnt -= 1;
if ( cnt > 0 ) f( 2 );

}
}
int main() { f( 2 ); }

f

f

f

f

f

f

f

h

h

f

fh

throw E1

throw E2

• Exceptions are nested as handler can rethrow its matched exception when control returned.

• However, multiple exceptions cannot propagate simultaneously.

• Only destructor code can intervene during propagation.

• Hence, a destructor cannot raise an exception during propagation; it can only start propaga-

tion.

try {
C x; // raise on deallocation
throw E();

} catch( E ) {. . .}

• Raise of E causes unwind of inner try block.
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• x’s destructor called during unwind, it raises an exception E, which one should be used?

◦ Cannot start second exception without handler to deal with first exception, i.e., cannot

drop exception and start another.

◦ Cannot postpone first exception because second exception may remove its handlers

during stack unwinding.

• Check if exception is being propagated with uncaught_exceptions().



5 Concurrency

• A thread is an independent sequential execution path through a program.

◦ Each thread is scheduled for execution separately and independently from other threads.

• A process is a program component (like a routine) that has its own thread and has the same

state information as a coroutine.

• A task is similar to a process except that it is

◦ reduced along some particular dimension (like the difference between a boat and a ship,

one is physically smaller than the other).

◦ It is often the case that a process has its own memory, while tasks share a common

memory.

◦ A task is sometimes called a light-weight process (LWP).

• Parallel execution is when 2 or more operations occur simultaneously, which can only occur

when multiple processors (CPUs) are present.

• Concurrent execution is any situation in which execution of multiple threads appears to be

performed in parallel.

◦ It is the threads of control associated with processes and tasks that results in concurrent

execution, not the processors.

5.1 Why Write Concurrent Programs

• Dividing a problem into multiple executing threads is an important programming technique

just like dividing a problem into multiple routines.

• Expressing a problem with multiple executing threads may be the natural (best) way of

describing it.

• Multiple executing threads can enhance execution-time efficiency by taking advantage of

inherent concurrency in an algorithm and any parallelism available in the computer system.

5.2 Why Concurrency is Difficult

• to understand:

◦ While people can do several things concurrently, the number is small because of the

difficulty in managing and coordinating them.

◦ Especially when the things interact with one another.

• to specify:

◦ How can/should a problem be broken up so that parts of it can be solved at the same

time as other parts?
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◦ How and when do these parts interact or are they independent?

◦ If interaction is necessary, what information must be communicated during the interac-

tion?

• to debug:

◦ Concurrent operations proceed at varying speeds and in non-deterministic order, hence

execution is not repeatable (Heisenbug).

◦ Reasoning about multiple streams or threads of execution and their interactions is much

more complex than for a single thread.

• E.g. Moving furniture out of a room; can’t do it alone, but how many helpers and how to do

it quickly to minimize the cost?

• How many helpers?

◦ 1,2,3, ... N, where N is the number of items of furniture

◦ more than N?

• Where are the bottlenecks?

◦ the door out of the room, items in front of other items, large items

• What communication is necessary between the helpers?

◦ which item to take next

◦ some are fragile and need special care

◦ big items need several helpers working together

5.3 Concurrent Hardware

• Concurrent execution of threads is possible with only one CPU (uniprocessor); multitask-

ing for multiple tasks or multiprocessing for multiple processes.

computer

CPU
task1 task2

state program state program

100 5

◦ Parallelism is simulated by context switching the threads on the CPU.

◦ Most of the issues in concurrency can be illustrated without parallelism.

◦ Pointers among tasks work because memory is shared.

◦ Unlike coroutines, task switching may occur at non-deterministic program loca-

tions, i.e., between any two machine instructions.
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◦ Introduces all the difficulties in concurrent programs.

* programs must be written to work regardless of non-deterministic ordering of pro-

gram execution.

◦ Switching happens explicitly but conditionally when calling routines.

* routine may or may not context switch depending on hidden (internal) state (cannot

predict)

◦ Switching can happen implicitly because of an external interrupt independent of pro-

gram execution.

* e.g., I/O or timer interrupt;

* timer interrupts divide execution (between instructions) into discrete time-slices

occurring at non-deterministic time intervals

* ⇒ task execution is not continuous

◦ If interrupts affect scheduling (execution order), it is called preemptive, otherwise the

scheduling is non-preemptive.

◦ Programmer cannot predict execution order, unlike coroutines.

◦ Granularity of context-switch is instruction level for preemptive (harder to reason) and

routine level for non-preemptive.

• In fact, every computer has multiple CPUs: main CPU(s), bus CPU, graphics CPU, disk

CPU, network CPU, etc.

• Concurrent/parallel execution of threads is possible with multiple CPUs sharing memory

(multiprocessor):

CPU CPU

computer

task1 task2

state program state program

100 5

• Pointers among tasks work because memory is shared.

• Concurrent/parallel execution of threads is possible with single/multiple CPUs on different

computers with separate memories (distributed system):

computer1 computer2

CPU CPU
process process

state program state program

100 1007 5

• Pointers among tasks do NOT work because memory is not shared.
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5.4 Execution States

• A thread may go through the following states during its execution.

ready running

blocked
(waiting)

new halted
(scheduler) (multi-core)

• State transitions are initiated in response to events (e.g., interrupts):

◦ entering the system (new → ready)

◦ assigning thread to computing resource, e.g., CPU (ready → running)

◦ timer alarm for preemption (running → ready)

◦ long-term delay versus spinning (running → blocked)

◦ completion of delay, e.g., network or I/O completion (blocked → ready)

◦ normal completion or error, e.g., segment fault (running → halted)

• Thread cannot bypass the “ready” state during a transition so the scheduler maintains com-

plete control of the system.

• Non-deterministic “ready ↔ running” transition ⇒ basic operations unsafe:

int i = 0; // shared
task0 task1
i += 1 i += 1

• If increment implemented with single inc i instruction, transitions can only occur before or

after instruction, not during.

• If increment is replaced by a load-store sequence, transitions can occur during sequence.

ld r1,i // load into register 1 the value of i
. . . // PREEMPTION
add r1,#1 // add 1 to register 1
. . . // PREEMPTION
st r1,i // store register 1 into i

• If both tasks increment 10 times, the expected result is 20.

• True for single instruction, false for load-store sequence.

• Many failure cases for load-store sequence where i does not reach 20.
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• Remember, context switch saves and restores registers for each coroutine/task.

task0 task1

1st iteration
ld r1,i (r1 <- 0)
add r1,#1 (r1 <- 1)

1st iteration
st r1,i (i <- 1)

1st iteration
ld r1,i (r1 <- 0)
add r1,#1 (r1 <- 1)
st r1,i (i <- 1)
2nd iteration
ld r1,i (r1 <- 1)
add r1,#1 (r1 <- 2)
st r1,i (i <- 2)
3rd iteration
ld r1,i (r1 <- 2)
add r1,#1 (r1 <- 3)
st r1,i (i <- 3)

• The 3 iterations of task1 are lost when overwritten by task0.

• Hence, sequential operations, however small (increment), are unsafe in a concurrent pro-

gram.

5.5 Threading Model

• For multiprocessor systems, a threading model defines relationship between threads and

CPUs.

• OS manages CPUs providing logical access via kernel threads (virtual processors) sched-

uled across the CPUs.

1:1:4 3:3:4 4:1:4 4:3:4

System
Operating scheduler

user thread

kernel thread

CPU

Process1 Process2 Process3 Process4

scheduler scheduler
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• More kernel threads than CPUs to provide multiprocessing, i.e., run multiple programs si-

multaneously.

• A process may have multiple kernel threads to provide parallelism if multiple CPUs.

• A program may have user threads scheduled on its process’s kernel threads.

• User threads are a low-cost structuring mechanism, like routines, objects, coroutines (versus

high-cost kernel thread).

• Relationship is denoted by user:kernel:CPU, where:

◦ 1:1:C (kernel threading) – 1 user thread maps to 1 kernel thread

◦ N:N:C (generalize kernel threading) – N × 1:1 kernel threads (Java/Pthreads/C++)

◦ M:1:C (user threading) – M user threads map to 1 kernel thread (no parallelism)

◦ M:N:C (user threading) – M user threads map to N kernel threads (Go, µC++)

• Often the CPU number (C) is omitted.

• Can recursively add nano threads (stackless) on top of user threads (stackful), and virtual

machine below OS.

5.6 Concurrent Systems

• Concurrent systems can be divided into 3 major types:

1. those that attempt to discover implicit concurrency in an otherwise sequential program,

e.g., parallelizing loops and access to data structures

2. those that provide concurrency through implicit constructs, which a programmer uses

to build a concurrent program

3. those that provide concurrency through explicit constructs, which a programmer uses

to build a concurrent program

• In type 1, there is a fundamental limit to how much concurrency can be found and current

techniques only work on a certain class of problems.

• In type 2, concurrency is accessed indirectly via specialized mechanisms (e.g., pragmas or

parallel for) and threads are implicitly managed.

• In type 3, concurrency is directly accessed and threads explicitly managed.

• Types 1 & 2 are always built from type 3.

• To solve all concurrency problems, threads need to be explicit.

• Both implicit and explicit mechanisms are complementary, and hence, can appear together

in a single programming language.
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• However, the limitations of implicit mechanisms require that explicit mechanisms always be

available to achieve maximum concurrency.

• Some concurrent systems provide a single technique or paradigm that must be used to solve

all concurrent problems.

• While a particular paradigm may be very good for solving certain kinds of problems, it may

be awkward or preclude other kinds of solutions.

• Therefore, a good concurrent system must support a variety of different concurrent ap-

proaches, while at the same time not requiring the programmer to work at too low a level.

• In all cases, as concurrency increases, so does the complexity to express and manage it.

5.7 Speedup

• Program speedup is SC = T1/TC, where C is number of CPUs and T1 is sequential execution.

• E.g., 1 CPU takes 10 seconds, T1 = 10 (user time), 4 CPUs takes 2.5 seconds, T4 = 2.5 (real

time) ⇒ S4 = 10/2.5 = 4 times speedup (linear).

0 3 71 2 4 5 6 8
CPUs

S
C

=
T

1
/

T
C

non-linear

linear
(ideal)

(most common)

sub-linear
(less common)

SC <C

SC =C
(unlikely)

SC >Csuper linear

• Aspects affecting speedup (assume sufficient parallelism for concurrency):

1. amount of concurrency

2. critical path among concurrency

3. scheduler efficiency

• An algorithm/program is composed of sequential and concurrent sections.

• E.g., sequentially read matrix, concurrently subtotal rows, sequentially total subtotals.

• Amdahl’s law (Gene Amdahl): concurrent section of program is P making sequential sec-

tion 1−P, then maximum speedup using C CPUs is:

SC =
1

(1−P)+P/C
where T1 = 1,TC = sequential+ concurrent
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• Normalize: T1 = 10/10 = 1, T4 = 2.5/10 = .25.

S4 =
1

(1−1)+1× .25
= 4 times, P = 1 ⇒ (100%) o f T4 is concurrent

• Change P = .8(80%) so T4/C = .8× .25 = .2 is concurrent and 1− .8 = .2(20%) is sequen-

tial.

S4 =
1

(1− .8)+ .8× .25
=

1

.2+ .2
= 2.5 times, because o f sequential code

• As C goes to infinity, P/C goes to 0, so maximum speedup is 1/(1− P), i.e., time for

sequential section.

• Speedup falls rapidly as sequential section (1−P) increases.

• E.g., sequential section = .2(20%), SC = 1/(1− .8)⇒ max speedup 5.

• Concurrent programming consists of minimizing sequential section (1−P).

• E.g., an algorithm/program has 4 stages: t1 = 10, t2 = 25, t3 = 15, t4 = 50 (time units)

• Concurrently speedup sections t2 by 5 times and t4 by 10 times.

sequential
concurrent

t1 t3 t4t2

• TC = 10 + 25 / 5 + 15 + 50 / 10 = 35 (time units)

Speedup = 100 / 35 = 2.86 times

• Large reductions for t2 and t4 have only minor effect on speedup.

• Formula does not consider any increasing costs for the concurrency, i.e., administrative costs,

so results are optimistic.

• While sequential sections bound speedup, concurrent sections bound speedup by the critical

path of computation.

independent dependent

critical path

time
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◦ independent execution : all threads created together and do not interact.

◦ dependent execution : threads created at different times and interact.

• Longest path bounds speedup (even for independent execution).

• Finally, speedup can be affected by scheduler efficiency/ordering (often no control), e.g.:

◦ greedy scheduling : run a thread as long as possible before context switching (not very

concurrent).

◦ LIFO scheduling : give priority to newly waiting tasks (starvation).

• Therefore, it is difficult to achieve significant speedup for many algorithms/programs.

• In general, benefit comes when many programs achieve some speedup so there is an overall

improvement on a multiprocessor computer.

5.8 Thread Creation

• Concurrency requires 3 mechanisms in a programming language.

1. creation – cause another thread of control to come into existence.

2. synchronization – establish timing relationships among threads, e.g., same time, same

rate, happens before/after.

3. communication – transmit data among threads.

• Thread creation must be a primitive operation; cannot be built from other operations in a

language.

• ⇒ need new construct to create a thread and define where the thread starts execution.

5.8.1 COBEGIN/COEND

• Compound statement with statements run by multiple threads.

#include <uCobegin.h>
int i;
void p1(. . .); void p2(. . .); void p3(. . .);
// initial thread creates threads
COBEGIN // threads execute statement in block

BEGIN i = 1; . . . END
BEGIN p1( 5 ); . . . END // order and speed of internal
BEGIN p2( 7 ); . . . END // thread execution is unknown
BEGIN p3( 9 ); . . . END

COEND // initial thread waits for all internal threads to
// finish (synchronize) before control continues

• Implicit or explicit concurrency?

• A thread graph represents thread creations:
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COEND

COBEGIN

COEND

COBEGIN

p1( 5 ) p2( 7 ) p3( 9 )p

... ... ... ...

i = 1

p

p

• Restricted to creating trees (lattice) of threads.

• Use recursion to create dynamic number of threads.

void loop( int N ) {
if ( N != 0 ) {

COBEGIN
BEGIN p1( . . . ); END
BEGIN loop( N - 1 ); END // recursive call

COEND // wait for return of recursive call
}

}
cin >> N;
loop( N );

• What does the thread graph look like?

5.8.2 START/WAIT

• Start thread in routine and wait (join) at thread termination, allowing arbitrary thread graph:

#include <uCobegin.h>
int i;
void p( int i ) {. . .}
int f( int i ) {. . .}
auto tp = START( p, 5 ); thread starts in p(5)
s1 continue execution, do not wait for p
auto tf = START( f, 8 ); thread starts in f(8)
s2 continue execution, do not wait for f
WAIT( tp ); wait for p to finish
s3
i = WAIT( tf ); wait for f to finish
s4

START

START

WAIT

WAIT

p

s2

s3

s1

s4

f

• Allows same routine to be started multiple times with different arguments.

• Implicit or explicit concurrency?
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• COBEGIN/COEND can only approximate this thread graph:

COBEGIN
BEGIN p( 5 ); END
BEGIN s1;

COBEGIN
BEGIN f( 8 ); END
BEGIN s2; END

END // wait for f!
END

COEND
s3; s4;

• START/WAIT can simulate COBEGIN/COEND:

COBEGIN auto t1 = START( p1, . . . )
BEGIN p1(. . .) END auto t2 = START( p2, . . . )
BEGIN p2(. . .) END WAIT t1

COEND WAIT t2

5.8.3 Thread Object

• C++ is an object-oriented programming language, which suggests:

◦ wrap the thread in an object to leverage all class features

◦ use object allocation/deallocation to define thread lifetime rather than control structure

COBEGIN

COEND

START
WAIT

_Task T { // thread type
void main() {. . .} // thread starts here

};
{ // { int i, j, k; } ???

T t; // create object on stack, start thread
} // wait for thread to finish

T * t = new T; // create thread object on heap, start thread
delete t; // wait for thread to finish

• Block-terminate/delete must wait for each task’s thread to finish. Why?

• Unusual to:

◦ create object in a block and not use it

◦ allocate object and immediately delete it.

• Simulate COBEGIN/COEND with _Task object by creating type for each statement:
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int i;
_Task T1 {

void main() { i = 1; }
};
_Task T2 {

void main() { p1(5); }
};
_Task T3 {

void main() { p2(7); }
};
_Task T4 {

void main() { p3(9); }
};

int main() {
{ // COBEGIN

T1 t1; T2 t2; T3 t3; T4 t4;
} // COEND

}
void p1(. . .) {

{ // COBEGIN
T5 t5; T6 t6; T7 t7; T8 t8;

} // COEND
}

• Simulate START/WAIT with _Task object by creating type for each call:

int i;
_Task T1 {

void main() { p(5); }
};
_Task T2 {

int temp;
void main() { temp = f(8); }

public:
~T2() { i = temp; }

};

int main() {
T1 * tp = new T1; // start T1
. . . s1 . . .
T2 * tf = new T2; // start T2
. . . s2 . . .
delete tp; // wait for p
. . . s3 . . .
delete tf; // wait for f
. . . s4 . . .

}

• Variable i cannot be assigned until tf is deleted, otherwise the value could change in s2/s3.

• Implicit or explicit concurrency?

5.8.4 Actor

• An actor (Hewitt/Agha) is a unit of work without a thread.

• Two popular programming languages with actors are Erlang and Scala.

• Communication is via polymorphic queue of messages (mailbox)⇒ dynamic type-checking.

(sync/async)
send

(clients)
m1 m2 mn

mailbox

actor executor

receive

multi-type messages

threadsbehaviours

• Usually no shared information among actors and no blocking is allowed.
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#include <uActor.h>
struct StrMsg : public uActor::Message { // derived message

string val; // string message
StrMsg( string val ) : Message( uActor::Delete ), // delete after use

val( val ) {}
};
_Actor Hello {

Allocation receive( Message & msg ) { // receive base type
Case( StrMsg, msg ) { // discriminate derived message

. . . msg_d->val; . . . // access derived message
} else Case( StopMsg, msg ) return Delete; // delete actor
return Nodelete; // reuse actor

}
};

int main() { // like COBEGIN / COEND
uActor::start(); // start actor system

*new Hello() | *new StrMsg( "hello" ) | uActor::stopMsg;

*new Hello() | *new StrMsg( "bonjour" ) | uActor::stopMsg;
uActor::stop(); // wait for all actors to terminate

}

• Implicit or explicit concurrency?

• Must start actor system (and create thread pool) (uActor::start()).

• Actor must receive at least one message to start.

• Messages received in FIFO order from mailbox and executed sequentially.

• Received derived message accessed through name msg_d.

• Send messages with operator |.

• (StartMsg) uActor::startMsg / (StopMsg) uActor::stopMsg persistent predefined messages.

• Must wait for actors to complete (uActor::stop()).

• Most actor systems leverage garbage collection to manage actors and messages, and the actor

system ends after all actors terminate.

• C++ does not have garbage collection so actors/messages use explicit storage-management

returning an allocation status for each actor/message.

class uActor {
public:

enum Allocation { Nodelete, Delete, Destroy, Finished }; // allocation actions
struct Message {

Allocation allocation; // allocation action
. . .

}
private:

Allocation allocation; // allocation action
};
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Nodelete ⇒ actor or message persists after an actor returns from receive. Use for multi-

use actors or messages during their life time. (message default)

Delete ⇒ actor or message is deleted after an actor returns from receive. Use with

dynamically allocated actors or messages at completion.

Destroy ⇒ actor’s or message’s destructor is called after an actor returns from receive

but storage is not deallocated. Use with placement allocated actors or messages at

completion.

Finished ⇒ actor is marked finished after it returns from receive but neither the destruc-

tor is called nor storage deallocated. (No action for a message.) Use with stack

allocated actors or messages at completion.

#include <uActor.h>
struct StrMsg : public uActor::Message { // default Nodelete

string val;
StrMsg( string val ) : val( val ) {}

};
_Actor Hello {

Allocation receive( Message & msg ) {
Case( StrMsg, msg ) {

. . . msg_d->val . . .;
}
return Finished; // no delete/destroy but remove from actor system

}
};
int main() {

uActor::start();
Hello hellos[2]; // stack allocate actors and messages
StrMsg hello( "hello" ), bonjour( "bonjour" );
hellos[0] | hello;
hellos[1] | bonjour;
uActor::stop();

} // DEALLOCATE ACTORS/MESSAGES

• One shot actor with single string message (no stopMsg).

5.9 Termination Synchronization

• A thread terminates when:

◦ it finishes normally

◦ it finishes with an error

◦ it is killed by its parent (or sibling) (not supported in µC++ )

◦ because the parent terminates (not supported in µC++)

• Children can continue to exist even after the parent terminates (although this is rare).
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◦ E.g. sign off and leave child process(es) running

• Synchronizing at termination is possible for independent threads.

• Termination synchronization may be used to perform a final communication.

5.10 Divide-and-Conquer

• Divide-and-conquer is characterized by ability to subdivide work across data ⇒ work can be

performed independently on the data.

• Work performed on each data group is identical to work performed on data as whole.

• Taken to extremes, each data item is processed independently, but administration of concur-

rency becomes greater than cost of work.

• Only termination synchronization is required to know when the work is done

• Partial results are then processed further if necessary.

• Sum rows of a matrix concurrently using concurrent statement:

#include <uCobegin.h>
int main() {

const int rows = 10, cols = 10;
int matrix[rows][cols], subtotals[rows], total = 0;
// read matrix
COFOR( r, 0, rows,
// for ( int r = 0; r < rows; r += 1 )

subtotals[r] = 0; // r is loop number
for ( int c = 0; c < cols; c += 1 )

subtotals[r] += matrix[r][c];
); // wait for threads
for ( int r = 0; r < rows; r += 1 ) {

total += subtotals[r]; // total subtotals
}
cout << total << endl;

}

T0 ∑

T1 ∑

T2 ∑

T3 ∑

matrix subtotals

total ∑

23

-1

56

-2

10

6

-13

8 -5

6

11

5 7

20

0

1 0

0

0

0

• COFOR logically creates end - start threads, indexed start. .end - 1 one per loop body.

• Implicit or explicit concurrency?

• Sum rows of a matrix concurrently using actors:
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_Actor Adder {
int * row, cols, & subtotal; // communication
Allocation receive( Message & ) { // only startMsg

subtotal = 0;
for ( int c = 0; c < cols; c += 1 ) subtotal += row[c];
return Delete; // delete actor (match new)

}
public:

Adder( int row[ ], int cols, int & subtotal ) :
row( row ), cols( cols ), subtotal( subtotal ) {}

};

int main() {
. . . // same
uActor::start(); // start actor system
for ( int r = 0; r < rows; r += 1 ) { // actor per row

*new Adder( matrix[r], cols, subtotals[r] ) | uActor::startMsg;
}
uActor::stop(); // wait for all actors to terminate
. . . // same

} // main

• Sum rows of a matrix concurrently using concurrent objects:

_Task Adder {
int * row, cols, & subtotal; // communication
void main() {

subtotal = 0;
for ( int c = 0; c < cols; c += 1 ) subtotal += row[c];

}
public:

Adder( int row[ ], int cols, int & subtotal ) :
row( row ), cols( cols ), subtotal( subtotal ) {}

};

int main() {
. . . // same
Adder * adders[rows];
for ( int r = 0; r < rows; r += 1 ) { // start threads to sum rows

adders[r] = new Adder( matrix[r], cols, subtotals[r] );
}
for ( int r = 0; r < rows; r += 1 ) { // wait for threads to finish

delete adders[r];
total += subtotals[r]; // total subtotals

}
cout << total << endl;

}
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int main() {
. . . // same
{

unique_ptr<Adder> adders[rows];
for ( int r = 0; r < rows; r += 1 ) { // start threads to sum rows

adders[r] = make_unique<Adder>( matrix[r], cols, subtotals[r] );
}

} // wait for tasks to terminate
for ( int r = 0; r < rows; r += 1 ) {

total += subtotals[r]; // total subtotals
}

}

• Why are the tasks created in the heap?

• Does it matter in what order adder tasks are created?

• Does it matter in what order adder tasks are deleted? (critical path)

5.11 Exceptions

• Exceptions can be handled locally within a task, or nonlocally among coroutines, or concur-

rently among tasks.

◦ All concurrent exceptions are nonlocal, but nonlocal exceptions can also be sequential.

• Local task exceptions are the same as for a class.

◦ An unhandled exception raised by a task terminates the program.

• Nonlocal exceptions are possible because each coroutine/task has its own stack (execution

state)

• Nonlocal exceptions between a task and a coroutine are the same as between coroutines

(single thread).

• Concurrent exceptions among tasks are more complex due to the multiple threads.

• A concurrent exception provides an additional kind of communication among tasks.

• For example, two tasks may begin searching for a key in different sets:
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_Event StopEvent {};
_Task Searcher {

Searcher * partner;
void main() {

try {
_Enable { // allow nonlocal exceptions

. . . // search
if ( key == . . . ) { // found result

_Resume StopEvent() _At *partner; // stop partner
_Throw StopEvent(); // stop me

}
}

} catch( StopEvent ) {. . .} // reset for next search

• When one task finds the key, it informs the other task to stop searching.

• For a concurrent raise, the source execution may only block while queueing the event for

delivery at the faulting execution.

• After event is delivered, faulting execution it is not interrupted, it polls:

◦ when an _Enable statement begins/ends,

◦ after a call to suspend/resume for UnhandledException,

◦ after a call to yield,

◦ after a call to _Accept unblocks for RendezvousFailure.

• Similar to coroutines (see Section 3.7, p. 37), an unhandled exception raised by a task raises

a nonlocal exception of type uBaseCoroutine::UnhandledException at the task’s joiner and

then terminates the task.

_Event E {};
_Task T {

void main() { _Throw E(); } // unwind
};
int main() {

try {
{ // extra block

T t;
} // continue _CatchResume

} _CatchResume( uBaseCoroutine::UnhandledException & ) {. . .} // one of
catch( uBaseCoroutine::UnhandledException & ) {. . .}

// catch continues after try
}

• Forwarding can occur across any number of tasks (and coroutines), until the program main

forwards and then the program terminates by calling main’s set_terminate.
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5.12 Synchronization and Communication During Execution

• Synchronization occurs when one thread waits until another thread has reached a certain

execution point (state and code).

• One place synchronization is needed is in transmitting data between threads.

◦ One thread has to be ready to transmit the information and the other has to be ready to

receive it, simultaneously.

◦ Otherwise one might transmit when no one is receiving, or one might receive when

nothing is transmitted.

bool Insert = false, Remove = false;
int Data;

_Task Prod {
int N;
void main() {

for ( int i = 1; i <= N; i += 1 ) {
1 Data = i; // transfer data
2 Insert = true;
3 while ( ! Remove ) {} // busy wait
4 Remove = false;

}
}

public:
Prod( int N ) : N( N ) {}

};

_Task Cons {
int N;
void main() {

int data;
for ( int i = 1; i <= N; i += 1 ) {

1 while ( ! Insert ) {} // busy wait
2 Insert = false;
3 data = Data; // remove data
4 Remove = true;

}
}

public:
Cons( int N ) : N( N ) {}

};
int main() {

Prod prod( 5 ); Cons cons( 5 );
}

• 2 infinite loops! No, because of implicit switching between threads.

• cons synchronizes (waits) until prod transfers some data, then prod waits for cons to remove

the data.

• A loop waiting for an event among threads is called a busy wait.

• Are 2 synchronization flags necessary?

5.13 Communication

• Once threads are synchronized there are many ways that information can be transferred from

one thread to the other.

• If the threads are in the same memory, then information can be transferred by value or ad-

dress (e.g., reference parameter).

• If the threads are not in the same memory (distributed), then transferring information by

value is straightforward but by address is difficult.
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5.14 Critical Section

• Threads may access non-concurrent objects, like a file or linked-list.

• There is a potential problem if there are multiple threads attempting to operate on the same

object simultaneously.

• Not a problem if the operation on the object is atomic (not divisible).

• This means no other thread can modify any partial results during the operation on the object

(but the thread can be interrupted).

• Where an operation is composed of many instructions, it is often necessary to make the

operation atomic.

• A group of instructions on an associated object (data) that must be performed atomically is

called a critical section.

• Preventing simultaneous execution of a critical section by multiple threads is called mutual

exclusion.

• Must determine when concurrent access is allowed and when it must be prevented.

• One way to handle this is to detect any sharing and serialize all access; wasteful if threads

are only reading.

• Improve by differentiating between reading and writing

◦ allow multiple readers or a single writer; still wasteful as a writer may only write at the

end of its usage.

• Need to minimize the amount of mutual exclusion (i.e., make critical sections as small

as possible, Amdahl’s law) to maximize concurrency.

5.15 Static Variables

• Warning: static variables in a class are shared among all objects generated by that class.

• These shared variables may need mutual exclusion for correct usage.

• However, a few special cases where static variables can be used safely, e.g., task constructor.

• If task objects are generated serially, static variables can be used in the constructor.

• E.g., assigning each task is own name:
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_Task T {
static int tid;
string name; // must supply storage
. . .

public:
T() {

name = "T" + to_string( tid ); // shared read
setName( name.c_str() ); // name task
tid += 1; // shared write

}
. . .

};
int T::tid = 0; // initialize static variable in .C file
T t[10]; // 10 tasks with individual names

• Task constructor is executed by the creating thread, so array constructors executed sequen-

tially.

• This approach only works if one task creates all the objects and initialization data is internal.

• Instead of static variables, pass a task identifier to the constructor:

T::T( int tid ) { . . . } // create name
T * t[10]; // 10 pointers to tasks
for ( int i = 0; i < 10; i += 1 ) {

t[i] = new T(i); // with individual names
}

• In general, it is best to avoid using shared static variables in a concurrent program.

5.16 Mutual Exclusion Game

• Is it possible to write code guaranteeing a statement (or group of statements) is always seri-

ally executed by 2 threads?

• Rules of the Game:

1. Only one thread can be in a critical section at a time with respect to a particular object

(safety).

2. Threads may run at arbitrary speed and in arbitrary order, while the underlying system

guarantees a thread makes progress (i.e., threads get some CPU time).

3. If a thread is not in the entry or exit code controlling access to the critical section, it

may not prevent other threads from entering the critical section.

4. In selecting a thread for entry to a critical section, a selection cannot be postponed

indefinitely (liveness). Not satisfying this rule is called indefinite postponement or

livelock.

5. After a thread starts entry to the critical section, it must eventually enter. Not satisfying

this rule is called starvation.
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• Indefinite postponement and starvation are related by busy waiting.

• Unlike synchronization, looping for an event in mutual exclusion must ensure eventual

progress.

• Threads waiting to enter can be serviced in any order, as long as each thread eventually

enters.

• If threads are not serviced in first-come first-serve (FCFS) order of arrival, there is a notion

of unfairness

• Unfairness implies waiting threads are overtaken by arriving threads, called barging.

5.17 Self-Testing Critical Section

void CriticalSection() {
static uBaseTask * curr; // shared
curr = &uThisTask();
for ( int i = 1; i <= 100; i += 1 ) {

. . . // work
if ( curr != &uThisTask() ) { // check

abort( "interference" );
}

}
}

inside

Peter

• What is the minimum number of interference tests and where?

• Why are multiple tests useful?

5.18 Software Solutions

5.18.1 Lock

enum Yale { CLOSED, OPEN } Lock = OPEN; // shared

_Task PermissionLock {
void main() {

for ( int i = 1; i <= 1000; i += 1 ) {
while ( ::Lock == CLOSED ) {} // entry protocol
::Lock = CLOSED;
CriticalSection(); // critical section
::Lock = OPEN; // exit protocol

}
}

public:
PermissionLock() {}

};
int main() {

PermissionLock t0, t1;
}

Peter

inside

Breaks rule 1
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5.18.2 Alternation

int Last = 0; // shared

_Task Alternation {
int me;

void main() {
for ( int i = 1; i <= 1000; i += 1 ) {

while ( ::Last == me ) {} // entry protocol
CriticalSection(); // critical section
::Last = me; // exit protocol

}
}

public:
Alternation(int me) : me(me) {}

};
int main() {

Alternation t0( 0 ), t1( 1 );
}

Peter

outside

Breaks rule 3

5.18.3 Declare Intent

enum Intent { WantIn, DontWantIn };

_Task DeclIntent {
Intent & me, & you;
void main() {

for ( int i = 1; i <= 1000; i += 1 ) {
me = WantIn; // entry protocol
while ( you == WantIn ) {}
CriticalSection(); // critical section
me = DontWantIn; // exit protocol

}
}

public:
DeclIntent( Intent & me, Intent & you ) :

me(me), you(you) {}
};
int main() {

Intent me = DontWantIn, you = DontWantIn;
DeclIntent t0( me, you ), t1( you, me );

}

outside

Breaks rule 4
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5.18.4 Retract Intent

enum Intent { WantIn, DontWantIn };
_Task RetractIntent {

Intent & me, & you;
void main() {

for ( int i = 1; i <= 1000; i += 1 ) {
for ( ;; ) { // entry protocol

me = WantIn;
if ( you == DontWantIn ) break;

me = DontWantIn;
while ( you == WantIn ) {}

}
CriticalSection(); // critical section
me = DontWantIn; // exit protocol

}
}

public:
RetractIntent( Intent & me, Intent & you ) : me(me), you(you) {}

};
int main() {

Intent me = DontWantIn, you = DontWantIn;
RetractIntent t0( me, you ), t1( you, me );

}

Breaks rule 4

5.18.5 Prioritized Retract Intent

enum Intent { WantIn, DontWantIn }; enum Priority { HIGH, low };
_Task PriorityEntry {

Intent & me, & you; Priority priority;
void main() {

for ( int i = 1; i <= 1000; i += 1 ) {
for ( ;; ) { // entry protocol

me = WantIn;
if ( you == DontWantIn ) break;

if ( priority == low ) {
me = DontWantIn;
while (you == WantIn) {} // busy wait

}
}
CriticalSection(); // critical section
me = DontWantIn; // exit protocol

}
}

public:
PriorityEntry( Priority p, Intent & me, Intent & you ) : priority(p), me(me), you(you) {}

};
int main() {

Intent me = DontWantIn, you = DontWantIn;
PriorityEntry t0( HIGH, me, you ), t1( low, you, me );

} // main

outside

HIGH

low

Breaks rule 5
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5.18.6 Dekker (modified retract intent)

enum Intent { WantIn, DontWantIn };
Intent * Last;
_Task Dekker {

Intent & me, & you;
void main() {

for ( int i = 1; i <= 1000; i += 1 ) {
1 for ( ;; ) { // entry protocol, high priority
2 me = WantIn; // READ FLICKER
3 if ( you == DontWantIn ) break; // does not want in ?
4 if ( ::Last == &me ) { // low priority task ?
5 me = DontWantIn; // retract intent, READ FLICKER
6 while ( ::Last == &me // low priority busy wait

&& you == WantIn ) {}
}

}
7 CriticalSection();
8 if ( ::Last != &me ) // exit protocol
9 ::Last = &me; // READ FLICKER

10 me = DontWantIn; // READ FLICKER
}

}
public:

Dekker( Intent & me, Intent & you ) : me(me), you(you) {}
};

outside

int main() {
Intent me = DontWantIn, you = DontWantIn;
::Last = &me; // arbitrary who starts as last
Dekker t0( me, you ), t1( you, me );

}

• Dekker’s algorithm appears RW-safe.

◦ On cheap multi-core computers, read/write is not atomic.

◦ Hence, simultaneous writes scramble bits, and for simultaneous read/write, read sees

flickering bits during write.

◦ RW-safe means a mutual-exclusion algorithm works for non-atomic read/write.

◦ Dekker has no simultaneous W/W because intent reset after alternation in exit protocol.

◦ Dekker has simultaneous R/W but all are equality so works if final value never flickers.

•• 2015 Hesselink found failure case if final value flickers:
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T0 T1

9 ::Last = &me
10 me = DontWantIn
(flicker DontWantIn)

(flicker WantIn)

(flicker DontWantIn)
terminate

3 you == DontWantIn (true)
7 Critical Section
9 ::Last = &me

3 you == DontWantIn (false)
4 ::Last == &me (true)
6 low priority wait

6 ::Last == &me (true, spin forever)

• RW-safe version (Hesselink)

◦ line 6: add conjunction you == WantIn ⇒ stop spinning

◦ line 8: add conditional assignment to ::Last

T0 T1

7 Critical Section

9 ::Last = &me
(flicker you T1)

(flicker me T0)
10 me = DontWantIn
(repeat)

6 ::Last == &me && you == WantIn (true)

(repeat)

◦ T1 starvation (rule 5)

◦ Not assigning at line 9 when ::Last != &me prevents flicker so T1 makes progress.

• Dekker has unbounded overtaking (not starvation) because race loser retracts intent.

• ⇒ thread exiting critical does not exclude itself for reentry.

◦ T0 exits critical section and attempts reentry

◦ T1 is now high priority (Last != me) but delays in low-priority busy-loop and resetting

its intent.

◦ T0 can enter critical section unbounded times until T1 resets its intent

◦ T1 sets intent ⇒ bound of 1 as T1 can be entering or in critical section

• Unbounded overtaking is allowed by rule 3: not preventing entry to the critical section by

the delayed thread.
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5.18.7 Peterson (modified declare intent)

enum Intent { WantIn, DontWantIn };
Intent * Last;

_Task Peterson {
Intent & me, & you;
void main() {

for ( int i = 1; i <= 1000; i += 1 ) {
1 me = WantIn; // entry protocol, order matters
2 ::Last = &me; // RACE!
3 while ( you == WantIn && ::Last == &me ) {}
4 CriticalSection(); // critical section
5 me = DontWantIn; // exit protocol

}
}

public:
Peterson( Intent & me, Intent & you ) : me(me), you(you) {}

};
int main() {

Intent me = DontWantIn, you = DontWantIn;
Peterson t0(me, you), t1(you, me);

}

• Peterson’s algorithm is RW-unsafe requiring atomic read/write operations.

• Peterson has bounded overtaking because race loser does not retracts intent.

• ⇒ thread exiting critical excludes itself for reentry.

◦ T0 exits critical section and attempts reentry

◦ T0 runs race by itself and loses

◦ T0 must wait (Last == me)

◦ T1 eventually sees (Last != me)

• Bounded overtaking is allowed by rule 3 because the prevention is occurring in the entry

protocol.

• Can line 2 be moved before 1?

1 2 ::Last = &me; // RACE!
2 1 me = WantIn; // entry protocol
3 3 while ( you == WantIn && ::Last == &me ) {}
4 4 CriticalSection(); // critical section
5 5 me = DontWantIn; // exit protocol

◦ T0 executes Line 1 ⇒ ::Last = T0

◦ T1 executes Line 1 ⇒ ::Last = T1

◦ T1 executes Line 2 ⇒ T1 = WantIn

◦ T1 enters CS, because T0 == DontWantIn

◦ T0 executes Line 2 ⇒ T0 = WantIn

◦ T0 enters CS, because ::Last == T1
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5.18.8 N-Thread Prioritized Entry

enum Intent { WantIn, DontWantIn };
_Task NTask { // Burns-Lynch/Lamport: B-L

Intent * intents; // position & priority
int N, priority, i, j;
void main() {

for ( i = 1; i <= 1000; i += 1 ) {
// step 1, wait for tasks with higher priority
do { // entry protocol

intents[priority] = WantIn;
// check if task with higher priority wants in
for ( j = priority-1; j >= 0; j -= 1 ) {

if ( intents[j] == WantIn ) {
intents[priority] = DontWantIn;
while ( intents[j] == WantIn ) {}
break;

}
}

} while ( intents[priority] == DontWantIn );
// step 2, wait for tasks with lower priority
for ( j = priority+1; j < N; j += 1 ) {

while ( intents[j] == WantIn ) {}
}
CriticalSection();
intents[priority] = DontWantIn; // exit protocol

}
}

public:
NTask( Intent i[ ], int N, int p ) : intents(i), N(N), priority(p) {}

};

Breaks rule 5

low
priority priority

HIGH 90 81 72 63 4 5

HIGH low
priority priority

90 81 72 63 4 5

• Only N bits needed.
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• No known solution for all 5 rules using only N bits.

• Other N-thread solutions use more memory.

(best: 3-bit RW-unsafe, 4-bit RW-safe).

5.18.9 N-Thread Bakery (Tickets)

_Task Bakery { // (Lamport) Hehner-Shyamasundar
int * ticket, N, priority;
void main() {

for ( int i = 0; i < 1000; i += 1 ) {
// step 1, select a ticket
ticket[priority] = 0; // highest priority
int max = 0; // O(N) search
for ( int j = 0; j < N; j += 1 ) { // for largest ticket

int v = ticket[j]; // can change so copy
if ( v != INT_MAX && max < v ) max = v;

}
max += 1; // advance ticket
ticket[priority] = max;
// step 2, wait for ticket to be selected
for ( int j = 0; j < N; j += 1 ) { // check tickets

while ( ticket[j] < max | |
(ticket[j] == max && j < priority) ) {}

}
CriticalSection();
ticket[priority] = INT_MAX; // exit protocol

}
}

public:
Bakery( int t[ ], int N, int p ) : ticket(t), N(N), priority(p) {}

};

HIGH low
priority priority

∞ ∞ ∞ 0

90 81 72 63 4 5

18 017 20 1918

• ticket value of ∞ (INT_MAX) ⇒ don’t want in

• ticket value of 0 ⇒ selecting ticket

• ticket selection is unusual

• tickets are not unique ⇒ use position as secondary priority

• low ticket and position ⇒ high priority

• ticket values cannot increase indefinitely ⇒ could fail (probabilistically correct)

• ticket value reset to INT_MAX when no attempted entry

• NM bits, where M is the ticket size (e.g., 32 bits)
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• Lamport RW-safe

• Hehner/Shyamasundar RW-unsafe

assignment ticket[priority] = max can flickers to INT_MAX ⇒ other tasks proceed

5.18.10 Tournament

• Binary (d-ary) tree with ⌈N/2⌉ start nodes and ⌈lgN⌉ levels.

D5

D6

D2

D1

T1T0

T2

D3

T3 T4D3

T4T3

D4

D2

T2

D1

T0 T1

maximal

D4

minimal

• Thread assigned to start node, where it begins mutual exclusion process.

• Each node is like a Dekker or Peterson 2-thread algorithm.

• Tree structure tries to find compromise between fairness and performance.

• Exit protocol must retract intents in reverse order.

• Otherwise race between retracting/released threads along same tree path:

◦ T0 retracts its intent (left) at D1,

◦ T1 (right) now moves from D1 to D4, sets its intent at D4 (left), and with no competition

at D4 proceeds to D6 (left),

◦ T0 (left) now retracts the intent at D4 set by T1,

◦ T2/3 continue from D2, sets its intent at D4 (right), and with no competition at D4 (left)

proceeds to D6, which ultimately violates mutual exclusion.

• No overall livelock because each node has no livelock.

• No starvation because each node guarantees progress, so each thread eventually reaches the

root.

• Tournament algorithm RW-safety depends on MX algorithm; tree traversal is local to each

thread.

• Tournament algorithms have unbounded overtaking as no synchronization among the nodes

of the tree.
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• For a minimal binary tree, the tournament approach uses (N − 1)M bits, where (N − 1) is

the number of tree nodes and M is the node size (e.g., intent, turn).

_Task TournamentMax { // Taubenfeld-Buhr
struct Token { int intents[2], turn; }; // intents/turn
static Token ** t; // triangular matrix
int depth, id;

void main() {
unsigned int lid; // local id at each tree level
for ( int i = 0; i < 1000; i += 1 ) {

lid = id; // entry protocol
for ( int lv = 0; lv < depth; lv += 1 ) {

binary_prologue( lid & 1, &t[lv][lid >> 1] );
lid >>= 1; // advance local id for next tree level

}
CriticalSection( id );
for ( int lv = depth - 1; lv >= 0; lv -= 1 ) { // exit protocol

lid = id >> lv; // retract reverse order
binary_epilogue( lid & 1, &t[lv][lid >> 1] );

}
}

}
public:

TournamentMax( struct Token * t[ ], int depth, int id ) :
t( t ), depth( depth ), id( id ) {}

};

• Can be optimized to 3 shifts and exclusive-or using Peterson 2-thread for binary.

• Path from leaf to root is fixed per thread ⇒ table lookup possible using max or min tree.

5.18.11 Arbiter

• Create full-time arbitrator task to control entry to critical section.

bool intents[N], serving[N]; // initialize to false

_Task Client {
int me;
void main() {

for ( int i = 0; i < 100; i += 1 ) {
intents[me] = true; // entry protocol
while ( ! serving[me] ) {} // busy wait
CriticalSection();
serving[me] = false; // exit protocol

}
}

public:
Client( int me ) : me( me ) {}

};
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_Task Arbiter {
void main() {

int i = N; // force cycle to start at id=0
for ( ;; ) {

do { // circular search => no starvation
i = (i + 1) % N; // advance next client

} while ( ! intents[i] ); // not want in ?
intents[i] = false; // retract intent on behalf of client
serving[i] = true; // wait for exit from critical section
while ( serving[i] ) {} // busy wait

}
}

};

intents

serving

0 1 2 3 4 5 6 7

• Mutual exclusion becomes synchronization between arbiter and clients.

• Arbiter never uses the critical section ⇒ no indefinite postponement.

• Arbiter cycles through waiting clients (not FCFS) ⇒ no starvation.

• RW-unsafe due to read flicker.

• Cost is creation, management, and execution (continuous busy waiting) of arbiter task.

5.19 Hardware Solutions

• Software solutions to the critical-section problem rely on

◦ shared information,

◦ communication among threads,

◦ (maybe) atomic memory-access.

• Hardware solutions introduce level below software level.

• Cheat by making assumptions about execution impossible at software level.

E.g., control order and speed of execution.

• Allows elimination of much of the shared information and the checking of this information

required in the software solution.

• Special instructions to perform an atomic read and write operation.

• Sufficient for multitasking on a single CPU.
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5.19.1 Test/Set Instruction

• Simple lock of critical section fails:

int Lock = OPEN; // shared
// each task does
while ( Lock == CLOSED ); // fails to achieve (read)
Lock = CLOSED; // mutual exclusion (write)
// critical section
Lock = OPEN;

• The test-and-set instruction performs an atomic read and fixed assignment.

int Lock = OPEN; // shared

int TestSet( int & b ) {
// begin atomic
int temp = b;
b = CLOSED;
// end atomic
return temp;

}

void Task::main() { // each task does
while( TestSet( Lock ) == CLOSED );
// critical section
Lock = OPEN;

}

◦ if test/set returns open ⇒ loop stops and lock is set to closed

◦ if test/set returns closed ⇒ loop executes until the other thread sets lock to open

• Works for N threads attempting entry to critical section and only depends on one shared

datum (lock).

• However, rule 5 is broken, as there is no guarantee of eventual progress.

• In multiple CPU case, hardware (bus) must also guarantee multiple CPUs cannot interleave

these special R/W instructions on same memory location.

5.19.2 Swap Instruction

• The swap instruction performs an atomic interchange of two separate values.

int Lock = OPEN; // shared

void Swap( int & a, & b ) {
int temp;
// begin atomic
temp = a;
a = b;
b = temp;
// end atomic

}

void Task::main() { // each task does
int dummy = CLOSED;
do {

Swap( Lock, dummy );
} while( dummy == CLOSED );
// critical section
Lock = OPEN;

}

◦ if dummy returns open ⇒ loop stops and lock is set to closed

◦ if dummy returns closed ⇒ loop executes until the other thread sets lock to open
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5.19.3 Fetch and Increment Instruction

• The fetch-and-increment instruction performs an increment between the read and write.

int Lock = 0; // shared

int FetchInc( int & val ) {
// begin atomic
int temp = val;
val += 1;
// end atomic
return temp;

}

void Task::main() { // each task does
while ( FetchInc( Lock ) != 0 );
// critical section
Lock = 0;

• Often fetch-and-increment is generalized to add any value ⇒ also decrement with negative

value.

• Lock counter can overflow during busy waiting and starvation (rule 5).

• Use ticket counter to solve both problems (Bakery Algorithm, see Section 5.18.9, p. 89):

class ticketLock {
unsigned int tickets, serving;

public:
ticketLock() : tickets( 0 ), serving( 0 ) {}
void acquire() { // entry protocol

int ticket = FetchInc( tickets ); // obtain a ticket
while ( ticket != serving ) {} // busy wait

}
void release() { // exit protocol

serving += 1;
}

};

• Ticket overflow is a problem only if all values used simultaneously, and FIFO service ⇒ no

starvation.



6 Locks

• Package software/hardware locking into abstract type for general use.

• Locks are constructed for synchronization or mutual exclusion or both.

6.1 Lock Taxonomy

• Lock implementation is divided into two general categories: spinning and blocking.

yield synchronization

condition barrier

blocking (queueing)spinning

semaphoreno yield

binary counting owner

(other)mutex

• Spinning locks busy wait until an event occurs ⇒ task oscillates between ready and running

states due to time slicing.

• Blocking locks do not busy wait, but block until an event occurs ⇒ some other mechanism

must unblock waiting task when the event happens.

• Within each category, different kinds of spinning and blocking locks exist.

6.2 Spin Lock

• A spin lock is implemented using busy waiting, which loops checking for an event to occur.

while( TestSet( Lock ) == CLOSED ); // use up time-slice (no yield)

• So far, when a task is busy waiting, it loops until:

◦ critical section becomes unlocked or an event happens.

◦ waiting task is preempted (time-slice ends) and put back on ready queue.

Hence, CPU is wasting time constantly checking the event.

• To increase uniprocessor efficiency, a task can:

◦ explicitly terminate its time-slice

◦ move back to the ready state after only one event-check fails. (Why one?)

• Task member yield relinquishes time-slice by rescheduling running task back onto ready

queue.

while( TestSet( Lock ) == CLOSED ) uThisTask().yield(); // relinquish time-slice

• To increase multiprocessor efficiency, a task can yield after N event-checks fail. (Why N?)

95
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• Some spin-locks allow adjustment of spin duration, called adaptive spin-lock.

• Most spin-lock implementations break rule 5, i.e., no bound on service. ⇒ possible starva-

tion of one or more tasks.

• Spin lock is appropriate and necessary in situations where there is no other work to do.

6.2.1 Implementation

• µC++ provides a non-yielding spin lock, uSpinLock, and a yielding spin lock, uLock.

class uSpinLock {
public:

uSpinLock(); // open
void acquire();
bool tryacquire();
void release();

};

class uLock {
public:

uLock( unsigned int value = 1 );
void acquire();
bool tryacquire();
void release();

};

• Both locks are built directly from an atomic hardware instruction.

• Lock starts closed (0) or opened (1); waiting tasks compete to acquire lock after release.

• In theory, starvation could occur; in practice, it is seldom a problem.

• tryacquire makes one attempt to acquire the lock, i.e., it does not wait.

• It is not meaningful to read or to assign to a lock variable, or copy a lock variable, e.g., pass

it as a value parameter.

• synchronization

_Task T1 {
uLock & lk;
void main() {

. . .
S1
lk.release();
. . .

}
public:

T1( uLock & lk ) : lk(lk) {}
};

_Task T2 {
uLock & lk;
void main() {

. . .
lk.acquire();
S2
. . .

}
public:

T2( uLock & lk ) : lk(lk) {}
};

int main() {

uLock lock( 0 ); // closed
T1 t1( lock );
T2 t2( lock );

}

• mutual exclusion
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_Task T {
uLock & lk;
void main() {

. . .
lk.acquire();
// critical section
lk.release();
. . .
lk.acquire();
// critical section
lk.release();
. . .

}
public:

T( uLock & lk ) : lk(lk) {}
};

int main() {

uLock lock( 1 ); // open
T t0( lock ), t1( lock );

}

◦ Does this solution afford maximum concurrency?

◦ Depends on critical sections: independent (disjoint) or dependent.

◦ How many locks are needed for mutual exclusion?

6.3 Blocking Locks

• For spinning locks,

◦ acquiring task(s) is solely responsible for detecting an open lock after the releasing task

opens it.

• For blocking locks,

◦ acquiring task makes one check for open lock and blocks

◦ releasing task has sole responsibility for detecting blocked acquirer and transferring

lock, or just releasing lock.

• Blocking locks reduce busy waiting by having releasing task do additional work: coopera-

tion.

◦ What advantage does the releasing task get from doing the cooperation?

• Therefore, all blocking locks have

◦ state to facilitate lock semantics

◦ list of blocked acquirers

blocked

task1

blocked

task2

blocked

task3

block list

state

blocking lock

• Which task is scheduled next from the list of blocked tasks?
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6.3.1 Mutex Lock

• Mutex lock is used solely to provide mutual exclusion.

• Restricting a lock to just mutual exclusion:

◦ separates lock usage between synchronization and mutual exclusion

◦ permits optimizations and checks as the lock only provides one specialized function

• Mutex locks are divided into two kinds:

◦ single acquisition : task that acquired the lock cannot acquire it again

◦ multiple acquisition : lock owner can acquire it multiple times, called an owner lock

• Multiple acquisition can handle looping or recursion involving a lock:

void f() {
. . .
lock.acquire();
. . . f(); // recursive call within critical section
lock.release();

}

• May require only one release to unlock, or as many releases as acquires.

6.3.1.1 Implementation

• Multiple acquisition lock manages owner state (blue).

class MutexLock {
bool avail; // resource available ?
Task * owner // lock owner
queue<Task> blocked; // blocked tasks
SpinLock lock; // mutex nonblocking lock

public:
MutexLock() : avail( true ), owner( nullptr ) {}
void acquire() {

lock.acquire(); // barging
while ( ! avail && owner != currThread() ) { // busy waiting

// add self to lock’s blocked list
yieldNoSchedule(); // do not reschedule to ready queue
lock.acquire(); // reacquire spinlock

}
avail = false;
owner = currThread(); // set new owner
lock.release();

}
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void release() {
lock.acquire();
if ( owner != currThread() ) . . . // ERROR CHECK
owner = nullptr; // no owner
if ( ! blocked.empty() ) {

// remove task from blocked list and make ready
}
avail = true; // reset
lock.release(); // RACE

}
};

• yieldNoSchedule yields the processor time-slice but does not reschedule thread to ready

queue.

• Single or multiple unblock for multiple acquisition?

• avail is necessary as queue can be empty but critical section occupied.

• Problem: blocking occurs holding spin lock!

• ⇒ release lock before blocking

// add self to blocked list of lock
lock.release(); // allow releasing task to unblock next waiting task
// PREEMPTION ⇒ put on ready queue
yieldNoSchedule();

• Race between blocking and unblocking tasks.

• Blocking task releases spin lock but preempted before yield and put onto ready queue.

• Unblocking task can enter, see blocking task on lock’s blocked list, and put on ready queue.

• But task is already on the ready queue because of the preemption!

• Need magic to atomically yield without scheduling and release spin lock.

• Magic is often accomplished with more cooperation:

yieldNoSchedule( lock );

• Spin lock is passed to the runtime system, which does the yield without schedule and then,

on behalf of the user thread, unlocks the lock.

• Alternative approach is park/unpark, where each thread blocks on a private binary semaphore

(see Section 6.4.4.6, p. 127 private semaphore).

• Note, the runtime system violates order and speed of execution by being non-preemptable.

• Problem: avail and lock reset ⇒ acquiring tasks can barge ahead of released task.
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• Released task must check again (while) ⇒ busy waiting ⇒ starvation

• Barging avoidance (cooperation): hold avail between releasing and unblocking task (bounded

overtaking)

void acquire() {
lock.acquire(); // barging

if ( ! avail && owner != currThread() ) { // avoid barging
// add self to lock’s blocked list
yieldNoSchedule( lock );
// DO NOT REACQUIRE LOCK, avail == false

} else {
avail = false;
lock.release();

}
owner = currThread(); // set new owner, safe as avail == false

}

void release() {
lock.acquire();
owner = nullptr; // no owner
if ( ! blocked.empty() ) {

// remove task from blocked list and make ready
} else {

avail = true; // conditional reset
}
lock.release(); // RACE

}

• Bargers enter mutual-exclusion protocol but block so released task does not busy wait (if

rather than while).

• Mutual exclusion is conceptually passed from releasing to unblocking tasks (baton passing).

• Barging prevention (cooperation): hold lock between releasing and unblocking task

void acquire() {
lock.acquire(); // prevention barging
if ( ! avail && owner != currThread() ) {

// add self to lock’s blocked list
yieldNoSchedule( lock );
// DO NOT REACQUIRE LOCK

}
avail = false;
owner = currThread(); // set new owner
lock.release();

}



6.3. BLOCKING LOCKS 101

void release() {
lock.acquire();
owner = nullptr; // no owner
if ( ! blocked.empty() ) {

// remove task from blocked list and make ready
// DO NOT RELEASE LOCK

} else {
avail = true; // conditional reset
lock.release(); // NO RACE

}
}

• Critical section is not bracketed by the spin lock when lock is passed.

• Alternative (cooperation): leave lock owner at front of blocked list to act as availability and

owner variable.

class MutexLock {
queue<Task> blocked; // blocked tasks
SpinLock lock; // nonblocking lock

public:
void acquire() {

lock.acquire(); // prevention barging
if ( blocked.empty() ) { // no one waiting ?

node.owner = currThread();
// add self to lock’s blocked list

} else if ( blocked.head().owner != currThread() ) { // not owner ?
// add self to lock’s blocked list
yieldNoSchedule( lock );
// DO NOT REACQUIRE LOCK

}
lock.release();

}
void release() {

lock.acquire();
// REMOVE TASK FROM HEAD OF BLOCKED LIST
if ( ! blocked.empty() ) {

// MAKE TASK AT FRONT READY BUT DO NOT REMOVE
// DO NOT RELEASE LOCK

} else {
lock.release(); // NO RACE

}
}

};

• If critical section acquired, blocked list must have a node on it to check for in-use.

6.3.1.2 uOwnerLock

• µC++ provides a multiple-acquisition mutex-lock, uOwnerLock:
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class uOwnerLock {
public:

uOwnerLock();
uBaseTask * owner();
unsigned int times();
void acquire();
bool tryacquire();
void release();

};

• owner() returns nullptr if no owner, otherwise address of task that currently owns lock.

• times() returns number of times lock has been acquired by owner task.

• Must release as many times as acquire.

• Otherwise, operations same as for uLock but with blocking instead of spinning for acquire.

6.3.1.3 Mutex-Lock Release-Pattern

• To ensure a mutual exclusion lock is always released use the following patterns.

◦ executable statement – finally clause

uOwnerLock lock;
lock.acquire();
try {

. . . // protected by lock
} _Finally {

lock.release();
}

◦ allocation/deallocation (RAII – Resource Acquisition Is Initialization)

class RAII { // create once
uOwnerLock & lock;

public:
RAII( uOwnerLock & lock ) : lock( lock ) { lock.acquire(); }
~RAII() { lock.release(); }

};
uOwnerLock lock;
{

RAII raii( lock ); // lock acquired by constructor
. . . // protected by lock

} // lock release by destructor

• Lock always released on normal, local transfer (break/return), and exception.

• Cannot be used for barging prevention. Why?
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6.3.1.4 Stream Locks

• Specialized mutex lock for I/O based on uOwnerLock.

• Concurrent use of C++ streams can produce unpredictable results.

◦ if two tasks execute:

task1 : cout << "abc " << "def " << endl;
task2 : cout << "uvw " << "xyz " << endl;

any of the outputs can appear:

abc def
uvw xyz

abc uvw xyz
def

uvw abc xyz def abuvwc dexf
yz

uvw abc def
xyz

• µC++ provides: osacquire for output streams and isacquire for input streams.

• Most common usage is to create an anonymous stream lock for a cascaded I/O expression:

task1 : osacquire( cout ) << "abc " << "def " << endl;
task2 : osacquire( cout ) << "uvw " << "xyz " << endl;

constraining the output to two different lines in either order:

abc def
uvw xyz

uvw xyz
abc def

• Multiple I/O statements can be protected using block structure:

{ // acquire the lock for stream cout for block duration
osacquire acq( cout ); // named stream lock
cout << "abc";
osacquire( cout ) << "uvw " << "xyz " << endl; // OK?
cout << "def";

} // implicitly release the lock when “acq” is deallocated

• Which locking-release pattern is used by stream locks?

6.3.2 Synchronization Lock

• Synchronization lock is used solely to block tasks waiting for synchronization.

• Weakest form of blocking lock as its only state is list of blocked tasks.

◦ ⇒ acquiring task always blocks (no state to make it conditional)

Need ability to yield time-slice and block versus yield and go back on ready queue.

◦ ⇒ release is lost when no waiting task (no state to remember it)

• Often called a condition lock, with wait / signal(notify) for acquire / release.
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6.3.2.1 Implementation

• Like mutex lock, synchronization lock needs mutual exclusion for safe implementation.

• Location of mutual exclusion classifies synchronization lock:

external locking use an external lock to protect task list,

internal locking use an internal lock to protect state (lock is extra state).

• external locking

class SyncLock {
Task * list;

public:
SyncLock() : list( nullptr ) {}
void acquire() {

// add self to task list
yieldNoSchedule();

}
void release() {

if ( list != nullptr ) {
// remove task from blocked list and make ready

}
}

};

◦ Use external state to avoid lost release.

◦ Need mutual exclusion to protect task list and possible external state.

◦ Releasing task detects a blocked task and performs necessary cooperation.

• Usage pattern:

◦ Cannot enter a restaurant if all tables are full.

◦ Must acquire a lock to check for an empty table because state can change.

◦ If no free table, block on waiting-list until a table becomes available or leave (balk) and

eat somewhere else.



6.3. BLOCKING LOCKS 105

table

sync

long term

occupied?

mutex

short term

podium

// shared variables
MutexLock m; // external mutex lock
SyncLock s; // synchronization lock
bool occupied = false; // indicate if event has occurred

// acquiring task
m.acquire(); // mutual exclusion to examine state & possibly block
if ( occupied ) { // event not occurred ?

if (/* do not wait */ ) { m.release(); return; /* go elsewhere */ }
s.acquire(); // long-term block for event
m.acquire(); // require mutual exclusion to set state

}
occupied = true; // set
m.release();

... EAT! ...
// releasing task

m.acquire(); // mutual exclusion to examine state
occupied = false; // reset
s.release(); // possibly unblock waiting task
m.release(); // release mutual exclusion

• Why is a single waiting queue (bench) inadequate?

• Blocking occurs holding external mutual-exclusion lock!

• ⇒ release lock before blocking

// acquiring task
m.acquire(); // mutual exclusion to examine state & possibly block
if ( occupied ) { // event not occurred ?

m.release(); // release external mutex-lock
// PREEMPTION
s.acquire(); // block for event
. . .

• Race between blocking and unblocking tasks.
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• To prevent race, modify synchronization-lock acquire to release lock.

void acquire( MutexLock & m ) {
// add self to task list
yieldNoSchedule( m );
// possibly reacquire mutexlock

}

• Or, protecting mutex-lock is bound at synchronization-lock creation and used implicitly.

• Now use first usage pattern.

// acquiring task
m.acquire(); // mutual exclusion to examine state & possibly block
if ( occupied ) { // event not occurred ?

s.acquire( m ); // block for event and release mutex lock
. . .

• Has the race been prevented?

• Problem: barging can occur when releasing task resets occupied.

◦ ⇒ non-FIFO order and possible starvation

• Note, same problems as inside mutex lock but occurring outside between mutex and syn-

chronization locks.

• Use barging avoidance:

// releasing task
m.acquire(); // mutual exclusion to examine state
if ( ! s.empty() ) s.release(); // unblock, no reset
else occupied = false; // reset
m.release(); // release mutual exclusion

or prevention:

// releasing task
m.acquire(); // mutual exclusion to examine state
if ( ! s.empty() ) s.release(); // unblock, no reset
else { occupied = false; m.release(); } // reset & release

• internal locking
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class SyncLock {
Task * list; // blocked tasks
SpinLock lock; // internal lock

public:
SyncLock() : list( nullptr ) {}
void acquire( MutexLock & m ) { // optional external lock

lock.acquire();
// add self to task list
m.release(); // release external mutex-lock
CAN BE INTERRUPTED HERE
yieldNoSchedule( lock );
m.acquire(); // possibly reacquire after blocking

}

void release() {
lock.acquire();
if ( list != nullptr ) {

// remove task from blocked list and make ready
}
lock.release();

}
};

◦ Why does acquire still take an external lock?

◦ Why is the race after releasing the external mutex-lock not a problem?

• Has the busy wait been removed from the blocking lock?

6.3.2.2 uCondLock

• µC++ provides an internal synchronization-lock, uCondLock.

class uCondLock {
public:

uCondLock();
void wait( uOwnerLock & lock );
bool signal();
bool broadcast();
bool empty();

};

• wait and signal are used to block a thread on and unblock a thread from the queue of a

condition, respectively.

• wait atomically blocks the calling task and releases argument owner-lock.

• wait reacquires its argument owner-lock before returning.

• signal unblocks a single task in FIFO order.

• broadcast unblocks all waiting tasks.
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• signal/broadcast do nothing for an empty condition and return false; otherwise, return true.

• empty returns false if blocked tasks on the queue and true otherwise.

6.3.2.3 Programming Pattern

• Using synchronization locks is complex because they are weak.

• Must provide external mutual-exclusion and protect against loss signal (release).

• Why is synchronization more complex for blocking locks than spinning (uLock)?

bool done = false;

_Task T1 {
uOwnerLock & mlk;
uCondLock & clk;

void main() {
mlk.acquire(); // prevent lost signal
if ( ! done ) // signal occurred ?

// signal not occurred
clk.wait( mlk ); // atomic wait/release
// mutex lock re-acquired after wait

mlk.release(); // release either way
S2;

}
public:

T1( uOwnerLock & mlk,
uCondLock & clk ) :
mlk(mlk), clk(clk) {}

};

_Task T2 {
uOwnerLock & mlk;
uCondLock & clk;

void main() {
S1;
mlk.acquire(); // prevent lost signal
done = true; // remember signal occurred
clk.signal(); // signal lost if not waiting
mlk.release();

}
public:

T2( uOwnerLock & mlk,
uCondLock & clk ) :
mlk(mlk), clk(clk) {}

};

int main() {
uOwnerLock mlk;
uCondLock clk;
T1 t1( mlk, clk );
T2 t2( mlk, clk );

}

6.3.3 Barrier

• A barrier coordinates a group of tasks performing a concurrent operation surrounded by

sequential operations.

• Hence, a barrier is for synchronization and cannot build mutual exclusion.

• Unlike previous synchronization locks, a barrier retains state about the events it manages:

number of tasks blocked on the barrier.

• Since manipulation of this state requires mutual exclusion, most barriers use internal locking.
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• E.g., 3 tasks must execute a section of code in a particular order: S1, S2 and S3 must all

execute before S5, S6 and S7.

T1::main() {
. . .
S1
b.block();
S5
. . .

}

T2::main() {
. . .
S2
b.block();
S6
. . .

}

T3::main() {
. . .
S3
b.block();
S7
. . .

}

int main() {
Barrier b( 3 );
T1 x( b );
T2 y( b );
T3 z( b );

}

• Barrier is initialized to control 3 tasks and passed to each task by reference (not copied).

• Barrier blocks each task at call to block until all tasks have called block.

• Last task to call block does not block and releases other tasks (cooperation).

• Hence, all tasks leave together (synchronized) after arriving at the barrier.

• Note, must specify in advance total number of block operations before tasks released.

• Two common uses for barriers:

cyclicone shot

endstart

Barrier start(N+1), end(N+1); // shared
Coordinator
// start N tasks so they can initialize
// general initialization
start.block(); // wait for threads to start
// do other work
end.block(); // wait for threads to end
// general close down and possibly loop

Workers

// initialize
start.block(); // wait for threads to start
// do work
end.block(); // wait for threads to end
// close down

• Two barriers allow Coordinator to accumulate results (subtotals) while Workers reinitialize

(read next row).

• Alternative is last Worker does coordination, but prevents Workers reinitializing during co-

ordination.

• Why not use termination synchronization and create new tasks for each computation?

◦ creation and deletion of computation tasks is expensive
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6.3.3.1 uBarrier

• µC++ barrier is a thread-safe coroutine, where the coroutine main can be resumed by the last

task arriving at the barrier.

#include <uBarrier.h>
_Cormonitor uBarrier { // think _Coroutine

protected:
void main() { for ( ;; ) suspend(); } // points of synchronization
virtual void last() { resume(); } // called by last task to barrier

public:
uBarrier( unsigned int total );
unsigned int total() const; // # of tasks synchronizing
unsigned int waiters() const; // # of waiting tasks
void reset( unsigned int total ); // reset # tasks synchronizing
virtual void block(); // wait for Nth thread, which calls last, unblocks waiting thread

};

• Member last is called by the Nth (last) task to the barrier, and then all blocked tasks are

released.

• uBarrier has implicit mutual exclusion ⇒ no barging ⇒ only manages synchronization

• User barrier is built by:

◦ inheriting from uBarrier

◦ redefining last and/or block member and possibly coroutine main

◦ possibly initializing main from constructor

• E.g., previous matrix sum (see page 75) adds subtotals in order of task termination, but

barrier can add subtotals in order produced.

_Cormonitor Accumulator : public uBarrier {
int total_ = 0, temp;
uBaseTask * Nth_ = nullptr;

protected:
void last() { // reset and remember Nth task

temp = total_; total_ = 0;
Nth_ = &uThisTask();

}
public:

Accumulator( int rows ) : uBarrier( rows ) {}
void block( int subtotal ) {

total_ += subtotal;
uBarrier::block();

}
int total() { return temp; }
uBaseTask * Nth() { return Nth_; }

};
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_Task Adder {
int * row, size;
Accumulator & acc;
void main() {

int subtotal = 0;
for ( unsigned int r = 0; r < size; r += 1 ) subtotal += row[r];
acc.block( subtotal ); // provide subtotal; block for completion

}
public:

Adder( int row[ ], int size, Accumulator & acc ) :
size( size ), row( row ), acc( acc ) {}

};

int main() {
enum { rows = 10, cols = 10 };
int matrix[rows][cols];
Adder * adders[rows];
Accumulator acc( rows ); // barrier synchronizes each summation
// read matrix
for ( unsigned int r = 0; r < rows; r += 1 )

adders[r] = new Adder( matrix[r], cols, acc );
for ( unsigned int r = 0; r < rows; r += 1 )

delete adders[r];
cout << acc.total() << " " << acc.Nth() << endl;

}

• Why not have task delete itself after unblocking from uBarrier::block()?

void block( int subtotal ) {
total_ += subtotal; uBarrier::block();
delete &uThisTask();

}

• Coroutine barrier can be reused many times, e.g., read in a new matrix in Accumulator::main

after each summation.

• Why can a barrier not be used within a COFOR?

6.3.4 Binary Semaphore

• Binary semaphore (Edsger W. Dijkstra) is blocking equivalent to yielding spin-lock.

• Provides synchronization and mutual exclusion.

Semaphore lock(0); // 0 => closed, 1 => open, default 1

• More powerful than synchronization lock as it remembers state about an event.

• Names for acquire and release from Dutch terms

• acquire is P

◦ passeren ⇒ to pass

◦ prolagen ⇒ (proberen) to try (verlagen) to decrease
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lock.P(); // wait to enter

P waits if the semaphore counter is zero and then decrements it.

• release is V

◦ vrijgeven ⇒ to release

◦ verhogen ⇒ to increase

lock.V(); // release lock

V increases the counter and unblocks a waiting task (if present).

• When the semaphore has only two states (open/closed), it is called a binary semaphore.

• synchronization

_Task T1 {
BinSem & lk;
void main() {

. . .
S1
lk.V();
. . .

}
public:

T1( BinSem & lk ) : lk(lk) {}
};

_Task T2 {
BinSem & lk;
void main() {

. . .
lk.P();
S2
. . .

}
public:

T2( BinSem & lk ) : lk(lk) {}
};

int main() {

BinSem lock( 0 ); // closed
T1 t1( lock );
T2 t2( lock );

}

• mutual exclusion

_Task T {
BinSem & lk;
void main() {

. . .
lk.P();
// critical section
lk.V();
. . .
lk.P();
// critical section
lk.V();
. . .

}
public:

T( BinSem & lk ) : lk(lk) {}
};

int main() {

BinSem lock( 1 ); // start open
T t0( lock ), t1( lock );

}

6.3.4.1 Implementation

• Implementation has:
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◦ blocking task-list

◦ avail indicates if event has occurred (state)

◦ spin lock to protect state

class BinSem {
queue<Task> blocked; // blocked tasks
bool avail; // resource available ?
SpinLock lock; // mutex nonblocking lock

public:
BinSem( bool start = true ) : avail( start ) {}
void P() {

lock.acquire(); // prevention barging
if ( ! avail ) {

// add self to lock’s blocked list
yieldNoSchedule( lock );
// DO NOT REACQUIRE LOCK

}
avail = false;
lock.release();

}
void V() {

lock.acquire();
if ( ! blocked.empty() ) {

// remove task from blocked list and make ready
// DO NOT RELEASE LOCK

} else {
avail = true; // conditional reset
lock.release(); // NO RACE

}
}

};

• Same as single-acquisition mutexLock but can initialize avail.

• Higher cost for synchronization if external lock already acquired.

6.3.5 Counting Semaphore

• Augment the definition of P and V to allow a multi-valued semaphore.

• What does it mean for a lock to have more than open/closed (unlocked/locked)?

◦ ⇒ critical sections allowing N simultaneous tasks.

• Augment V to allow increasing the counter an arbitrary amount.

• synchronization

◦ Three tasks must execute so S2 and S3 only execute after S1 has completed.
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T1::main() {
. . .
lk.P();
S2
. . .

}

T2::main() {
. . .
lk.P();
S3
. . .

}

T3::main() {
S1
lk.V(); // lk.V(2)
lk.V();
. . .

}

int main() {

CntSem lk( 0 ); // closed
T1 x( lk );
T2 y( lk );
T3 z( lk );

}

• mutual exclusion

◦ Critical section allowing up to 3 simultaneous tasks.

_Task T {
CntSem & lk;
void main() {

. . .
lk.P();
// up to 3 tasks in
// critical section
lk.V();
. . .

}
public:

T( CntSem & lk ) : lk(lk) {}
};

int main() {

CntSem lk( 3 ); // allow 3
T t0( lk ), t1( lk ), . . .;

}

• Must know in advance the total number of P’s on the semaphore.

6.3.5.1 Implementation

• Change availability into counter, and set to some maximum on creation.

• Decrement counter on acquire and increment on release.

• Block acquiring task when counter is 0.

• Negative counter indicates number of waiting tasks.

class CntSem {
queue<Task> blocked; // blocked tasks
int cnt; // resource being used ?
SpinLock lock; // nonblocking lock

public:
CntSem( int start = 1 ) : cnt( start ) {}
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void P() {
lock.acquire();
cnt -= 1;
if ( cnt < 0 ) {

// add self to lock’s blocked list
yieldNoSchedule( lock );
// DO NOT REACQUIRE LOCK

}
lock.release();

}

void V() {
lock.acquire();
cnt += 1;
if ( cnt <= 0 ) {

// remove task from blocked list and make ready
// DO NOT RELEASE LOCK

} else {
lock.release(); // NO RACE

}
}

};

• In general, binary/counting semaphores are used in two distinct ways:

1. For synchronization, if the semaphore starts at 0 ⇒ waiting for an event to occur.

2. For mutual exclusion, if the semaphore starts at 1(N) ⇒ controls a critical section.

• µC++ provides a counting semaphore, uSemaphore, which subsumes a binary semaphore.

#include <uSemaphore.h>
class uSemaphore {

public:
uSemaphore( unsigned int count = 1 );
void P();
bool TryP();
void V( unsigned int times = 1 );
int counter() const;
bool empty() const;

};

• P decrements the semaphore counter; if the counter is greater than or equal to zero, the

calling task continues, otherwise it blocks.

• TryP returns true if the semaphore is acquired and false otherwise (never blocks).

• V wakes up the task blocked for the longest time if there are tasks blocked on the semaphore

and increments the semaphore counter.

• If V is passed a positive integer N, the semaphore is Ved N times.
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• The member routine counter returns the value of the semaphore counter:

◦ negative means abs(N) tasks are blocked waiting to acquire the semaphore, and the

semaphore is locked;

◦ zero means no tasks are waiting to acquire the semaphore, and the semaphore is locked;

◦ positive means the semaphore is unlocked and allows N tasks to acquire the semaphore.

• The member routine empty returns false if there are threads blocked on the semaphore and

true otherwise.

6.4 Lock Programming

6.4.1 Precedence Graph

• P and V in conjunction with COBEGIN are as powerful as START and WAIT.

• E.g., execute statements so the result is the same as serial execution but concurrency is

maximized.

S1: a := 1
S2: b := 2
S3: c := a + b
S4: d := 2 * a
S5: e := c + d

• Analyse which data and code depend on each other.

• i.e., statement S1 and S2 are independent ⇒ can execute in either order or at the same time.

• Statement S3 is dependent on S1 and S2 because it uses both results.

• Display dependencies graphically in a precedence graph (different from process graph).

T
i

m
e

S5

S3S4

S2S1

Semaphore L1(0), L2(0), L3(0), L4(0);
COBEGIN

BEGIN a := 1; V(L1); END;
BEGIN b := 2; V(L2); END;
BEGIN P(L1); P(L2); c := a + b; V(L3); END;
BEGIN P(L1); d := 2 * a; V(L4); END;
BEGIN P(L3); P(L4); e := c + d; END;

COEND
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• Does this solution work?

• Optimal solution: minimum threads, M, and traverse M paths through precedence graph.

T
i

m
e

S5

S3S4

S2S1

Semaphore L1(0), L2(0);
COBEGIN

BEGIN a := 1; V(L1); d := 2 * a; V(L2); END;
BEGIN b := 2; P(L1); c := a + b; P(L2); e := c + d; END;

COEND

• process graph (different from precedence graph)

COBEGIN

COEND

p

S3 S4S2S1p S5

p

6.4.2 Buffering

• Tasks communicate unidirectionally through a queue.

• Producer adds items to the back of a queue.

• Consumer removes items from the front of a queue.

6.4.2.1 Unbounded Buffer

• Two tasks communicate through a queue of unbounded length.

consumerproducer

• Because tasks work at different speeds, producer may get ahead of consumer.

◦ Producer never has to wait as buffer has infinite length.

◦ Consumer has to wait if buffer is empty ⇒ wait for producer to add.
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• Queue is shared between producer/consumer, and counting semaphore controls access.

#define QueueSize ∞
int front = 0, back = 0;
int Elements[QueueSize];
uSemaphore full(0);
void Producer::main() {

for (;;) {
// produce an item
// add to back of queue
full.V();

}
// produce a stopping value
full.V();

}
void Consumer::main() {

for (;;) {
full.P();
// take an item from the front of the queue

if ( stopping value ? ) break;
// process or consume the item

}
}

• Is there a problem adding and removing items from the shared queue?

• Is the full semaphore used for mutual exclusion or synchronization?

6.4.2.2 Bounded Buffer

• Two tasks communicate through a queue of bounded length.

• Because of bounded length:

◦ Producer has to wait if buffer is full ⇒ wait for consumer to remove.

◦ Consumer has to wait if buffer is empty ⇒ wait for producer to add.

• Use counting semaphores to account for the finite length of the shared queue.
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uSemaphore full(0), empty(QueueSize);
void Producer::main() {

for ( ;; ) {
// produce an item
empty.P();
// add element to buffer
full.V();

}
// produce a stopping value
full.V();

}
void Consumer::main() {

for ( ;; ) {
full.P();
// remove element from buffer

if ( stopping value ? ) break;
// process or consume the item
empty.V();

}
}

• Does this produce maximum concurrency?

• Can it handle multiple producers/consumers?
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6.4.3 Lock Techniques

• Many possible solutions; need systematic approach.

• A split binary semaphore is a collection of semaphores where at most one of the collection

has the value 1.

◦ I.e., the sum of the semaphores is always less than or equal to one.

◦ Used when different kinds of tasks have to block separately.

◦ Cannot differentiate tasks blocked on the same semaphore (condition) lock. Why?
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◦ E.g., A and B tasks block on different semaphores so they can be unblocked based on

kind, but collectively manage 2 semaphores like it was one.

• Split binary semaphores can be used to solve complicated mutual-exclusion problems by a

technique called baton passing.

• The rules of baton passing are:

◦ there is exactly one (conceptual) baton

◦ nobody moves in the entry/exit code unless they have it

◦ once the baton is released, cannot read/write variables in entry/exit

• E.g., baton is conceptually acquired in entry/exit protocol and passed from signaller to sig-

nalled task (see page 100).

class BinSem {
queue<Task> blocked;
bool avail;
SpinLock lock;

public:
BinSem( bool start = true ) : avail( start ) {}
void P() {

lock.acquire(); PICKUP BATON, CAN ACCESS STATE
if ( ! avail ) {

// add self to lock’s blocked list
PUT DOWN BATON, CANNOT ACCESS STATE
yieldNoSchedule( lock );
// UNBLOCK WITH SPIN LOCK ACQUIRED
PASSED BATON, CAN ACCESS STATE

}
avail = false;
lock.release(); PUT DOWN BATON, CANNOT ACCESS STATE

}
void V() {

lock.acquire(); PICKUP BATON, CAN ACCESS STATE
if ( ! blocked.empty() ) {

// remove task from blocked list and make ready
PASS BATON, CANNOT ACCESS STATE

} else {
avail = true;
lock.release(); PUT DOWN BATON, CANNOT ACCESS STATE

}
}

};

• Can mutex/condition lock perform baton passing to prevent barging?

◦ Not if signalled task must implicitly re-acquire the mutex lock before continuing.

◦ ⇒ signaller must release the mutex lock.

◦ There is now a race between signalled and calling tasks, resulting in barging.

6.4.4 Readers and Writer Problem

• Multiple tasks sharing a resource: some reading the resource and some writing the resource.
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• Allow multiple concurrent reader tasks simultaneous access, but serialize access for writer

tasks (a writer may read).

• Use split-binary semaphore to segregate 3 kinds of tasks: arrivers, readers, writers.

• Use baton-passing to help understand complexity.
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6.4.4.1 Solution 1

uSemaphore entry(1), rwait(0), wwait(0); // split binary semaphores
int rdel = 0, wdel = 0, rcnt = 0, wcnt = 0; // auxiliary counters
void Reader::main() {

entry.P(); // pickup baton
if ( wcnt > 0 ) { // occupied ?

rdel += 1; entry.V(); // put baton down
rwait.P(); rdel -= 1; // passed baton

}
rcnt += 1;
if ( rdel > 0 ) { // waiting readers ?

rwait.V(); // pass baton
} else {

entry.V(); // put baton down
}
// READ
entry.P(); // pickup baton
rcnt -= 1;
if ( rcnt == 0 && wdel > 0 ) { // waiting writers ?

wwait.V(); // pass baton
} else {

entry.V(); // put baton down
}

}
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void Writer::main() {
entry.P(); // pickup baton
if ( rcnt > 0 | | wcnt > 0 ) { // occupied ?

wdel += 1; entry.V(); // put baton down
wwait.P(); wdel -= 1; // passed baton

}
wcnt += 1;
entry.V(); // put baton down
// WRITE
entry.P(); // pickup baton
wcnt -= 1;
if ( rdel > 0 ) { // waiting readers ?

rwait.V(); // pass baton
} else if ( wdel > 0 ) { // waiting writers ?

wwait.V(); // pass baton
} else {

entry.V(); // put baton down
}

}

• Problem: reader only checks for writer in resource, never writers waiting to use it.

◦ ⇒ readers barge ahead of writers who already waited.

◦ ⇒ continuous stream of readers (actually only 2 needed) prevent waiting writers from

making progress (starvation).

6.4.4.2 Solution 2

• Give writers priority and make the readers wait.

◦ Works most of the time because normally 80% readers and 20% writers.

• Change entry protocol for reader to the following:

entry.P(); // pickup baton
if ( wcnt > 0 | | wdel > 0 ) { // waiting writers?

rdel += 1; entry.V(); // put baton down
rwait.P(); rdel -= 1; // passed baton

}
rcnt += 1;
if ( rdel > 0 ) { // waiting readers ?

rwait.V(); // pass baton
} else {

entry.V(); // put baton down
}

• Also, change writer’s exit protocol to favour writers:
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entry.P(); // pickup baton
wcnt -= 1;
if ( wdel > 0 ) { // check writers first

wwait.V(); // pass baton
} else if ( rdel > 0 ) {

rwait.V(); // pass baton
} else {

entry.V(); // put baton down
}

◦ ⇒ writers barge.

◦ ⇒ continuous stream of writers cause reader starvation.

6.4.4.3 Solution 3

• Fairness on simultaneous arrival is solved by alternation (Dekker’s solution).

• E.g., use last flag to indicate the kind of tasks last using the resource, i.e., reader or writer.

• On exit, first select from opposite kind, e.g., if last is reader, first check for waiting writer

otherwise waiting reader, then update last.

• Flag is unnecessary if readers wait when there is a waiting writer, and all readers started after

a writer.

• ⇒ put writer’s exit-protocol back to favour readers.

entry.P(); // pickup baton
wcnt -= 1;
if ( rdel > 0 ) { // check readers first

rwait.V(); // pass baton
} else if ( wdel > 0 ) {

wwait.V(); // pass baton
} else {

entry.V(); // put baton down
}

• Arriving readers cannot barge ahead of waiting writers and unblocking writers cannot barge

ahead of a waiting reader

• ⇒ alternation for simultaneous waiting.

6.4.4.4 Solution 4

• Problem: temporal barging!

• Staleness/freshness for last flag and staleness with no-flag.
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• Alternation for simultaneous waiting means when writer leaves resource:

◦ both readers enter ⇒ 2:00 reader reads data that is stale; should read 1:30 write

◦ writer enters and overwrites 12:30 data (never seen) ⇒ 1:00 reader reads data that is

too fresh (i.e., missed reading 12:30 data)

• Staleness/freshness can lead to plane or stock-market crash.

• Service readers and writers in temporal order, i.e., first-in first-out (FIFO), but allow mul-

tiple concurrent readers.

• Have readers and writers wait on same semaphore ⇒ collapse split binary semaphore.

• But now lose kind of waiting task!

• Introduce shadow queue to retain kind of waiting task on semaphore:
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uSemaphore entry(1), rwwait(0); // readers/writers, temporal order
int rwdel = 0, rcnt = 0, wcnt = 0; // auxiliary counters
enum RW { READER, WRITER }; // kinds of tasks
queue<RW> rw_id; // queue of kinds
void Reader::main() {

entry.P(); // pickup baton
if ( wcnt > 0 | | rwdel > 0 ) { // anybody waiting?

rw_id.push( READER ); // store kind
rwdel += 1; entry.V(); rwwait.P(); rwdel -= 1;
rw_id.pop();

}
rcnt += 1;
if ( rwdel > 0 && rw_id.front() == READER ) { // more readers ?

rwwait.V(); // pass baton
} else

entry.V(); // put baton down
// READ
entry.P(); // exit protocol
rcnt -= 1;
if ( rcnt == 0 && rwdel > 0 ) { // last reader ?

rwwait.V(); // pass baton
} else

entry.V(); // put baton down
}

void Writer::main() {
entry.P(); // pickup baton
if ( rcnt > 0 | | wcnt > 0 ) {

rw_id.push( WRITER ); // store kind
rwdel += 1; entry.V(); rwwait.P(); rwdel -= 1;
rw_id.pop();

}
wcnt += 1;
entry.V(); // put baton down
// WRITE
entry.P(); // pickup baton
wcnt -= 1;
if ( rwdel > 0 ) { // anyone waiting ?

rwwait.V(); // pass baton
} else

entry.V(); // put baton down
}

• Why can task pop front node on shadow queue when unblocked?

6.4.4.5 Solution 5

• Cheat on cooperation:

◦ allow 2 checks for write instead of 1

◦ use reader/writer bench and writer chair.
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• On exit, if chair empty, unconditionally unblock task at front of reader/writer semaphore.

• ⇒ reader can incorrectly unblock a writer.

• This writer now waits second time but in chair.

• Chair is always checked first on exit (higher priority than bench).
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r

w

w

w rwrw r

Entry

Readers & Writers baton Writer

w

uSemaphore entry(1), rwwait(0), wwait(0);
int rwdel = 0, wdel = 0, rcnt = 0, wcnt = 0; // auxiliary counters
void Reader::main() {

entry.P(); // pickup baton
if ( wcnt > 0 | | wdel > 0 | | rwdel > 0 ) {

rwdel += 1; entry.V(); rwwait.P(); rwdel -= 1;
}
rcnt += 1;
if ( rwdel > 0 ) { // more readers ?

rwwait.V(); // pass baton
} else

entry.V(); // put baton down
// READ
entry.P(); // pickup baton
rcnt -= 1;
if ( rcnt == 0 ) { // last reader ?

if ( wdel != 0 ) { // writer waiting ?
wwait.V(); // pass baton

} else if ( rwdel > 0 ) { // anyone waiting ?
rwwait.V(); // pass baton

} else
entry.V(); // put baton down

} else
entry.V(); // put baton down

}
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void Writer::main() {
entry.P(); // pickup baton
if ( rcnt > 0 | | wcnt > 0 ) { // first wait ?

rwdel += 1; entry.V(); rwwait.P(); rwdel -= 1;
if ( rcnt > 0 ) { // second wait ?

wdel += 1; entry.V(); wwait.P(); wdel -= 1;
}

}
wcnt += 1;
entry.V(); // put baton down
// WRITE
entry.P(); // pickup baton
wcnt -= 1;
if ( rwdel > 0 ) { // anyone waiting ?

rwwait.V(); // pass baton
} else

entry.V(); // put baton down
}

6.4.4.6 Solution 6

• Still temporal problem when tasks move from one blocking list to another.

• In solutions, reader/writer entry-protocols have code sequence:

. . . entry.V(); INTERRUPTED HERE Xwait.P();

• For writer:

◦ pick up baton and see readers using resource

◦ put baton down, entry.V(), but time-sliced before wait, Xwait.P().

◦ another writer does same thing, and this can occur to any depth.

◦ writers restart in any order or immediately have another time-slice

◦ e.g., 2:00 writer goes ahead of 1:00 writer ⇒ freshness problem.

• For reader:

◦ pick up baton and see writer using resource

◦ put baton down, entry.V(), but time-sliced before wait, Xwait.P().

◦ writers that arrived ahead of reader do same thing

◦ reader restarts before any writers

◦ e.g., 2:00 reader goes ahead of 1:00 writer ⇒ staleness problem.

• Need atomic block and release ⇒ magic like turning off time-slicing.

Xwait.P( entry ); // uC++ semaphore

• Alternative: ticket
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◦ readers/writers take ticket (see Section 5.18.9, p. 89) before putting baton down

◦ to pass baton, serving counter is incremented and then WAKE ALL BLOCKED

TASKS

◦ each task checks ticket with serving value, and one proceeds while others reblock

◦ starvation not an issue as waiting queue is bounded length, but inefficient

• Alternative: private semaphore

◦ list of private semaphores, one for each waiting task, versus multiple waiting tasks on

a semaphore.

◦ add list node before releasing entry lock, which establishes position, then block on

private semaphore.

◦ to pass baton, private semaphore at head of the queue is Ved, if present.

◦ if task blocked on private semaphore, it is unblocked

◦ if task not blocked due to time-slice, V is remembered, and task does not block on P.

r

r

w

r

w

w

w w r r w r

Entry

baton

Private Semaphores

Readers & Writers

w w wr rr
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uSemaphore entry(1);
int rwdel = 0, rcnt = 0, wcnt = 0;
struct RWnode {

RW rw; // kinds of task
uSemaphore sem; // private semaphore
RWnode( RW rw ) : rw(rw), sem(0) {}

};
queue<RWnode *> rw_id;
void Reader::main() {

entry.P(); // pickup baton
if ( wcnt > 0 | | ! rw_id.empty() ) { // anybody waiting?

RWnode r( READER );
rw_id.push( &r ); // store kind
rwdel += 1; entry.V(); r.sem.P(); rwdel -= 1;
rw_id.pop();

}
rcnt += 1;
if ( rwdel > 0 && rw_id.front()->rw == READER ) { // more readers ?

rw_id.front()->sem.V(); // pass baton
} else

entry.V(); // put baton down
// READ
entry.P(); // pickup baton
rcnt -= 1;
if ( rcnt == 0 && rwdel > 0 ) { // last reader ?

rw_id.front()->sem.V(); // pass baton
} else

entry.V(); // put baton down
}

void Writer::main() {
entry.P(); // pickup baton
if ( rcnt > 0 | | wcnt > 0 ) { // resource in use ?

RWnode w( WRITER );
rw_id.push( &w ); // remember kind of task
rwdel += 1; entry.V(); w.sem.P(); rwdel -= 1;
rw_id.pop();

}
wcnt += 1;
entry.V();
// WRITE
entry.P(); // pickup baton
wcnt -= 1;
if ( rwdel > 0 ) { // anyone waiting ?

rw_id.front()->sem.V(); // pass baton
} else

entry.V(); // put baton down
}

6.4.4.7 Solution 7

• Ad hoc solution with questionable split-binary semaphores and baton-passing.
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w
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w
lock

baton

Entry

Writer

• Tasks wait in temporal order on entry semaphore.

• Only one writer ever waits on the writer chair until readers leave resource.

• Waiting writer blocks holding baton to force other arriving tasks to wait on entry.

• Semaphore lock is used only for mutual exclusion.

• Sometimes acquire two locks to prevent tasks entering and leaving.

• Release in opposite order.

uSemaphore entry(1); // two locks open
uSemaphore lock(1), wwait(0);
int rcnt = 0, wdel = 0;

void Reader::main() {
entry.P(); // entry protocol
lock.P();
rcnt += 1;
lock.V();
entry.V(); // put baton down
// READ
lock.P(); // exit protocol
rcnt -= 1; // critical section
if ( rcnt == 0 && wdel == 1 ) { // last reader & writer waiting ?

lock.V();
wwait.V(); // pass baton

} else
lock.V();

}
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void Writer::main() {
entry.P(); // entry protocol
lock.P();
if ( rcnt > 0 ) { // readers waiting ?

wdel += 1;
lock.V();
wwait.P(); // wait for readers
wdel -= 1; // unblock with baton

} else
lock.V();

// WRITE
entry.V(); // exit protocol

}

• Is temporal order preserved?

• While solution is smaller, harder to reason about correctness.

• Does not generalize for other kinds of complex synchronization and mutual exclusion.
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7 Concurrent Errors

7.1 Race Condition

• A race condition occurs when there is missing:

◦ synchronization

◦ mutual exclusion

• Two or more tasks race along assuming synchronization or mutual exclusion has occurred.

• Can be very difficult to locate (thought experiments).

◦ Aug. 14, 2003 Northeastern blackout : worst power outage in North American history.

◦ Race condition buried in four million lines of C code.

◦ “in excess of three million online operational hours in which nothing had ever exercised

that bug.”

7.2 No Progress

7.2.1 Live-lock

• Indefinite postponement: “You go first” problem on simultaneous arrival (consuming CPU)

• Caused by poor scheduling in entry protocol:

133
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• There always exists some mechanism to break tie on simultaneous arrival that deals effec-

tively with live-lock (Oracle with cardboard test).

7.2.2 Starvation

• A selection algorithm ignores one or more tasks so they are never executed, i.e., lack of

long-term fairness.

• Long-term (infinite) starvation is extremely rare, but short-term starvation can occur and is a

problem.

• Like live-lock, starving task might be ready at any time, switching among active, ready and

possibly blocked states (consuming CPU).

7.2.3 Deadlock

• Deadlock is the state when one or more processes are waiting for an event that will not

occur.

• Unlike live-lock/starvation, deadlocked task is blocked so not consuming CPU.

7.2.3.1 Synchronization Deadlock

• Failure in cooperation, so a blocked task is never unblocked (stuck waiting):

int main() {
uSemaphore s(0); // closed
s.P(); // wait for lock to open

}
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7.2.3.2 Mutual Exclusion Deadlock

• Failure to acquire a resource protected by mutual exclusion.

• Deadlock, unless one of the cars is willing to backup.

• There are 5 conditions that must occur for a set of processes to deadlock.

1. A concrete shared-resource requiring mutual exclusion, i.e., exists without a task.

◦ A task “wanting to drive across the intersection” is not a resource.

2. A process holds a resource while waiting for access to a resource held by another

process (hold and wait).

3. Once a process has gained access to a resource, the runtime system cannot get it back

(no preemption).

4. There exists a circular wait of processes on resources.

5. These conditions must occur simultaneously.

• Simple example using semaphores:

uSemaphore L1(1), L2(1); // open
task1 task2

L1.P() L2.P() // acquire opposite locks
R1 R2 // access resource
L2.P() L1.P() // acquire opposite locks

R1 & R2 R2 & R1 // access resources

7.3 Deadlock Prevention

• Eliminate one or more of the conditions required for a deadlock from an algorithm ⇒ dead-

lock can never occur.

7.3.1 Synchronization Prevention

• Eliminate all synchronization from a program

• ⇒ no communication

• ⇒ impossible in most cases
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7.3.2 Mutual Exclusion Prevention

• Deadlock can be prevented by eliminating one of the 5 conditions:

1. no mutual exclusion

• ⇒ no shared resources

• ⇒ impossible in most cases

2. no hold & wait: do not give any resource, unless all resources can be given

uSemaphore L1(1), L2(1); // open
task1 task2

L1.P() L2.P() L1.P() L2.P() // acquire all locks at start
R1 R2 // access resource

R1 & R2 R2 & R1 // access resources

• ⇒ poor resource utilization

• possible starvation

3. allow preemption

• Preemption is dynamic ⇒ cannot apply statically.

4. no circular wait: by controlling order of resource allocations

uSemaphore L1(1), L2(1); // open
task1 task2

L1.P() L1.P() // acquire same locks
R1 // access resource
L2.P() L2.P() // acquire same locks

R2 // access resource
R1 & R2 R2 & R1 // access resources

• Use an ordered resource policy:

R2<R1 < R3

T1 T2

· · ·

TN

◦ divide all resources into classes R1, R2, R3, etc.

◦ rule: can only request a resource from class Ri if holding no resources from any

class R j for j ≥ i

◦ unless each class contains only one resource, requires requesting several resources

simultaneously

◦ denote the highest class number for which T holds a resource by h(T )

◦ if process T1 is requesting a resource of class k and is blocked because that resource

is held by process T2, then h(T1)< k ≤ h(T2)
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◦ as the preceding inequality is strict, a circular wait is impossible

◦ in some cases there is a natural division of resources into classes that makes this

policy work nicely

◦ in other cases, some processes are forced to acquire resources in an unnatural

sequence, complicating their code and producing poor resource utilization

5. prevent simultaneous occurrence:

• Show previous 4 rules cannot occur simultaneously.

7.4 Deadlock Avoidance

• Monitor all lock blocking and resource allocation to detect any potential formation of dead-

lock.

deadlock

safe

unsafe

• Achieve better resource utilization, but additional overhead to avoid deadlock.

7.4.1 Banker’s Algorithm

• Demonstrate a safe sequence of resource allocations that ⇒ no deadlock.

• However, requires a process state its maximum resource needs.

R1 R2 R3 R4

6 12 4 2 total resources (TR)

T1 4 10 1 1 maximum needed

T2 2 4 1 2 for execution

T3 5 9 0 1 (M)

T1 6 23 5 1 0 currently

T2 1 2 1 0 allocated

T3 1 2 0 0 (C)

resource request (T1, R1) 2 → 3

T1 1 5 0 1 needed to

T2 1 2 0 2 execute

T3 4 7 0 1 (N = M−C)

• Is there a safe order of execution that avoids deadlock should each process require its maxi-

mum resource allocation?
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current available resources

1 3 2 2 (CR = T R−∑Ccols)

T2 0 1 2 0 (CR =CR−NT2)

2 5 3 2 (CR =CR+MT 2)

T1 1 0 3 1 (CR =CR−NT1)

5 10 4 2 (CR =CR+MT 1)

T3 1 3 4 1 (CR =CR−NT3)

6 12 4 2 (CR =CR+MT 3)

• So a safe order exists (the left column in the table above) and hence the Banker’s Algorithm

allows the resource request.

• If there is a choice of processes to choose for execution, it does not matter which path is

taken.

• Example: If T1 or T3 could go to their maximum with the current resources, then choose

either. A safe order starting with T1 exists if and only if a safe order starting with T3 exists.

• Does task scheduling need to be adjusted to the safe sequence?

• The check for a safe order can be performed for every allocation of resource to a process

(optimizations are possible, i.e., same thread asks for another resource).

7.4.2 Allocation Graphs

• One method to check for potential deadlock is to graph processes and resource usage at each

moment a resource is allocated.

with multiple instancesresource

task

task is waiting for a resource instance

task is holding a resource instance

• Multiple instances are put into a resource so that a specific resource does not have to be

requested. Instead, a generic request is made.

T4

T3

T1 T2

R1

R2

R3
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• If a graph contains no cycles, no process in the system is deadlocked.

• If any resource has several instances, a cycle 6⇒ deadlock.

T1 → R1 → T2 → R3 → T3 → R2 → T1 (cycle)

T2 → R3 → T3 → R2 → T2 (cycle)

◦ If T4 releases its resource, the cycle is broken.

• Create isomorphic graph without multiple instances (expensive and difficult):

T1 T2

T4

R32R31R1

T3

R21 R22

• If each resource has one instance, a cycle ⇒ deadlock.

• Use graph reduction to locate deadlocks:

T3

T1 T2

R1

R2

R3

T3

T1

R1

R2

R3

R1

R2

R3

T3

R1

R2

R3

• Problems:
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◦ When choices for tasks, selection is tricky (like isomorphic graph).

◦ For large graphs, detecting cycles is expensive.

◦ Many graphs to examine over time, one for each particular allocation state of the sys-

tem.

7.5 Detection and Recovery

• Instead of avoiding deadlock let it happen and recover.

◦ ⇒ ability to discover deadlock

◦ ⇒ preemption

• Discovering deadlock is difficult, e.g., build and check for cycles in allocation graph.

◦ not on each resource allocation, but every T seconds or every time a resource cannot be

immediately allocated

◦ Try µC++ debugging macros to locate deadlock.

• Recovery involves preemption of one or more processes in a cycle.

◦ decision is not easy and must prevent starvation

◦ The preemption victim must be restarted, from beginning or some previous checkpoint

state, if you cannot guarantee all resources have not changed.

◦ even that is not enough as the victim may have made changes before the preemption.

7.6 Which Method To Chose?

• Maybe “none of the above”: just ignore the problem

◦ if some process is blocked for rather a long time, assume it is deadlocked and abort it

◦ do this automatically in transaction-processing systems, manually elsewhere

• Of the techniques studied, only the ordered resource policy turns out to have much practical

value.



8 Indirect Communication

• P and V are low level primitives for protecting critical sections and establishing synchro-

nization between tasks.

• Shared variables provide the actual information that is communicated.

• Both of these can be complicated to use and may be incorrectly placed.

• Split-binary semaphores and baton passing are complex.

• Need higher level facilities that perform some of these details automatically.

• Get help from programming-language/compiler.

8.1 Critical Regions

• Declare which variables are to be shared, as in:

VAR v : SHARED INTEGER MutexLock v_lock;

• Access to shared variables is restricted to within a REGION statement, and within the region,

mutual exclusion is guaranteed.

REGION v DO v_lock.acquire()
// critical section . . . // x = v; (read) v = y (write)

END REGION v_lock.release()

• Simultaneous reads are impossible!

• Modify to allow reading of shared variables outside the critical region and modifications in

the region.

• Problem: reading partially updated information while a task is updating the shared variable

in the region.

• Nesting can result in deadlock.

VAR x, y : SHARED INTEGER

task1 task2
REGION x DO REGION y DO

. . . . . .
REGION y DO REGION x DO

. . . . . .
END REGION END REGION
. . . . . .

END REGION END REGION

141
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8.2 Conditional Critical Regions

• Introduce a condition that must be true as well as having mutual exclusion.

REGION v DO
AWAIT conditional-expression
. . .

END REGION

• E.g. The consumer from the producer-consumer problem.

VAR Q : SHARED QUEUE<INT,10>

REGION Q DO
AWAIT NOT EMPTY( Q ) buffer not empty
take an item from the front of the queue

END REGION

• If the condition is false, the region lock is released and entry is started again (busy waiting).

• If prevent busy waiting, block on queue for shared variable, and on region exit, search for

true conditional-expression and unblock.

8.3 Monitor

• A monitor is an abstract data type that combines shared data with serialization of its modi-

fication.

_Monitor name {
shared data
members that see and modify the data

};

• A mutex member (short for mutual-exclusion member) is one that does NOT begin execu-

tion if there is another active mutex member.

◦ ⇒ a call to a mutex member may become blocked waiting entry, and queues of waiting

tasks may form.

◦ Public member routines of a monitor are implicitly mutex and other kinds of members

can be made explicitly mutex with qualifier (_Mutex).

• Basically each monitor has a lock which is Ped on entry to a monitor member and Ved on

exit.
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class Mon {
MutexLock mlock;
int v;

public:
int x(. . .) { // mutex member

mlock.acquire();
. . . // int temp = v;
mlock.release();
return v; // return temp;

}
};

• Recursive entry is allowed (owner mutex lock), i.e., one mutex member can call another or

itself.

• Unhandled exceptions raised within a monitor should always release the implicit monitor

locks so the monitor can continue to function.

• Destructor must be mutex, so ending a block with a monitor or deleting a dynamically allo-

cated monitor, blocks if thread in monitor.

• Atomic counter using a monitor:

_Monitor AtomicCounter {
int counter;

public:
AtomicCounter( int init = 0 ) : counter( init ) {}
int inc() { counter += 1; return counter; } // mutex members
int dec() { counter -= 1; return counter; }

};

AtomicCounter a, b, c;
. . . a.inc(); . . . // accessed by multiple threads
. . . b.dec(); . . .
. . . c.inc(); . . .

8.4 Scheduling (Synchronization)

• A monitor may want to schedule tasks in an order different from the order in which they

arrive (bounded buffer, readers/write with staleness/freshness).

• There are two techniques: external and internal scheduling.

◦ external is scheduling tasks outside the monitor and is accomplished with the accept

statement.

◦ internal is scheduling tasks inside the monitor and is accomplished using condition

variables with signal & wait.
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8.4.1 External Scheduling

• The accept statement controls which mutex members can accept calls.

• By preventing certain members from accepting calls at different times, it is possible to con-

trol scheduling of tasks.

• Each _Accept defines what cooperation must occur for the accepting task to proceed.

• E.g. Bounded Buffer

_Monitor BoundedBuffer {
int front = 0, back = 0, count = 0;
int elements[20];

public:
_Nomutex int query() const { return count; }
[ _Mutex] void insert( int elem );
[ _Mutex] int remove();

};
void BoundedBuffer::insert( int elem ) {

if ( count == 20 ) _Accept( remove );
elements[back] = elem;
back = ( back + 1 ) % 20;
count += 1;

}
int BoundedBuffer::remove() {

if ( count == 0 ) _Accept( insert );
int elem = elements[front];
front = ( front + 1 ) % 20;
count -= 1;
return elem;

}

datashared

P

P

C

C

P

exit

remove

insert
calling

acceptor

remove

insert

• Queues of tasks form outside the monitor, waiting to be accepted into either insert or remove.

• An acceptor blocks all calls except a call to the specified mutex member(s) occurs.

• Accepted call is executed like a conventional member call.

• When the accepted task exits the mutex member (or waits), the acceptor continues.

• If the accepted task does an accept, it blocks, forming a stack of blocked acceptors.

• External scheduling is simple because unblocking (signalling) is implicit.

8.4.2 Internal Scheduling

• Scheduling among tasks inside the monitor.

• A condition is an external synchronization-lock (see Section 6.3.2, p. 103), i.e., queue of

waiting tasks:

uCondition x, y, z[5];
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• empty returns false if there are tasks blocked on the queue and true otherwise.

• front returns an integer value stored with the waiting task at the front of the condition queue.

• A task waits (blocks) by placing itself on a condition:

x.wait(); // wait( mutex, condition )

Atomically places the executing task at the back of the condition queue, and allows another

task into the monitor by releasing the monitor lock.

• A task on a condition queue is made ready by signalling the condition:

x.signal();

Removes and makes ready blocked task at front of the condition queue.

• Signaller does not block, so the signalled task must continue waiting until the signaller

exits or waits.

• Like a SyncLock, a signal on an empty condition is lost!

• E.g. Bounded Buffer (like binary semaphore solution):

_Monitor BoundedBuffer {
uCondition full, empty;
int front = 0, back = 0, count = 0;
int elements[20];

public:
_Nomutex int query() const { return count; }
void insert( int elem ) {

if ( count == 20 ) empty.wait();
elements[back] = elem;
back = ( back + 1 ) % 20;
count += 1;
full.signal();

}
int remove() {

if ( count == 0 ) full.wait();
int elem = elements[front];
front = ( front + 1 ) % 20;
count -= 1;
empty.signal();
return elem;

}
};

P

PP

C

C

shared data

calling

signalled

signal

exit

wait
signalBlock

full

empty

Java

• wait() blocks the current thread, and restarts a signalled task or implicitly releases the moni-

tor lock.

• signal() unblocks the thread on the front of the condition queue after the signaller thread

blocks or exits.

• signalBlock() unblocks the thread on the front of the condition queue and blocks the sig-

naller thread.

• General Model
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_Monitor Mon {
uCondition A, B;
. . .

public:
int X(. . .) {. . .}
void Y(. . .) {. . .}

};

d

b

b

a c

d

duplicateblocked taskactive task

a

c

exit

A

condition
B

stack

acceptor/
signalled

condition

X Y

entry
queue

arrival
order of

shared

variables

mutex
queues

• entry queue is FIFO list of calling tasks to the monitor.

• When to use external or internal scheduling?

• External is easier to specify and explain over internal with condition variables.

• However, external scheduling cannot be used if:

◦ scheduling depends on member parameter value(s), e.g., compatibility code for dating

◦ scheduling must block in the monitor but cannot guarantee the next call fulfills cooper-

ation

• Dating service

boys

b b

b

girls

g g g

g g

g

g / b
exchange

0

1

2

3
b

girlPhoneNo

boyPhoneNo

ccode



8.5. READERS/WRITER 147

_Monitor DatingService {
enum { CCodes = 20 }; // compatibility codes
uCondition girls[CCodes], boys[CCodes], exchange;
int girlPhoneNo, boyPhoneNo;

public:
int girl( int phoneNo, int ccode ) {

if ( boys[ccode].empty() ) { // no compatible boy ?
girls[ccode].wait(); // wait for boy
girlPhoneNo = phoneNo; // make phone number available
exchange.signal(); // wake boy from chair

} else {
girlPhoneNo = phoneNo; // make phone number available
// signalBlock() & remove exchange
boys[ccode].signal(); // wake boy
exchange.wait(); // sit in chair

}
return boyPhoneNo;

}
int boy( int phoneNo, int ccode ) {

// same as above, with boy/girl interchanged
}

};

• Also, possible to use signal with empty bench (ccode) as chair.

8.5 Readers/Writer

• Solution 3 (Section 6.4.4.3, p. 123), no bargers, 5 rules, not temporal

_Monitor ReadersWriter {
int rcnt = 0, wcnt = 0;
uCondition readers, writers;

public:
void startRead() {

if ( wcnt != 0 | | ! writers.empty() ) readers.wait();
rcnt += 1;
readers.signal();

}
void endRead() {

rcnt -= 1;
if ( rcnt == 0 ) writers.signal();

}
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void startWrite() {
if ( wcnt !=0 | | rcnt != 0 ) writers.wait();
wcnt = 1;

}
void endWrite() {

wcnt = 0;
if ( ! readers.empty() ) readers.signal();
else writers.signal();

}
};

• Problem: has the same protocol as P and V.

ReadersWriter rw;
readers writers

rw.startRead() rw.startWrite() // 2-step protocol
// read // write
rw.endRead() rw.endWrite()

• Simplify protocol:

ReadersWriter rw;
readers writers

rw.read(. . .) rw.write(. . .) // 1-step protocol

◦ Implies only one read/write action, or pass pointer to read/write action.

• Alternative interface:

_Monitor ReadersWriter {
_Mutex void startRead() { . . . }
_Mutex void endRead() { . . . }
_Mutex void startWrite() { . . . }
_Mutex void endWrite() { . . . }

public:
_Nomutex void read(. . .) { // no const or mutable

startRead(); // acquire mutual exclusion
// read, no mutual exclusion
endRead(); // release mutual exclusion

}
_Nomutex void write(. . .) { // no const or mutable

startWrite() // acquire mutual exclusion
// write
endWrite() // release mutual exclusion

}
};

• Alternative interface, and remove wcnt (barging prevention):
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_Monitor ReadersWriter {
_Mutex void startRead() {

if ( ! writers.empty() ) readers.wait();
rcnt += 1;
readers.signal();

}
_Mutex void endRead() { . . . }

public:
_Nomutex void read(. . .) { // no const or mutable

startRead(); // acquire mutual exclusion
// read, no mutual exclusion
endRead(); // release mutual exclusion

}
void write(. . .) { // acquire mutual exclusion

if ( rcnt != 0 ) writers.wait(); // release/reacquire
// write, mutual exclusion
if ( ! readers.empty() ) readers.signal();
else writers.signal();

}
};

• Solution 4 (Section 6.4.4.4, p. 123), condition shadow queue with type uintptr_t data.

_Monitor ReadersWriter {
int rcnt = 0, wcnt = 0;
uCondition RWers;
enum RW { READER, WRITER };

public:
void startRead() {

if ( wcnt !=0 | | ! RWers.empty() ) RWers.wait( READER );
rcnt += 1;
if ( ! RWers.empty() && RWers.front() == READER ) RWers.signal();

}
void endRead() {

rcnt -= 1;
if ( rcnt == 0 ) RWers.signal();

}

void startWrite() {
if ( wcnt != 0 | | rcnt != 0 ) RWers.wait( WRITER );
wcnt = 1;

}
void endWrite() {

wcnt = 0;
RWers.signal();

}
};
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READER READERREADERWRITER WRITER

RWers

task1

blocked blocked blocked

task2 task3

blocked blocked

task4 task5

• Use shadow queue to solve dating service, i.e., shadow with phone number.

• µC++ uCondLock and uSemaphore also support shadow queues with type uintptr_t data.

• Solution 8, external scheduling

_Monitor ReadersWriter {
int rcnt = 0, wcnt = 0;

public:
void endRead() {

rcnt -= 1;
}
void endWrite() {

wcnt = 0;
}
void startRead() {

if ( wcnt > 0 ) _Accept( endWrite );
rcnt += 1;

}
void startWrite() {

if ( wcnt > 0 ) _Accept( endWrite );
else while ( rcnt > 0 ) _Accept( endRead );
wcnt = 1;

}
};

• Why has the order of the member routines changed?

8.6 Exceptions

• An exception raised in a monitor member propagates to the caller’s thread.

_Monitor M {
public:

void mem1() {
. . . if ( . . . ) _Throw E(); . . . // E goes to caller

} // uRendezvousFailure goes to “this”
void mem2() {

try {
. . . if ( . . . ) _Accept( mem1 ); . . .

} catch( uMutexFailure::RendezvousFailure & ) { // implicitly enabled
// deal with rendezvous failure

} // try
}

};
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• Caller in M::mem1 gets exception E propagated on its stack.

• On exiting M::mem1, caller implicitly raises non-local RendezvousFailure exception at mon-

itor acceptor’s thread to identify failed cooperation.

• RendezvousFailure always enabled ⇒ _Enable block unnecessary.

• For multiple _Accept clauses

_Accept( mem2 | | mem3 | | . . . );

flag variable required to know which member failed.

8.7 Nested Monitor Calls

• Nested monitor problem: acquire monitor (lock) M1, call to monitor M2, and wait on

condition in M2.

M1

acquire
T0

M2

acquire
block
release

• Monitor M2’s mutex lock is released by wait, but monitor M1’s monitor lock is NOT released

⇒ potential deadlock.

• Releasing all locks can inadvertently release a lock, e.g., incorrectly release M0 before M1.

• Same problem occurs with locks.

• Called lock composition problem.

• Nested monitor used as guardian lock for readers/writer problem (like external scheduling

RW page 150).

_Monitor RW {
_Monitor RWN {

uCondition bench;
int rcnt = 0;

public:
void startRead() { rcnt += 1; }
void endRead() {

rcnt -= 1;
if ( rcnt == 0 ) bench.signal();

}
void startEndWrite() {

if ( rcnt > 0 ) bench.wait(); // blocking holding rw
// sequential write

}
} rwn;
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_Mutex void mutexRead() { rwn.startRead(); }
public:

void write() { rwn.startEndWrite(); }
_Nomutex void read() {

mutexRead();
// concurrent reads
rwn.endRead();

}
};

• If the writer waits in rwn, it prevent both readers and writers acquiring rw, which prevents

starvation and forces FIFO ordering.

8.8 Intrusive Lists

• Non-contiguous variable-length data-structures, e.g., list, dictionary, normally require dy-

namic allocation as the structure increases/deceases when adding/deleting nodes.

• Three kinds of collections: copy data, copy pointer, and intrusive pointers:

data1 data2

data1 data2

data1 data2

copy data copy pointer to data intrusive links in data

data1 data2

heapheap

global/stack/heap

copy creates a collection node with link fields, ⇒ dynamic allocation for links and possibly

data, copies data and/or data-pointer into node, and links node into collection.

intrusive assumes a node with data and link fields, ⇒ no dynamic allocation for collection

links or copying.

• Programmer manages node lifetime for copy pointer and intrusive.

• µC++ provides intrusive data-structures allowing global/stack/heap nodes and no copying.

struct Node : public uColable {
int i;
Node( int i ) : i( i ) {}

};
int main() {

Node n1{ 1 }, n2{ 2 }, n3{ 3 }; // stack nodes
uStack<Node> s;
s.push( &n1 ); s.push( &n2 ); s.push( &n3 ); // no dynamic allocation
Node * sp;
for ( uStackIter<Node> si(s); si >> sp; ) cout << sp->i << " ";
cout << endl;

}
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• µC++ implementation uses private intrusive links for non-copyable objects like a coroutine

or task, e.g., tasks on ready queue.

• Intrusive links have two formats: one link field (uColable) for a collection, and two link

fields (uSeqable) for a sequence.

data

collection node

data

sequence node

class stacknode : public uColable { . . . }
class queuenode : public uColable { . . . }
class seqnode : public uSeqable { . . . }

• Template classes uStack/uQueue (singlely linked) are collections and uSequence (doublely

linked) is a sequence.

• uSeqable node appears in sequence/collection; uColable node appears only in a collection.

• Each kind of intrusive list has associated iterators: uStackIter, uQueueIter, uSeqIter.

• See µC++ reference manual Appendix C for details and examples.

• Concurrency pattern shows how threads use intrusive lists to prevent dynamic allocation.

if ( . . . ) {
Node n{ . . . } // allocate on thread stack
queue.add( n );
// block
queue.drop(); // node n must be at head/tail of list

} // automatically free n

• Lifetime of node is duration of blocked thread (see above pattern in shadow queue page 125

and private semaphore page 129).

8.9 Counting Semaphore, V, P vs. Condition, Signal, Wait

• There are several important differences between these mechanisms:

◦ P only blocks if semaphore = 0, wait always blocks

◦ V before P affects the P, while signal before wait is lost (no state)

◦ multiple Vs may start multiple tasks simultaneously, while multiple signals only start

one task at a time because each task must exit serially through the monitor

• Possible to simulate P and V using a monitor:

https://plg.uwaterloo.ca/~usystem/pub/uSystem/uC++.pdf
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_Monitor semaphore {
int sem;
uCondition semcond;

public:
semaphore( int cnt = 1 ) : sem( cnt ) {}
void P() {

if ( sem == 0 ) semcond.wait();
sem -= 1;

}
void V() {

sem += 1;
semcond.signal();

}
};

• Can this simulation be reduced?

8.10 Monitor Types

• explicit scheduling occurs when:

◦ An accept statement blocks the active task on the acceptor stack and makes a task ready

from the specified mutex member queue.

◦ A signal moves a task from the specified condition to the signalled stack.

• implicit scheduling occurs when a task waits in or exits from a mutex member, and a new

task is selected first from the A/S stack, then the entry queue.

• explicit scheduling
internal scheduling (signal)

external scheduling (accept)

implicit scheduling monitor selects (wait/exit)

• Monitors are classified by the implicit scheduling (who gets control) of the monitor when a

task waits or signals or exits.

• Implicit scheduling can select from the calling (C), signalled (W), and signaller (S) queues.
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mutex

object

variables
conditions

signalled (W)

signaller (S)

exit
blocked taskactive task

calling (C)

◦ Assigning different relative priorities to these queues creates different monitors (e.g.,

C < W < S).

relative priority

1 C < W < S Useful, has Prevention

2 C < S < W no barging

3 C = W < S Usable, needs Avoidance

4 C = S < W barging, prevent starvation

5 C = W = S Rejected, Confusing

6 C < W = S arbitrary selection

7 S = W < C Rejected, Unsound

8 W < S = C uncontrolled barging, starvation

9 W < C < S

10 S < W = C

11 S < C < W

12 W < S < C

13 S < W < C

• Implicit Signal

◦ Monitors either have an explicit signal (statement) or an implicit signal (automatic

signal).

◦ The implicit signal monitor has no condition variables or explicit signal statement.

◦ Instead, there is a waitUntil statement, e.g.:

waitUntil logical-expression
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◦ The implicit signal causes a task to wait until the conditional expression is true.

_Monitor BoundedBuffer {
int front = 0, back = 0, count = 0;
int elements[20];

public:
_Nomutex int query() const { return count; }
void insert( int elem ) {

waitUntil count != 20; // not in uC++
elements[back] = elem;
back = ( back + 1 ) % 20;
count += 1;

}
int remove() {

waitUntil count != 0; // not in uC++
int elem = elements[front];
front = ( front + 1 ) % 20;
count -= 1;
return elem;

}
};

• Additional restricted monitor-type requiring the signaller exit immediately from monitor

(i.e., signal ⇒ return), called immediate-return signal.

◦ not powerful enough to handle all cases, e.g., dating service, but optimizes the most

common case of signal before return.

• Remaining monitor types:

signal type priority no priority

Blocking Priority Blocking (Hoare) No Priority Blocking

C < S < W (µC++ signalBlock) C = S < W

Nonblocking Priority Nonblocking No Priority Nonblocking

C < W < S (µC++ signal) C = W < S (Java/C#)

Implicit Priority No Priority

Signal Implicit Signal Implicit Signal

C < W C = W

◦ no-priority blocking requires the signaller task to recheck the waiting condition in case

of a barging task.

⇒ use a while loop around a signal

◦ no-priority non-blocking requires the signalled task to recheck the waiting condition

in case of a barging task.

⇒ use a while loop around a wait

◦ implicit (automatic) signal is good for prototyping but have poor performance.
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◦ priority-nonblocking has no barging and optimizes signal before return (supply coop-

eration).

◦ priority-blocking has no barging and handles internal cooperation within the monitor

(wait for cooperation).

• coroutine monitor (_Cormonitor)

◦ coroutine with implicit mutual exclusion on calls to specified member routines:

_Mutex _Coroutine C { // _Cormonitor
void main() {

. . . suspend() . . .

. . . suspend() . . .
}

public:
void m1( . . . ) { . . . resume(); . . . } // mutual exclusion
void m2( . . . ) { . . . resume(); . . . } // mutual exclusion
. . . // destructor is ALWAYS mutex

};

◦ can use resume(), suspend(), condition variables (wait(), signal(), signalBlock()) or

_Accept on mutex members.

◦ coroutine can now be used by multiple threads, e.g., coroutine print-formatter accessed

by multiple threads.

8.11 Java Monitor

• Java has synchronized class members (i.e., _Mutex members but incorrectly named), and a

synchronized statement.

• All classes have one implicit condition variable and these routines to manipulate it:

public wait();
public notify();
public notifyAll()

• Java concurrency library has multiple conditions but incompatible with language condition

(see Section 11.5.1, p. 212).

• Internal scheduling is no-priority nonblocking ⇒ barging

◦ wait statements must be in while loops to recheck conditions.

• Bounded buffer:
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class Buffer {
// buffer declarations
private int count = 0;
public synchronized void insert( int elem ) {

while ( count == Size ) wait(); // busy-waiting
// add to buffer
count += 1;
if ( count == 1 ) notifyAll();

}
public synchronized int remove() {

while ( count == 0 ) wait(); // busy-waiting
// remove from buffer
count -= 1;
if ( count == Size - 1 ) notifyAll();
return elem;

}
}

• Only one condition queue, producers/consumers wait together ⇒ unblock all tasks.

• Only one condition queue ⇒ certain solutions are difficult or impossible.

• Erroneous Java implementation of barrier:

class Barrier { // monitor
private int N, count = 0;
public Barrier( int N ) { this.N = N; }
public synchronized void block() {

count += 1; // count each arriving task
if ( count < N )

try { wait(); } catch( InterruptedException e ) {}
else // barrier full

notifyAll(); // wake all barrier tasks
count -= 1; // uncount each leaving task

}
}

◦ Nth task does notifyAll, leaves monitor and performs its ith step, and then races back

(barging) into the barrier before any notified task restarts.

◦ It sees count still at N and incorrectly starts its ith+1 step before the current tasks have

completed their ith step.

• Fix by modifying code for Nth task to set count to 0 (barging avoidance) and removing

count -= 1.

else { // barrier full
count = 0; // reset count
notifyAll(); // wake all barrier tasks

}

• Technically, still wrong because of spurious wakeup ⇒ requires loop around wait.
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if ( count < N )
while ( ??? ) // cannot be count < N as count is always < N

try { wait(); } catch( InterruptedException e ) {}

• Requires more complex implementation.

class Barrier { // monitor
private int N, count = 0, generation = 0;
public Barrier( int N ) { this.N = N; }
public synchronized void block() {

int mygen = generation;
count += 1; // count each arriving task
if ( count < N ) // barrier not full ? => wait

while ( mygen == generation )
try { wait(); } catch( InterruptedException e ) {}

else { // barrier full
count = 0; // reset count
generation += 1; // next group
notifyAll(); // wake all barrier tasks

}
}

}

• Misconception of building condition variables in Java with nested monitors:

class Condition { // try to build condition variable
public synchronized void Wait() {

try { wait(); } catch( InterruptedException ex ) {};
}
public synchronized void Notify() { notify(); }

}
class BoundedBuffer {

// buffer declarations
private Condition full = new Condition(), empty = new Condition();
public synchronized void insert( int elem ) {

while ( count == NoOfElems ) empty.Wait(); // block producer
// add to buffer
count += 1;
full.Notify(); // unblock consumer

}
public synchronized int remove() {

while ( count == 0 ) full.Wait(); // block consumer
// remove from buffer
count -= 1;
empty.Notify(); // unblock producer
return elem;

}
}

• Deadlocks at empty.Wait()/full.Wait() as buffer monitor-lock is not released.
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9 Direct Communication

• Monitors work well for passive objects that require mutual exclusion because of sharing.

• However, communication among tasks with a monitor is indirect.

• Problem: point-to-point with reply indirect communication:

monitorTask1 Task2

copy data

copy data

copy result

copy result

process
data

• Point-to-point with reply direct communication:

rendezvous
copy data

copy result

Task1 Task2

process data

• Tasks can communicate directly by calling each others member routines.

9.1 Task

• A task is like a coroutine because it has a distinguished member, (task main), which has its

own execution state.

• A task is unique because it has a thread of control, which begins execution in the task main

when the task is created.

• A task is like a monitor because it provides mutual exclusion (and synchronization) so only

one thread is active in the object.

◦ public members of a task are implicitly mutex and other kinds of members can be made

explicitly mutex.

161
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◦ external scheduling allows direct calls to mutex members (task’s thread blocks while

caller’s executes).

◦ without external scheduling, tasks must call out to communicate ⇒ third party, or

somehow emulate external scheduling with internal.

• In general, basic execution properties produce different abstractions:

object properties member routine properties

thread stack No S/ME S/ME

No No 1 class 2 monitor

No Yes 3 coroutine 4 coroutine-monitor

Yes No 5 reject 6 reject

Yes Yes 7 reject? 8 task

• When thread or stack is missing it comes from calling object.

• Abstractions are not ad-hoc, rather derived from basic properties.

• Each of these abstractions has a particular set of problems it can solve, and therefore, each

has a place in a programming language.

9.2 Scheduling

• A task may want to schedule access to itself by other tasks in an order different from the

order in which requests arrive.

• As for monitors, there are two techniques: external and internal scheduling.

9.2.1 External Scheduling

• As for a monitor (see Section 8.4.1, p. 144), the accept statement can be used to control

which mutex members of a task can accept calls.
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_Task BoundedBuffer {
int front = 0, back = 0, count = 0;
int Elements[20];

public:
_Nomutex int query() const { return count; }
void insert( int elem ) {

Elements[back] = elem;
back = ( back + 1 ) % 20;
count += 1;

}
int remove() {

int elem = Elements[front];
front = ( front + 1 ) % 20;
count -= 1;
return elem;

}
private:

void main() {
for ( ;; ) { // INFINITE LOOP!!!

// _Accept( insert || remove );
_When ( count != 20 ) _Accept( insert ) { // after call
} or _When ( count != 0 ) _Accept( remove ) { // after call
} // _Accept

}
}

};

• _Accept( m1 | | m2 ) S1 ≡ _Accept( m1 ) S1; or _Accept( m2 ) S1;

if ( C1 | | C2 ) S1 ≡ if ( C1 ) S1; else if ( C2 ) S1; // S2

• Extended version allows different _When/code after call for each accept.

• The _When clause is like the condition of conditional critical region:

◦ The condition must be true (or omitted) and a call to the specified member must exist

before a member is accepted.

• If all the accepts are conditional and false, the statement does nothing (like switch with no

matching case).

• If some conditionals are true, but there are no outstanding calls, the acceptor is blocked until

a call to an appropriate member is made.

• If several members are accepted and outstanding calls exist to them, a call is selected based

on the order of the _Accepts.

◦ Hence, the order of the _Accepts indicates their relative priority for selection if there

are several outstanding calls.

• Is there a potential starvation problem?
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• Why are accept statements moved from member routines to the task main?

• Why is BoundedBuffer::main defined at the end of the task?

• Equivalence using if statements:

if ( 0 < count && count < 20 ) _Accept( insert | | remove ); // not full/empty
else if ( count < 20 ) _Accept( insert ); // not full
else /* if ( 0 < count ) */ _Accept( remove ); // not empty

• Generalize from 2 to 3 conditionals/members:

if ( C1 && C2 && C3 ) _Accept( M1 | | M2 | | M3 );
else if ( C1 && C2 ) _Accept( M1 | | M2 );
else if ( C1 && C3 ) _Accept( M1 | | M3 );
else if ( C2 && C3 ) _Accept( M2 | | M3 );
else if ( C1 ) _Accept( M1 );
else if ( C2 ) _Accept( M2 );
else if ( C3 ) _Accept( M3 );

• Necessary to ensure that for every true conditional, only the corresponding members are

accepted.

• 2N −1 if statements needed to simulate N accept clauses.

• The acceptor is pushed on the top of the A/S stack and normal implicit scheduling occurs (C

< W < S).

d

b

b

a c

d

duplicateblocked taskactive task

a

c

exit

A

condition
B

stack

acceptor/
signalled

condition

X Y

entry
queue

arrival
order of

shared

variables

mutex
queues
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• Once accepted call completes or caller wait()s, the statement after the accepting _Accept

clause is executed and the accept statement is complete.

• If there is a terminating _Else clause and no _Accept can be executed immediately, the

terminating _Else clause is executed.

_Accept( . . . ) {
} or _Accept( . . . ) {
} _Else { . . . } // executed if no callers

◦ Hence, the terminating _Else clause allows a conditional attempt to accept a call with-

out the acceptor blocking.

• To achieve greater concurrency in the bounded buffer, change to:

void insert( int elem ) {
Elements[back] = elem;

}
int remove() {

return Elements[front];
}

private:
void main() {

for ( ;; ) {
_When ( count != 20 ) _Accept( insert ) {

back = (back + 1) % 20;
count += 1;

} or _When ( count != 0 ) _Accept( remove ) {
front = (front + 1) % 20;
count -= 1;

} // _Accept
}

}

9.2.2 Internal Scheduling

• Scheduling among tasks inside the monitor.

• As for monitors, condition, signal and wait are used.
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_Task BoundedBuffer {
uCondition full, empty;
int front = 0, back = 0, count = 0;
int Elements[20];

public:
_Nomutex int query() const { return count; }
void insert( int elem ) {

if ( count == 20 ) empty.wait();
Elements[back] = elem;
back = ( back + 1 ) % 20;
count += 1;
full.signal();

}

int remove() {
if ( count == 0 ) full.wait();
int elem = Elements[front];
front = ( front + 1 ) % 20;
count -= 1;
empty.signal();
return elem;

}

private:
void main() {

for ( ;; ) {
_Accept( insert | | remove );
// do other work

}
}

};

• Requires combination of internal and external scheduling.

• Rendezvous is logically pending when wait restarts _Accept task, but post _Accept

statement still executed (no RendezvousFailure).

◦ Acceptor must eventually complete rendezvous for waiting caller.

• Try moving code to achieve greater concurrency.
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void insert( int elem ) {
if ( count == 20 ) empty.wait(); // only wait if necessary
Elements[back] = elem;

}
int remove() {

if ( count == 0 ) full.wait(); // only wait if necessary
return Elements[front];

}
private:

void postInsert() { // helper members
back = ( back + 1 ) % size;
count += 1;

}
void postRemove() {

front = ( front + 1 ) % size;
count -= 1;

}

void main() {
for ( ;; ) {

_Accept( insert ) {
if ( count != 20 ) { // producer did not wait ?

postInsert();
if ( ! full.empty() ) { // waiting consumers ?

full.signal(); // wake and adjust
postRemove();

}
}

} or _Accept( remove ) {
if ( count != 0 ) { // consumer did not wait ?

postRemove();
if ( ! empty.empty() ) { // waiting producers ?

empty.signal(); // wake and adjust
postInsert();

}
}

} // _Accept
} // for

}

• Must prevent starvation by producers (use _When or flip _Accept clauses).

• Must change signal to signalBlock.
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P
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shared data shared data
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exit
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signalled

exit
full

empty

signalBlock

◦ Signalled tasks cannot leave because buffer task continues in monitor.

◦ Signal-blocked tasks leave immediately because buffer-task blocks.

9.2.3 Accepting the Destructor

• Common way to terminate a task is to have a stop member:

_Task BoundedBuffer {
public:

. . .
void stop() {} // empty

private:
void main() {

// start up
for ( ;; ) {

_Accept( stop ) { // terminate ?
break;

} or _When ( count != 20 ) _Accept( insert ) {
. . .

} or _When ( count != 0 ) _Accept( remove ) {
. . .

} // _Accept
}
// close down

}
}

• Call stop when task is to stop:

int main() {
BoundedBuffer buf;
// create producer & consumer tasks
// delete producer & consumer tasks
buf.stop(); // no outstanding calls to buffer
// maybe do something else with buf (print statistics)

} // delete buf
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• If termination and deallocation follow one another, accept destructor:

void main() {
for ( ;; ) {

_Accept( ~BoundedBuffer ) {
break;

} or _When ( count != 20 ) _Accept( insert ) { . . .
} or _When ( count != 0 ) _Accept( remove ) { . . .
} // _Accept

}
// close down

}

• However, the semantics for accepting a destructor are different from accepting a normal

mutex member.

• When the call to the destructor occurs, the caller blocks immediately if there is thread active

in the task because a task’s storage cannot be deallocated while in use.

• When the destructor is accepted, the caller is blocked and pushed onto the A/S stack instead

of the acceptor.

• Therefore, control restarts at the accept statement without executing the destructor member.

• Allows mutex object to clean up before termination (monitor or task).

• Task now behaves like a monitor because its thread is halted.

• Only when the caller to the destructor is popped off the A/S stack by the implicit scheduling

is the destructor executed.

• The destructor can reactivate any blocked tasks on condition variables and/or the accep-

tor/signalled stack.

9.3 Increasing Concurrency

• 2 task involved in direct communication: client (caller) & server (callee)

• possible to increase concurrency on both the client and server side

9.3.1 Server Side

• Server manages a resource and server thread should introduce additional concurrency (as-

suming no return value).
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No Concurrency Some Concurrency

_Task server1 {
public:

void mem1(. . .) { S1 }
void mem2(. . .) { S2 }
void main() {

. . .
_Accept( mem1 );
or _Accept( mem2 );

}
}

_Task server2 {
public:

void mem1(. . .) { S1.copy-in }
int mem2(. . .) { S2.copy-out }
void main() {

. . .
_Accept( mem1 ) { S1.work }
or _Accept( mem2 ) { S2.work };

}
}

• No concurrency in left example as server is blocked, while client does work.

• Alternatively, client blocks in member, server does work, and server unblocks client.

• Some concurrency possible in right example if service can be factored into administrative

(S1.copy) and work (S1.work) code.

◦ i.e., move code from the member to statement executed after member is accepted.

• Small overlap between client and server (client gets away earlier) increasing concurrency.

9.3.1.1 Internal Buffer

• The previous technique provides buffering of size 1 between the client and server.

• Use a larger internal buffer to allow clients to get in and out of the server faster?

• I.e., an internal buffer can be used to store the arguments of multiple clients until the server

processes them.

• However, there are several issues:

◦ Unless the average time for production and consumption is approximately equal with

only a small variance, the buffer is either always full or empty.

◦ Because of the mutex property of a task, no calls can occur while the server is working,

so clients cannot drop off their arguments.

The server could periodically accept calls while processing requests from the buffer

(awkward).

◦ Clients may need to wait for replies, in which case a buffer does not help unless there

is an advantage to processing requests in non-FIFO order.

• Only way to free server’s thread to receive new requests and return finished results to clients

is add another thread.

• Additional thread is a worker task that calls server to get work from buffer and return results

to buffer.

• Note, customer (client), manager (server) and employee (worker) relationship.
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• Number of workers has to balance with number of clients to maximize concurrency (bounded-

buffer problem).

9.3.1.2 Administrator

• An administrator is a server managing multiple clients and worker tasks.

• The key is that an administrator does little or no “real” work; its job is to manage.

• Management means delegating work to others, receiving and checking completed work, and

passing completed work on.

• An administrator is called by others, so an administrator is always accepting calls.

Administrator
call

return

• An administrator makes no call to another task because calling may block the administrator.

• An administrator usually maintains a list of work to pass to worker tasks.

• Typical workers are:

timer - prompt the administrator at specified time intervals

notifier - perform a potentially blocking wait for an external event (key press)

simple worker - do work given to them by and return the result to the administrator

complex worker - do work given to them by administrator and interact directly with client

of the work

courier - perform a potentially blocking call on behalf of the administrator
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call

notifier
call

event

call

Admin
call

courier Admin

worker1 worker2 workern

timer

calls

Clienti

Clients

result

signalBlock

(arg)

work
(return)

use

return return

call

return

9.3.2 Client Side

• While a server can attempt to make a client’s delay as short as possible, not all servers do it.

• In some cases, a client may not have to wait for the server to process a request (pro-

ducer/consumer problem)

• This can be accomplished by an asynchronous call from the client to the server, where the

caller does not wait for the call to complete.

• Asynchronous call requires implicit buffering between client and server to store the client’s

arguments from the call.

• µC++ provides only synchronous call, i.e., the caller is delayed from the time the arguments

are delivered to the time the result is returned (like a procedure call).

• It is possible to build asynchronous facilities out of the synchronous ones and vice versa.

9.3.2.1 Returning Values

• If a client only drops off data to be processed by the server, the asynchronous call is simple.

• However, if a result is returned from the call, i.e., from the server to the client, the asyn-

chronous call is significantly more complex.

• To achieve asynchrony in this case, a call must be divided into two calls:

callee.start( arg ); // provide arguments
// caller performs other work asynchronously
result = callee.wait(); // obtain result

• Not same as START/WAIT because server thread exists.
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◦ many-to-one versus one-to-one

• Time between calls allows calling task to execute asynchronously with task performing op-

eration on the caller’s behalf.

• If result is not ready when second call is made

◦ caller blocks

◦ caller has to call again (poll).

• However, this requires a protocol so when the client makes the second call, the correct result

can be found and returned.

9.3.2.2 Tickets

• One form of protocol is the use of a token or ticket.

• The first part of the protocol transmits the arguments specifying the desired work and a ticket

(like a laundry ticket) is returned immediately.

• The second call pulls the result by passing the ticket.

• The ticket is matched with a result, and the result is returned if available or the caller is

blocks or polls until the result is available.

• However, protocols are error prone because the caller may not obey the protocol (e.g., never

retrieve a result, use the same ticket twice, forged ticket).

9.3.2.3 Call-Back Routine

• Another protocol is to transmit (register) a routine on the initial call.

• When the result is ready, the routine is called by the task generating the result, passing it the

result.

• The call-back routine cannot block the server; it can only store the result and set an indicator

(e.g., V a semaphore) known to the client.

• The original client must poll the indicator or block until the indicator is set.

• The advantage is that the server can push the result back to the client faster (nagging the

client to pickup).

• Also, the client can write the call-back routine, so they can decide to poll or block or do both.
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9.3.2.4 Futures

• A future provides the same asynchrony as above but without an explicit protocol.

• The protocol becomes implicit between the future and the task generating the result.

• Further, it removes the difficult problem of when the caller should try to retrieve the result.

• In detail, a future is an object that is a subtype of the result type expected by the caller.

• Instead of two calls as before, a single call is made, passing the appropriate arguments, and

a future is returned.

future = callee.work( arg ); // provide arguments, return future
// perform other work asynchronously
i = future + . . .; // obtain result, may block if not ready

• The future is returned immediately and it is empty.

• The caller “believes” the call completed and continues execution with an empty result value.

• The future is filled in at some time in the “future”, when the result is calculated.

• If the caller tries to use the future before its value is filled in, the caller is implicitly blocked.

• The general design for a future is:

class Future : public ResultType {
friend _Task server; // allow server to access internal state
ResultType result; // place result here
uSemaphore avail; // wait here if no result
Future * link; // intrusive data structure

public:
Future() : avail( 0 ) {}

ResultType get() {
avail.P(); // wait for result
return result;

}
};

◦ the semaphore is used to block the caller if the future is empty

◦ the link field is used to chain the future onto a server work-list.

• Unfortunately, the syntax for retrieving the value of the future is awkward as it requires a

call to the get routine.

• Also, in languages without garbage collection, the future must be explicitly deleted.

• µC++ provides two forms of template futures, which differ in storage management (like Ac-

tors/Messages).
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◦ Explicit-Storage-Management future (Future_ESM<T>) must be allocated and deallo-

cated explicitly by the client.

◦ Implicit-Storage-Management future (Future_ISM<T>) automatically allocates and frees

storage (when future no longer in use, GC).

• Focus on Future_ISM as simpler to use but less efficient in certain cases.

• Basic set of operations for both types of futures, divided into client and server operations.

Client

• Future value:

#include <uFuture.h>
Server server; // server thread handles async calls
Future_ISM<int> f[10];
for ( int i = 0; i < 10; i += 1 ) {

f[i] = server.perform( i ); // asynchronous server call
}
// work asynchronously while server processes requests
for ( int i = 0; i < 10; i += 1 ) { // retrieve async results

int v = f[i](); // synchronize, read, and copy
osacquire( cout ) << v << ’ ’ << f[i] + i << endl; // cheap read after synchronize

}
f[3] = 3; // DISALLOWED: OTHER THREADS READING VALUE
. . .
f[3].reset(); // reset future => empty and can be reused (be careful)
. . .
f[3].cancel(); // attempt to stop server and clients from usage

• Why not combine: osacquire( cout ) << f[i]() << ’ ’ << f[i] + 1 << endl;?

• Future pointer:

#include <uFuture.h>
Server server; // server thread handles async calls
int val
Future_ISM<int *> fval;
fval = server.perform( val ); // async call to server (change val by reference)
// work asynchronously while server processes requests
osacquire( cout ) << *fval() << endl; // synchronize on retrieve value
val = 3; // ALLOWED: BUT FUTURE POINTER IS STILL READ-ONLY

available – returns true if asynchronous call completed, otherwise false. complete ⇒ result

available, server raised exception, or call cancelled

operator() – (function call) returns read-only copy of future result.

block if future unavailable; raise exception if exception returned by server.

future result can be retrieved multiple times by any task (⇒ read-only) until the future is

reset or destroyed.
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operator T – (conversion to type T) returns read-only copy of future result.

Only allowed after blocking access or call to available returns true.

Low-cost way to get future result after the result is delivered; raise exception if exception

returned by server.

reset – mark future as empty ⇒ current future value is unavailable ⇒ future can be reused.

cancel – attempts to cancel the asynchronous call the future refers to.

Clients waiting for the result are unblocked, and exception of type uCancellation is raised

at them.

cancelled – returns true if the future is cancelled and false otherwise.

Server

_Task Server {
struct Work {

int i; // argument(s)
Future_ISM<int> result; // result
Work( int i ) : i( i ) {}

};
Future_ISM<int> perform( int i ) { // called by clients

Work *w = new Work( i ); // create work request
requests.push_back( w ); // add to list of requests
return w->result; // return future in request

}

// server or server’s worker does
Work *w = requests.front(); // take next work request
requests.pop_front(); // remove request
int r = . . . w->i . . .; // compute result using argument w->i
w->result.delivery( r ); // insert result into future
delete w; // CLIENT FUTURE NOT DELETED (REF COUNTING)

};

delivery( T result ) – copy result to be returned to the client(s) into the future, unblocking

clients waiting for the result.

delivery( uBaseEvent * cause ) – copy a server-generated exception into the future, and the

exception cause is thrown at waiting clients.

_Event E {};
Future_ISM<int> result;
result.delivery( new E ); // deleted by future

exception deleted by reset or when future deleted
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Complex Future Access (client side)

• select statement waits for one or more heterogeneous futures based on logical selection-

criteria.

• Simplest select statement has a single _Select clause, e.g.:

_Select( selector-expression );

• Selector-expression must be satisfied before execution continues.

• For a single future, the expression is satisfied if and only if the future is available.

_Select( f1 );
x = f1; // value or exception

≡ x = f1(); // value or exception

• Selector is only select blocked until f1.available() is true.

• Does not return future value or throw exception.

• Multiple futures may appear in a compound selector-expression, related using logical oper-

ators | | and &&:

_Select( f1 | | f2 && f3 );

• Normal operator precedence applies: _Select( ( f1 | | ( f2 && f3 ) ) ).

• Execution waits until either future f1 is available or both futures f2 and f3 are available.

• For any selector expression containing an | | operator, some futures in the expression may be

unavailable after the selector expression is satisfied.

• E.g., in the above, if future f1 becomes available, neither, one or both of f2 and f3 may be

available.

• or and and keywords relate the _Select clauses like operators | | and && relate futures in a

select-expression, including precedence.

_Select( f1 | | f2 && f3 ); ≡ _Select( f1 )
or _Select( f2 )
and _Select( f3 );

• Parentheses may be used to specify evaluation order.

_Select( ( f1 | | ( f2 && f3 ) ) ≡ ( _Select( f1 )
or ( _Select( f2 )
and _Select( f3 ) ) );
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• A _Select clause may be guarded with a logical expression and have code executed after a

future receives a value:

_When ( conditional-expression ) _Select( f1 )
statement-1 // action, future available

or
_When ( conditional-expression ) _Select( f2 )

statement-2 // action, future available
and _When ( conditional-expression ) _Select( f3 )

statement-3 // action, future available

• Each _Select-clause action is executed when its sub-selector expression is satisfied, i.e.,

when each future becomes available.

• However, control does not continue until the selector expression associated with the entire

statement is satisfied.

• E.g., if f2 becomes available, statement-2 is executed but the selector expression for the entire

statement is not satisfied so control blocks again.

• When either f1 or f3 become available, statement-1 or 3 is executed, and the selector expres-

sion for the entire statement is satisfied so control continues.

• Within the action statement, it is possible to access the future using the non-blocking access-

operator since the future is known to be available.

• If a guard is false, execution continues without waiting for that future to become available

(like future is available).

• Assume only f3 becomes available:

_When( true ) _Select( f1 ) {. . .}
or _When( false ) _Select( f2 ) {. . .}
and _When( true ) _Select( f3 ) {. . .}

execution continues.

• An action statement is triggered only once for its selector expression, even if the selector

expression is compound.

_Select( f1 )
statement-1

or _Select( f2 && f3 )
statement-2 // triggered once after both available

• In statement-2, both futures f2 and f3 are available (non-blocking access for both).

• However, for | |:

_Select( f1 | | f2 )
statement-1 // triggered once after one available

and _Select( f3 )
statement-2
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• In statement-1, only one future f1 or f2 caused the action to be triggered.

• Hence, it is necessary to check which of the two futures is available.

• A select statement can be non-blocking using a terminating _Else clause, e.g.:

_Select( selector-expression )
statement // action

_When ( conditional-expression ) _Else // terminating clause
statement // action

• The _Else clause must be the last clause of a select statement.

• If its guard is true or omitted and the select statement is not immediately true, then the action

for the _Else clause is executed and control continues.

• If the guard is false, the select statement blocks as if the _Else clause is not present.

Future_ISM<int> fi;
Future_ISM<double> fd;
struct Msg { int i, j; }; Future_ISM<Msg> fm;
struct Stop {}; Future_ISM<Stop> fs;
struct Cont {}; Future_ISM<Cont> fc;
_Task Worker {

void main() {
for ( ;; ) {

_Select( fi ) { cout << fi() << endl; fi.reset(); }
and _Select( fd ) { cout << fd() << endl; fd.reset(); }
and _Select( fm ) { Msg m = fm();

cout << m.i << " " << m.j << endl; fm.reset(); }
or _Select( fs ) { cout << "stop" << endl; break; }
fc.delivery( (Cont){} ); // synchronize

}
}

};
int main() {

Worker worker;
for ( int i = 0; i < 10; i += 1 ) {

fi.delivery( i );
fd.delivery( i + 2.5 );
fm.delivery( (Msg){ i, 2 } );
fc(); fc.reset(); // wait for 3 futures to be processed

}
fs.delivery( (Stop){} );

} // wait for worker to terminate
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10 Optimization

• A computer with infinite memory and speed requires no optimizations to use less memory

or run faster (space/time).

• With finite resources, optimization is useful/necessary to conserve resources and for good

performance.

• Furthermore, most programs are not written in optimal order or in minimal form.

◦ OO, Functional, SE are seldom optimal approaches on von Neumann machine.

• General forms of optimizations are:

◦ reordering: data and code are reordered to increase performance in certain contexts.

◦ eliding: removal of unnecessary data, data accesses, and computation.

◦ replication: processors, memory, data, code are duplicated because of limitations in

processing and communication speed (speed of light).

• Optimized program must be isomorphic to original ⇒ produce same result for fixed input.

• Kinds of optimizations are restricted by the kind of execution environment.

10.1 Sequential Optimizations

• Most programs are sequential; even concurrent programs are

◦ (large) sections of sequential code per thread connected by

◦ small sections of concurrent code where threads interact (protected by synchronization

and mutual exclusion (SME))

• Sequential execution presents simple semantics for optimization.

◦ operations occur in program order, i.e., sequentially

• Dependencies result in partial ordering among a set of statements (precedence graph):

◦ data dependency (R ⇒ read, W ⇒ write)

Rx → Rx Wx → Rx Rx → Wx Wx → Wx

y = x;
z = x;

x = 0;
y = x;

y = x;
x = 3;

x = 0;
x = 3;

Which statements can be reordered?

◦ control dependency

1 if ( x == 0 )
2 y = 1;

Statements cannot be reordered as line 1 determines if 2 is executed.

181
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• To achieve better performance, compiler/hardware make changes:

1. reorder disjoint (independent) operations (variables have different addresses)

Rx → Ry Wx → Ry Rx → Wy Wx → Wy

t = x;
s = y;

x = 0;
y == 1;

x == 1;
y = 3;

y = 0;
x = 3;

Which statements can be reordered?

2. elide unnecessary operations (transformation/dead code)

x = 0; // unnecessary, immediate change
x = 3;

for ( int i = 0; i < 10000; i += 1 ); // unnecessary, no loop body

int factorial( int n, int acc ) { // tail recursion
if (n == 0) return acc;
return factorial( n - 1, n * acc ); // convert to loop

}

3. execute in parallel if multiple functional-units (adders, floating units, pipelines, cache)

• Very complex reordering, reducing, and overlapping of operations allowed.

• Overlapping implies micro-parallelism, but limited capability in sequential execution.

10.2 Memory Hierarchy

• Complex memory hierarchy:

x z
memory

x

CPU

registers

replication x z

x z
memory

x

CPU

registers

cache
replication

• Optimizing data flow along this hierarchy defines a computer’s speed.

• Hardware aggressively optimizes data flow for sequential execution.

• Having basic understanding of cache is essential to understanding performance of both se-

quential and concurrent programs.
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10.2.1 Cache Review

• Problem: CPU 100(0) times faster than memory (100,00(0) times faster than disk).

• Solution: copy data from general memory into very, very fast local-memory (registers).

• Problem: billions of bytes of memory but only 6–256 registers.

• Solution: move highly accessed data within a program from memory to registers for as long

as possible and then back to memory.

• Problem: quickly run out of registers as more data accessed.

◦ ⇒ must rotate data from memory through registers dynamically.

◦ compiler attempts to keep highly used variables in registers (LRU, requires oracle)

• Problem: does not handle highly accessed data among programs (threads).

◦ each context switch saves and restores most registers to memory

◦ registers are private and cannot be shared

• Solution: use hardware cache (automatic registers) to stage data without pushing to memory

and allow sharing of data among programs.

int x, y, z;
x += 1; ld r1,0xa3480 // load register 1 from x

add r1,#1 // increment
st r1,0xa3480 // store register 1 to x

2

1 0xa3480 x y z

Cache line (64/128/256 bytes)

memory hierarchy (L1, L2, L3)

0xa3480 x y z

Associative Cache

Key

(hash table)

Memory

256

registers CPU

◦ Caching transparently hides the latency of accessing main memory.

◦ Cache loads in 64/128/256 bytes, called cache line, with addresses multiple of line

size.
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◦ When x is loaded into register 1, a cache line containing x, y, and z are implicitly copied

up the memory hierarchy from memory through caches.

◦ When cache is full, data evicted, i.e., remove old cache-lines to bring in new (LRU).

◦ When program ends, its addresses are flushed from the memory hierarchy.

• In theory, cache can eliminate registers, but registers provide small addressable area (register

window) with short addresses (3-8 bits for 8-256 registers) ⇒ shorter instructions.

10.2.2 Cache Coherence

• Multi-level caches used, each larger but with diminishing speed (and cost).

• E.g., 64K L1 cache (32K Instruction, 32K Data) per core, 256K L2 cache per core, and 8MB

L3 cache shared across cores.

L3 Cache

L1 Cache

Core 4
registers

L1 Cache

Core 3
registers

L2 Cache

L2 Cache L2 Cache

L2 Cache

L1 Cache

registers
Core 1

L1 Cache

Core 2
registers

Processor1 Processor2

Memory

System Bus

optional

• Data reads logically percolate variables from memory up the memory hierarchy, making

cache copies, to registers.

• Why is it necessary to eagerly move reads up the memory hierarchy?

• Data writes from registers to variables logically percolate down the memory hierarchy through

cache copies to memory.

• Why is it advantageous to lazily move writes down the memory hierarchy?

• If OS moves program to another processor, all caching information is invalid and the pro-

gram’s data-hierarchy reforms.
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• Unlike registers, all cache values are shared across the computer.

• Hence, variable can be replicated in a large number of locations.

• Without cache coherence for shared variable x (madness)

core

processor1

16registers 34 90

T1 T2 T3

12 4

1

memory 90

7

3

16 90L1

L2

L3

34

processor2

x

• With cache coherence for shared variable x

core

processor1

16registers 34 90

T1 T2 T3

L2 90 90

L3 90

memory 90

90

90

L1 90

processor2

9090

x

• Cache coherence is hardware protocol ensuring update of duplicate data.

• Cache consistency addresses when processor sees update ⇒ bidirectional synchronization.

• Prevent flickering and scrambling during simultaneous R/W or W/W.

0 1

Core 1

0xa34d0

Core N

0xa34d0L1L1 update invalid

1
update

acknowledge

0 1

• Eager cache-consistency means data changes appear instantaneous by waiting for acknowl-

edge from all cores (complex/expensive).



186 CHAPTER 10. OPTIMIZATION

• Lazy cache-consistency allows reader to see own write before acknowledgement ⇒ concur-

rent programs read stale data!

◦ writes eventually appear in (largely) same over as written

◦ critical section works as writes to shared variable appear before write to lock release

◦ otherwise, spin (lock) until write appears

• If threads continually read/write same memory locations, they invalidate duplicate cache

lines, resulting in excessive cache updates.

◦ called cache thrashing

◦ updated value bounces from one cache to the next

• Because cache line contains multiple variables, cache thrashing can occur inadvertently,

called false sharing.

• Thread 1 read/writes x while Thread 2 read/writes y ⇒ no direct shared access, but indirect

sharing as x and y share cache line.

◦ Fix by separating x and y with sufficient storage (padding) to be in next cache line.

◦ Difficult for dynamically allocated variables as memory allocator positions storage.

thread 1 thread 2
int *x = new int int *y = new int;

x and y may or may not be on same cache line.

10.3 Concurrent Optimizations

• In sequential execution, strong memory ordering: reading always returns last value written.

• In concurrent execution, weak memory ordering: reading can return previously written

value or value written in future.

◦ happens on multi-processor because of scheduling and buffering (see scrambling/-

flickering in Section 5.18.6, p. 85 and freshness/staleness in Section 6.4.4.4, p. 123).

◦ notion of current value becomes blurred for shared variables unless everyone can see

values assigned simultaneously.

• SME control order and speed of execution, otherwise non-determinism causes random re-

sults or failure (e.g., race condition, Section 7.1, p. 133).

• Sequential sections accessing private variables can be optimized normally but not across

concurrent boundaries.

• Concurrent sections accessing shared variables can be corrupted by sequential optimizations

⇒ restrict optimizations to ensure correctness.

• For correctness and performance, identify concurrent code and only restrict its optimization.
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• What/how to restrict depends on what sequential assumptions are implicitly applied by hard-

ware and compiler (programming language).

• Following examples show how sequential optimizations cause failures in concurrent code.

10.3.1 Disjoint Reordering

• Rx → Ry allows Ry → Rx

Reordering disjoint reads does not cause problems. Why?

• Wx → Ry allows Ry → Wx

◦ In Dekker entry protocol (see Section 5.18.6, p. 85)

1 me = WantIn; // W
2 while ( you == WantIn ) { // R
3 . . .

temp = you; // R
1 me = WantIn; // W
2 while ( temp == WantIn ) {
3 . . .

both threads read DontWantIn, both set WantIn, both see DontWantIn, and proceed.

• Rx → Wy allows Wy → Rx

◦ In synchronization flags (see Section 5.12, p. 79), allows interchanging lines 1 & 3 for

Cons:

Cons
1 while ( ! Insert ); // R
2 Insert = false;
3 data = Data; // W

Cons
3 data = Data; // W
1 while ( ! Insert ); // R
2 Insert = false;

allows reading of uninserted data

• Wx → Wy allows Wy → Wx

◦ In synchronization flags (see Section 5.12, p. 79), allows interchanging lines 1 & 2 in

Prod and lines 3 & 4 in Cons:

Prod
1 Data = i; // W
2 Insert = true; // W

Prod
2 Insert = true; // W
1 Data = i; // W

allows reading of uninserted data

◦ In Peterson’s entry protocol, allows interchanging lines 1 & 2 (see Section 5.18.7, p. 87):

1 me = WantIn; // W
2 ::Last = &me; // W

2 ::Last = &me; // W
1 me = WantIn; // W

allows race before either task sets its intent and both proceed

• Compiler uses all of these reorderings to break mutual exclusion:

lock.acquire()
// critical section
lock.release();

// critical section
lock.acquire()
lock.release();

lock.acquire()
lock.release();
// critical section
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◦ moves lock entry/exit after/before critical section because entry/exit variables not used

in critical section.

◦ E.g., double-check locking for singleton-pattern:

int * ip = nullptr; // shared (volatile for correctness)
. . .
if ( ip == nullptr ) { // no storage ?

lock.acquire(); // attempt to get storage (race)
if ( ip == nullptr ) { // still no storage ? (double check)

ip = new int( 0 ); // obtain and initialize storage
}
lock.release();

}

Why do the first check? Why do the second check?

◦ Fails if last two writes are reordered, Wmalloc and Wip, disjoint variables:

call malloc // new storage address returned in r1
st #0,(r1) // initialize storage
st r1,ip // initialize pointer

see ip but uninitialized.

10.3.2 Eliding

• For high-level language, compiler decides when/which variables are loaded into registers

and for how long.

• Elide reads (loads) by copying (replicating) value into a register:

Task1
. . .
flag = false // write

Task2
register = flag; // one read, auxiliary variable
while ( register ); // cannot see change by T1

• Hence, variable logically disappears for duration in register.

• ⇒ task spins forever in busy loop if R before W.

• Also, elide meaningless sequential code:

sleep( 1 ); // unnecessary in sequential program

⇒ task misses signal by not delaying

10.3.3 Replication

• Why is there a benefit to reorder R/W?

• Modern processors increase performance by executing multiple instructions in parallel (data

flow, precedence graph (see 6.4.1)) on replicated hardware.

◦ internal pool of instructions taken from program order

◦ begin simultaneous execution of instructions with inputs
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◦ collect results from finished instructions

◦ feed results back into instruction pool as inputs

◦ ⇒ instructions with independent inputs execute out-of-order

• From sequential perspective, disjoint reordering is unimportant, so hardware starts many

instruction simultaneously.

• From concurrent perspective, disjoint reordering is important.

10.4 Memory Model

• Manufacturers define set of optimizations performed implicitly by processor.

• Set of optimizations indirectly define a memory model.

Relaxation W → R R → W W → W Lazy cache

Model update

atomic consistent (AT)

sequential consistency (SC)
√

total store order (TSO)
√ √

partial store order (PSO)
√ √ √

weak order (WO)
√ √ √ √

release consistency (RC)
√ √ √ √

• AT has events occur instantaneously ⇒ slow or impossible (distributed).

• SC accepts all events cannot occur instantaneously ⇒ may read old values

• SC still strong enough for software mutual-exclusion (Dekker 5.18.6 / Peterson 5.18.7).

◦ SC often considered minimum model for concurrency (Java provides SC)

• No hardware supports just AT/SC.

◦ TSO (x86/SPARC), PSO, WO (ARM, Alpha), RC (PowerPC)

10.5 Preventing Optimization Problems

• All optimization problems result from races on shared variables.

• If shared data is protected by locks (implicit or explicit),

◦ locks define the sequential/concurrent boundaries,

◦ boundaries must preclude optimizations that affect concurrency.

• Called race free as synchronization and mutual exclusion preclude races.

• However, race free does have races.
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• Races are internal to locks, which lock programmer must deal with.

• Two approaches:

◦ ad hoc: programmer manually augments all data races with pragmas to restrict com-

piler/hardware optimizations: not portable but often optimal.

◦ formal: language has memory model and mechanisms to abstractly define races in

program: portable but often baroque and suboptimal.

• data access / compiler (C/C++): volatile qualifier

◦ Force variable loads and stores to/from registers (at sequence points)

◦ created for longjmp or force access for memory-mapped devices

◦ for architectures with few registers, practically all variables are implicitly volatile.

Why?

◦ Java volatile / C++11 atomic stronger ⇒ prevent eliding and disjoint reordering.

• program order / compiler (static): disable inlining, asm("" ::: "memory");

• memory order / runtime (dynamic): sfence, lfence, mfence (x86)

◦ guarantee previous stores and/or loads are completed, before continuing.

• atomic operations test-and-set, which often imply fencing

• cache is normally invisible and does not cause issues (except for DMA)

• mechanisms to fix issues are specific to compiler or platform

◦ difficult, low-level, diverse semantics, not portable ⇒ tread carefully!

• Dekker for TSO:
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#define CALIGN __attribute__(( aligned (64) )) // cache-line alignment
#define Pause() __asm__ __volatile__ ( "pause" : : : ) // efficient busy wait
#define Fence() __asm__ __volatile__ ( "mfence" ) // prevent hardware reordering
#include <atomic>
enum Intent { DontWantIn, WantIn } Last;
_Task Dekker {

volatile Intent / std::atomic<Intent> & me, & you, *& Last;

void main() {
for ( int i = 1; i <= 1000; i += 1 ) {

for ( ;; ) { // entry protocol
me = WantIn; // high priority
Fence();

if ( you == DontWantIn ) break;
if ( Last == &me ) { // high priority ?

me = DontWantIn;
while ( Last == &me ) Pause(); // low priority

}
Pause();

}
CriticalSection(); // critical section
Last = &me; // exit protocol
me = DontWantIn;

}
}

public:
Dekker( volatile Intent & me, volatile Intent & you, volatile Intent *& Last ) :

me(me), you(you), Last(Last) {}
};
int main() {

volatile Intent me CALIGN = DontWantIn, you CALIGN = DontWantIn,

*Last CALIGN = rand() % 2 ? &me : &you;
Dekker t0(me, you, Last), t1(you, me, Last);

};

• C++ atomic automatically fences shared variables, but can be suboptimal.

• Locks built with these features ensure SC for protected shared variables.

◦ no user races and strong locks ⇒ SC memory model
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11 Other Approaches

11.1 Atomic (Lock-Free) Data-Structure

• Lock free data-structure have operations, which are critical sections, but performed without

ownership.

◦ e.g., add/remove node without any blocking duration (operation takes constant atomic

time)

• Lock-free is still locking (misnomer) ⇒ spin for conceptual lock ⇒ busy-waiting (starva-

tion).

• If guarantees eventual progress, called wait free.

11.1.1 Compare and Set Instruction

• The compare-and-set(assign) instruction performs an atomic compare and conditional as-

signment CAS (erroneously called compare-and-swap).

int Lock = OPEN; // shared

bool CAS( int & val,
int comp, int nval ) {

// begin atomic
if ( val == comp ) {

val = nval;
return true;

}
return false;
// end atomic

}

void Task::main() { // each task does
while ( ! CAS( Lock, OPEN, CLOSED ) );
// critical section
Lock = OPEN;

}

◦ if compare/assign returns true ⇒ loop stops and lock is set to closed

◦ if compare/assign returns false ⇒ loop executes until the other thread sets lock to open

◦ Alternative implementation assigns comparison value with the value when not equal.

bool CAV( int & val, int & comp, int nval ) {
// begin atomic
if (val == comp) {

val = nval;
return true;

}
comp = val; // return changed value
return false;
// end atomic

}

◦ Assignment when unequal useful to restart operations with new changed value.

193



194 CHAPTER 11. OTHER APPROACHES

11.1.2 Lock-Free Stack

• E.g., build a stack with lock-free push and pop operations.

class Stack {
Node * top; // pointer to stack top

public:
struct Node {

// data
Node * next; // pointer to next node

};
void push( Node & n );
Node * pop();

};

• Use CAS to atomically update top pointer when nodes pushed or popped concurrently.

void Stack::push( Node & n ) {
for ( ;; ) { // busy wait

n.next = top; // link new node to top node
if ( CAS( top, n.next, &n ) ) break; // attempt to update top node

}
}

top

0x4ffb8

n

0x4ffb8

0x211d8

0x211d8

0x211d8

0x384e0

top = n

n.next = top

◦ Create new node, n, at 0x4ffb8 to be added.

◦ Set n.next to top.

◦ CAS tries to assign new top &n to top.

◦ CAS fails if top changed since copied to n.next

◦ If CAS failed, update n.next to top, and try again.

◦ CAS succeeds when top == n.next, i.e., no push or pop between setting n.next and

trying to assign &n to top.

◦ CAV copies changed value to n.next, so eliminates resetting t = top in busy loop.
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Node * Stack::pop() {
Node * t;
for ( ;; ) { // busy wait

t = top; // copy current top
if ( t == nullptr ) return t; // empty list ?
if ( CAS( top, t, t->next ) ) return t; // attempt to update top node

}
}

top

0x211d8

0x211d8

0x384e0

0x384e0t

t->next0x384e0

0x211d8

t = top

◦ Copy top node, 0x4ffb8, to t for removal.

◦ If not empty, attempt CAS to set new top to next node, t->next.

◦ CAS fails if top changed since copied to t.

◦ If CAS failed, update t to top, and try again.

◦ CAS succeeds when top == t->next, i.e., no push or pop between setting t and trying

to assign t->next to top.

◦ CAV copies the changed value into t, so eliminates resetting t = top in busy loop.

• Note, load of top->next can access stolen node, and fail if storage freed and address-space

shortened.

11.1.3 ABA problem

• Pathological failure for series of pops and pushes, called ABA problem.

• Given stack with 3 nodes:

top → A → B → C

• Popping task, Ti, sets t to A and dereferenced t->next to get next node B for argument to

CAS.

• Ti is now time-sliced before the CAS, and while blocked, nodes A and B are popped, and A

is pushed again:

top → A → C // B is gone!

• When Ti restarts, CAS successfully removes A as same header before time-slice.
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• But now incorrectly sets top to its next node B:

top → B → ???

stack is now corrupted!!!

11.1.4 Hardware Fix

• Probabilistic solution for stack exists using double-wide CAVD instruction, which compares

and assigns 64/128-bit values for 32/64-bit architectures.

bool CAVD( uintS_t &val, uintS_t &comp, uintS_t nval ) {
// begin atomic
if ( val == comp ) { // 64/128-bit compare

val = nval; // 64/128-bit assignment
return true;

}
comp = val; // 64/128-bit assignment
return false;
// end atomic

}

• Now, associate counter (ticket) with header node:

class Stack {
union Link {

struct { // 32/64-bit x 2
Node * top; // pointer to stack top
uintptr_t count; // count each push

};
uintS_t atom; // 64/128-bit integer

} link;
public:

struct Node {
// resource data
Link next; // pointer to next node/count (resource)

};
Stack() { link.atom = 0; }
void push( Node & n );
Node * pop();

};

• Increment counter in push so pop can detect ABA if node re-pushed.

void Stack::push( Node & n ) {
n.next = link; // atomic assignment unnecessary
for ( ;; ) { // busy wait

if ( CAVD( link.atom, n.next.atom,
(Link){ &n, n.next.count + 1 }.atom ) ) break;

}
}

◦ CAVD used to copy entire header to n.next, as structure assignment (2 fields) is not

atomic.
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◦ In busy loop, copy local idea of top to next of new node to be added.

◦ CAVD tries to assign new top-header to (h).

◦ If top has not changed since copied to n.next, update top to n (new top), and increment

counter.

◦ If top has changed, CAVD copies changed values to n.next, so try again.

Node * Stack::pop() {
Link t = link; // atomic assignment unnecessary
for ( ;; ) { // busy wait

if ( t.top == nullptr ) return nullptr; // empty stack ?
if ( CAVD( link.atom, t.atom,

(Link){ t.top->next.top, t.count }.atom ) ) return t.top;
}

}

◦ CAVD used to copy entire header to t, as structure assignment (2 fields) is not atomic.

◦ In busy loop, check if pop on empty stack and return nullptr.

◦ If not empty, CAVD tries to assign new top t.top->next.top,t.count to h.

◦ If top has not changed since copied to t, update top to t.top->next.top (new top).

◦ If top has changed, CAVD copies changed values to t, so try again.

• ABA problem (mostly) fixed:

top,3 → A → B → C

• Popping task, Ti, has t set to A,3 and dereferenced B from t.top->next in argument of CAVD.

• Ti is time-sliced, and while blocked, nodes A and B are popped, and A is pushed again:

top,4 → A → C // adding A increments counter

• When Ti restarts, CAVD fails as header A,3 not equal top A,4.

• Only probabilistic correct as counter finite (like ticket counter).

◦ task Ti is time-sliced and sufficient pushes wrap counter to value stored in Ti’s header,

◦ node A just happens to be at the top of the stack when Ti unblocks.

◦ doubtful if failure arises, given 32/64-bit counter and pathological case.

• Finally, none of the programs using CAS ensure eventual progress; therefore, rule 5 is bro-

ken.
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11.1.5 Hardware/Software Fix

• Fixing ABA with CAS/V and more code is extremely complex (100s of lines of code), as is

implementing more complex data structures (queue, deque, hash).

• All solutions require complex determination of when a node has no references (like garbage

collection).

◦ each thread maintains a list of accessed nodes, called hazard pointers

◦ thread updates its hazard pointers while other threads are reading them

◦ thread removes a node by hiding it on a private list and periodically scans the hazard

lists of other threads for references to that node

◦ if no pointers are found, the node can be freed

• For lock-free stack: x, y, z are memory addresses

◦ first thread puts x on its hazard list

◦ second thread cannot reuse x, because of hazard list

◦ second thread must create new object at different location

◦ first thread detects change

• Summary: locks versus lock-free

◦ lock-free has no ownership (hold-and-wait) ⇒ no deadlock

◦ lock-free can only handle limited set of critical sections

lock can protect arbitrarily complex critical section versus

◦ lock-free no panacea, performance unclear

◦ combine lock and lock-free?

11.2 Exotic Atomic Instruction

• VAX computer has instructions to atomically insert and remove a node to/from the head or

tail of a circular doubly linked list.

struct links {
links *front, *back;

}
bool INSQUE( links &entry, links &pred ) { // atomic execution

// insert entry following pred
return entry.front == entry.back; // first node inserted ?

}
bool REMQUE( links &entry ) { // atomic execution

// remove entry
return entry.front == null; // last node removed ?

}
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• MIPS processor has two instructions that generalize atomic read/write cycle: LL (load locked)

and SC (store conditional).

◦ LL instruction loads (reads) a value from memory into a register, and sets a hardware

reservation on the memory from which the value is fetched.

◦ Register value can be modified, even moved to another register.

◦ SC instruction stores (writes) new value back to original or another memory location.

◦ However, store is conditional and occurs only if no interrupt, exception, or write has

occurred at LL reservation.

◦ Failure indicated by setting the register containing the value to be stored to 0.

◦ E.g., implement test-and-set with LL/SC:

int testSet( int &lock ) { // atomic execution
int temp = lock; // read
lock = 1; // write
return temp; // return previous value

}

testSet: // register $4 contains pointer to lock
ll $2,($4) // read and lock location
or $8,$2,1 // set register $8 to 1 (lock | 1)
sc $8,($4) // attempt to store 1 into lock
beq $8,$0,testSet // retry if interference between read and write
j $31 // return previous value in register $2

◦ Does not suffer from ABA problem.

Node *pop( Header &h ) {
Node *t, next;
for ( ;; ) { // busy wait

t = LL( top );
if ( t == nullptr ) break; // empty list ?

next = t->next
if ( SC( top, next ) ) break; // attempt to update top node

}
return t;

}

◦ SC detects any change to top, whereas CAS only detects a specific value change to top

(is top not equal to A).

◦ However, most architectures support weak LL/SC.

* reservation granularity may be cache line or memory block rather than word

* no nesting or interleaving of LL/SC pairs, and prohibit memory access between

LL and SC.

◦ Cannot implement atomic swap of 2 memory locations as two reservations are neces-

sary (register to memory swap is possible).

• Hardware transactional memory allows 4, 6, 8 reservations, e.g., Advanced Synchronization

Facility (ASF) proposal in AMD64.
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• Like database transaction that optimistically executes change, and either commits changes,

or rolls back and restarts if interference.

◦ SPECULATE : start speculative region and clear zero flag ; next instruction checks for

abort and branches to retry.

◦ LOCK : MOV instructions indicates location for atomic access, but moves not visible to

other CPUs.

◦ COMMIT : end speculative region

* if no conflict, make MOVs visible to other CPUs.

* if conflict to any move locations, set failure, discard reservations and restore reg-

isters back to instruction following SPECULATE

• Can implement several data structures without ABA problem.

• Software Transactional Memory (STM) allows any number of reservations.

◦ atomic blocks of arbitrary size:

void push( header & h, node & n ) {
atomic { // SPECULATE

n.next = top; // LOCK/MOV
top = &n

} // COMMIT
}

◦ records all memory locations read and written, and all values mutated.

* bookkeeping costs and rollbacks typically result in performance degradation

◦ alternative implementation inserts locks to protect shared access

* finding all access is difficult and ordering lock acquisition is complex

11.3 General-Purpose GPU (GPGPU)

• Graphic Processing Unit (GPU) is a coprocessor to main computer, with separate memory

and processors.

• GPU is a Single-Instruction Multiple-Data(Thread) (SIMD(T)) architecture versus Multiple-

Instruction Multiple-Data (MIMD)

MIMDSIMD

code

data
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• In branching code

if ( a[i] % 2 == 0 ) {
a[i] /= 2; // true threads

} else {
a[i] += 3; // false threads

}

◦ all threads test the condition (create mask of true and false)

◦ true mask

◦ true threads execute instructions

◦ false threads execute NOP (no-operation)

◦ negate mask

◦ false threads execute instructions

◦ true threads execute NOP

• In general, critical path is time to execute both clauses of if (no speedup).

• Complex contortions to eliminate different forms of branching.

• GPU structure

◦ kernel manages multiple blocks (loaded/controlled by CPU)

◦ block executes the same code

◦ warp synchronizes execution (one instruction decoder per warp)

◦ thread computes value

threads

warp

threads

warp

threads

warp

threads

warp

threads

warp

threads

warp

blockblock

kernel

CPU GPU

input

output

◦ blocks may be barrier-synchronized

◦ synchronization among blocks ⇒ finishing kernel and launching new one

• Instead of cache to optimize latency in warp, large register file is used to optimize throughput.

◦ GPUs have enough duplicate registers to store state of several warps.
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• Kernel is memory-bound ⇒ data layout extremely important performance consideration.

// kernel routine, handle contiguous matrix, different ID for each thread
kernel void GPUsum( float *matrix[ ], float subtotals[ ], int rows ) {
# define sub(m, r, c) ((typeof(m[0][0]) *)m)[r * rows + c]

subtotals[ID] = 0.0;
for ( int r = 0; r < rows; r += 1 )

subtotals[ID] += sub( matrix, r, ID );
}

• Add rows by columns.

threads

+

subtotals

warp
matrix rows

• Warps scheduled to run when their required data is loaded from memory.

• CPU sets up GPU memory, loads memory, launches code, retrieves results.

int main() {
int rows, cols;
cin >> rows >> cols; // matrix size
// optimal to use contiguous matrix
float matrix[rows][cols], subtotals[rows], total = 0.0;
// . . . fill matrix
float * matrix_d, * subtotals_d; // matrix/subtotals buffer on GPU
// allocate space on GPU
GPUMalloc( &matrix_d, sizeof(matrix) );
GPUMalloc( &subtotals_d, sizeof(subtotals) );
// copy matrix to GPU
GPUMemcpy( matrix_d, matrix, sizeof(matrix), GPUMemcpyHostToDevice );
// compute matrix sum on GPU
GPUsum<<< 1, cols >>>( matrix_d, substotals_d, rows );
// do asynchronous work!!!
// copy subtotals from GPU, may block
GPUMemcpy( subtotals, subtotals_d, sizeof(subtotals), GPUMemcpyDeviceToHost );
for ( int i = 0; i < cols; i += 1 ) total += subtotals[i];
cout << total << endl;

}

• Most modern multi-core CPUs have similar model using vector-processing.

◦ Simulate warps and use concurrency framework (µC++) to schedule blocks.
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11.4 Concurrency Languages

11.4.1 Ada 95

• E.g., monitor bounded-buffer, restricted implicit (automatic) signal:

protected type buffer is -- _Monitor
entry insert( elem : in ElemType ) when count < Size is -- mutex member
begin

-- add to buffer
count := count + 1;

end insert;
entry remove( elem : out ElemType ) when count > 0 is -- mutex member
begin

-- remove from buffer, return via parameter
count := count - 1;

end remove;
private:

. . . // buffer declarations
count : Integer := 0;

end buffer;

• The when clause is only be used at start of entry routine not within.

• The when expression can contain only global-object variables; parameter or local variables

are disallowed ⇒ no direct dating-service.

• Eliminate restrictions and dating service is solvable.

_Monitor DatingService {
AUTOMATIC_SIGNAL;
int girls[noOfCodes], boys[noOfCodes]; // count girls/boys waiting
bool exchange; // performing phone-number exchange
int girlPhoneNo, boyPhoneNo; // communication variables

public:
int girl( int phoneNo, int ccode ) {

girls[ccode] += 1;
if ( boys[ccode] == 0 ) { // no boy waiting ?

WAITUNTIL( boys[ccode] != 0, , ); // use parameter, not at start
boys[ccode] -= 1; // decrement dating pair
girls[ccode] -= 1;
girlPhoneNo = phoneNo; // girl’s phone number for exchange
exchange = false; // wake boy

} else {
girlPhoneNo = phoneNo; // girl’s phone number before exchange
exchange = true; // start exchange
WAITUNTIL( ! exchange, , ); // wait until exchange complete, not at start

}
EXIT();
return boyPhoneNo;

}
// boy

};
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• E.g., task bounded-buffer:

task type buffer is -- _Task
. . . -- buffer declarations
count : integer := 0;

begin -- thread starts here (task main)
loop

select -- _Accept
when count < Size => -- guard
accept insert(elem : in ElemType) do -- mutex member

-- add to buffer
count := count + 1;

end;
-- executed if this accept called

or
when count > 0 => -- guard
accept remove(elem : out ElemType) do -- mutex member
-- remove from buffer, return via parameter
count := count - 1;

end;
end select;

end loop;
end buffer;
var b : buffer -- create a task

• select is external scheduling and only appears in task main.

• Hence, Ada has no direct internal-scheduling mechanism, i.e., no condition variables.

• Instead a requeue statement can be used to make a blocking call to another (usually non-

public) mutex member of the object.

• The original call is re-blocked on that mutex member’s entry queue, which can be subse-

quently accepted when it is approriate to restart it.

• However, all requeue techniques suffer the problem of dealing with accumulated temporary

results:

◦ If a call must be postponed, its temporary results must be returned and bundled with

the initial parameters before forwarding to the mutex member handling the next step,

◦ or the temporary results must be re-computed at the next step (if possible).

• In contrast, waiting on a condition variable automatically saves the execution location and

any partially computed state.

11.4.2 SR/Concurrent C++

• SR and Concurrent C++ have tasks with external scheduling using an accept statement.

• But no condition variables or requeue statement.

• To ameliorate lack of internal scheduling add a when and by clause on the accept statement.
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• when clause is allowed to reference caller’s arguments via parameters of mutex member:

select
accept mem( code : in Integer )

when code % 2 = 0 do . . . -- accept call with even code
or

accept mem( code : in Integer )
when code % 2 = 1 do . . . -- accept call with odd code

end select;

• when placed after the accept clause so parameter names are defined.

• when referencing parameter ⇒ implicit search of waiting tasks on mutex queue ⇒ locking

mutex queue.

• Select longest waiting if multiple true when clauses.

• by clause is calculated for each true when clause and the minimum by clause is selected.

select
accept mem( code : in Integer )

when code % 2 = 0 by -code do . . .-- accept largest even code
or

accept mem( code : in Integer )
when code % 2 = 1 by code do . . .-- accept smallest odd code

end select;

• Select longest waiting if multiple by clauses with same minimum.

• by clause exacerbates the execution cost of computing accept clause.

• While when/by removes some internal scheduling and/or requeues, constructing expressions

can be complex.

• Still situations that cannot be handled, e.g., if selection criteria involves multiple parameters:

◦ select lowest even value of code1 and highest odd value of code2 if there are multiple

lowest even values.

◦ selection criteria involves information from other mutex queues such as the dating ser-

vice (girl must search the boy mutex queue).

• Often simplest to unconditionally accept a call allowing arbitrarily examination, and possibly

postpone (internal scheduling).

11.4.3 Java

• Java’s concurrency constructs are largely derived from Modula-3.
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class Thread implements Runnable {
public Thread();
public Thread(String name);
public String getName();
public void setName(String name);
public void run(); // uC++ main
public synchronized void start();
public static Thread currentThread();
public static void yield();
public final void join();

}

• Thread is like µC++ uBaseTask, and all tasks must explicitly inherit from it:

class MyTask extends Thread { // inheritance
private int arg; // communication variables
private int result;
public MyTask() {. . .} // task constructors
public void run() {. . .} // task main
public int result() {. . .} // return result
// unusual to have more members

}

• Thread starts in member run.

• Java requires explicit starting of a thread by calling start after the thread’s declaration.

⇒ coding convention to start thread or inheritance is precluded (can only start a thread once)

• Termination synchronization is accomplished by calling join.

• Returning a result on thread termination is accomplished by member(s) returning values

from the task’s global variables.

mytask th = new MyTask(. . .); // create and initialized task
th.start(); // start thread
// concurrency
th.join(); // wait for thread termination
a2 = th.result(); // retrieve answer from task object

• Like µC++, when the task’s thread terminates, it becomes an object, hence allowing the call

to result to retrieve a result.

• (see Section 8.11, p. 157 for monitors)

• While it is possible to have public synchronized members of a task:

◦ no mechanism to manage direct calls, i.e., no accept statement

◦ ⇒ complex emulation of external scheduling with internal scheduling for direct com-

munication
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11.4.4 Go

• Non-object-oriented, light-weight (like µC++) non-preemptive threads (called goroutine).

◦ ⇒ busy waiting only on multicore (Why?)

• go statement (like start/fork) creates new user thread running in routine.

go foo( 3, f ) // start thread in routine foo

• Arguments may be passed to goroutine but return value is discarded.

• Cannot reference goroutine object ⇒ no direct communication.

• All threads terminate silently when program terminates.

• Threads synchronize/communicate via channel (CSP)

◦ ⇒ paradigm shift from routine call.

• Channel is a typed shared buffer with 0 to N elements.

ch1 := make( chan int, 100 ) // integer channel with buffer size 100
ch2 := make( chan string ) // string channel with buffer size 0
ch2 := make( chan chan string ) // channel of channel of strings

• Buffer size > 0 ⇒ up to N asynchronous calls; otherwise, synchronous call.

• Operator <- performs send/receive.

◦ send: ch1 <- 1

◦ receive: s <- ch2

• Channel can be constrained to only send or receive; otherwise bi-directional.
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package main
import "fmt"

func main() {

type Msg struct{ i, j int }
ch1 := make( chan int )
ch2 := make( chan float32 )
ch3 := make( chan Msg )
hand := make( chan string )
shake := make( chan string )
gortn := func() {

var i int; var f float32; var m Msg
L: for {

select { // wait for message
case i = <- ch1: fmt.Println( i )
case f = <- ch2: fmt.Println( f )
case m = <- ch3: fmt.Println( m )

case <- hand: break L // sentinel
}

}
shake <- "SHAKE" // completion

}

go gortn() // start thread in gortn
ch1 <- 0 // different messages
ch2 <- 2.5
ch3 <- Msg{1, 2}
hand <- "HAND" // sentinel value
<-shake // wait for completion

}

#include <iostream>
using namespace std;
_Task Gortn {

public:
struct Msg { int i, j; };
void mem1( int i ) { Gortn::i = i; }
void mem2( float f ) { Gortn::f = f; }
void mem3( Msg m ) { Gortn::m = m; }

private:
int i; float f; Msg m;
void main() {

L: for ( ;; ) {

_Accept( mem1 ) cout << i << endl;
or _Accept( mem2 ) cout << f << endl;
or _Accept( mem3 ) cout << "{" << m.i

<< " " << m.j << "}" << endl;
or_Accept( ~Gortn ) break L;

}
}

};
int main() {

Gortn gortn;
gortn.mem1( 0 );
gortn.mem2( 2.5 );
gortn.mem3( (Gortn::Msg){ 1, 2 } );

} // wait for completion

• Locks

type Mutex // mutual exclusion lock
func (m *Mutex) Lock()
func (m *Mutex) Unlock()

type Cond // synchronization lock
func NewCond(l Locker) *Cond
func (c *Cond) Broadcast()
func (c *Cond) Signal()
func (c *Cond) Wait()

type Once // singleton-pattern
func (o *Once) Do(f func())

type RWMutex // readers/writer lock
func (rw *RWMutex) Lock()
func (rw *RWMutex) RLock()
func (rw *RWMutex) RLocker() Locker
func (rw *RWMutex) RUnlock()
func (rw *RWMutex) Unlock()

type WaitGroup // countdown lock
func (wg *WaitGroup) Add(delta int)
func (wg *WaitGroup) Done()
func (wg *WaitGroup) Wait()
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• Atomic operations

func AddInt32(val *int32, delta int32) (new int32)
func AddInt64(val *int64, delta int64) (new int64)
func AddUint32(val *uint32, delta uint32) (new uint32)
func AddUint64(val *uint64, delta uint64) (new uint64)
func AddUintptr(val *uintptr, delta uintptr) (new uintptr)
func CompareAndSwapInt32(val *int32, old, new int32) (swapped bool)
func CompareAndSwapInt64(val *int64, old, new int64) (swapped bool)
func CompareAndSwapPointer(val *unsafe.Pointer, old, new unsafe.Pointer) (swapped bool)
func CompareAndSwapUint32(val *uint32, old, new uint32) (swapped bool)
func CompareAndSwapUint64(val *uint64, old, new uint64) (swapped bool)
func CompareAndSwapUintptr(val *uintptr, old, new uintptr) (swapped bool)
func LoadInt32(addr *int32) (val int32)
func LoadInt64(addr *int64) (val int64)
func LoadPointer(addr *unsafe.Pointer) (val unsafe.Pointer)
func LoadUint32(addr *uint32) (val uint32)
func LoadUint64(addr *uint64) (val uint64)
func LoadUintptr(addr *uintptr) (val uintptr)
func StoreInt32(addr *int32, val int32)
func StoreInt64(addr *int64, val int64)
func StorePointer(addr *unsafe.Pointer, val unsafe.Pointer)
func StoreUint32(addr *uint32, val uint32)
func StoreUint64(addr *uint64, val uint64)
func StoreUintptr(addr *uintptr, val uintptr)

11.4.5 C++11 Concurrency

• C++11 library can be sound as C++ now has strong memory-model (SC).

• compile: g++ -std=c++11 -pthread . . .

• Thread creation: start/wait (fork/join) approach.

class thread {
public:

template <class Fn, class. . . Args>
explicit thread( Fn && fn, Args &&. . . args );

void join(); // termination synchronization
bool joinable() const; // true => joined, false otherwise
void detach(); // independent lifetime
id get_id() const; // thread id

};

• Passing multiple arguments uses C++11’s variadic template feature to provide a type-safe call

chain via thread constructor to the callable routine.

• Any entity that is callable (functor) may be started:
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#include <thread>
void hello( const string & s ) { // callable

cout << "Hello " << s << endl;
}
class Hello { // functor

int result;
public:

void operator()( const string & s ) { // callable
cout << "Hello " << s << endl;

}
};

int main() {
thread t1( hello, "Peter" ); // start thread in routine “hello”
Hello h; // thread object
thread t2( h, "Mary" ); // start thread in functor “h”
// work concurrently
t1.join(); // termination synchronization
// work concurrently
t2.join(); // termination synchronization

} // must join before closing block

• Thread starts implicitly at point of declaration.

• Instead of join, thread can run independently by detaching:

t1.detach(); // “t1” must terminate for program to end

• Beware dangling pointers to local variables:

{
string s( "Fred" ); // local variable
thread t( hello, s );
t.detach();

} // “s” deallocated and “t” running with reference to “s”

• It is an error to deallocate thread object before join or detach.

• Locks

◦ mutex, recursive, timed, recursive-timed

class mutex {
public:

void lock(); // acquire lock
void unlock(); // release lock
bool try_lock(); // nonblocking acquire

};

◦ condition
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class condition_variable {
public:

void notify_one(); // unblock one
void notify_all(); // unblock all
void wait( mutex &lock ); // atomically block & release lock

};

• Scheduling is no-priority nonblocking ⇒ barging ⇒ wait statements must be in while loops

to recheck conditions.

#include <mutex>
class BoundedBuffer { // simulate monitor

// buffer declarations
mutex mlock; // monitor lock
condition_variable empty, full;
void insert( int elem ) {

mlock.lock();
while (count == Size ) empty.wait( mlock ); // release lock
// add to buffer
count += 1;
full.notify_one();
mlock.unlock();

}

int remove() {
mlock.lock();
while( count == 0 ) full.wait( mlock ); // release lock
// remove from buffer
count -= 1;
empty.notify_one();
mlock.unlock();
return elem;

}
};

• Futures

#include <future>
big_num pi( int decimal_places ) {. . .}
int main() {

future<big_num> PI = async( pi, 1200 ); // PI to 1200 decimal places
// work concurrently
cout << "PI " << PI.get() << endl; // block for answer

}

• Atomic types/operations

atomic_flag, atomic_bool, atomic_char, atomic_schar, atomic_uchar, atomic_short, atomic_ushort,

atomic_int, atomic_uint, atomic_long, atomic_ulong, atomic_llong, atomic_ullong, atomic_wchar_t,

atomic_address, atomic<T>
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typedef struct atomic_itype {
bool operator=(int-type) volatile;
void store(int-type) volatile;
int-type load() const volatile;
int-type exchange(int-type) volatile;
bool compare_exchange(int-type &old_value, int-type new_value) volatile;
int-type fetch_add(int-type) volatile;
int-type fetch_sub(int-type) volatile;
int-type fetch_and(int-type) volatile;
int-type fetch_or(int-type) volatile;
int-type fetch_xor(int-type) volatile;

int-type operator++() volatile;
int-type operator++(int) volatile;
int-type operator--() volatile;
int-type operator--(int) volatile;
int-type operator+=(int-type) volatile;
int-type operator-=(int-type) volatile;
int-type operator&=(int-type) volatile;
int-type operator|=(int-type) volatile;
int-type operator^=(int-type) volatile;

} atomic_itype;

11.5 Threads & Locks Library

11.5.1 java.util.concurrent

• Java library is sound because of memory-model and language is concurrent aware.

• Synchronizers : Semaphore (counting), CountDownLatch, CyclicBarrier, Exchanger, Condition,

Lock, ReadWriteLock

• Use new locks to build a monitor with multiple condition variables.

class BoundedBuffer { // simulate monitor
// buffer declarations
final Lock mlock = new ReentrantLock(); // monitor lock
final Condition empty = mlock.newCondition();
final Condition full = mlock.newCondition();
public void insert( Object elem ) throws InterruptedException {

mlock.lock();
try {

while (count == Size ) empty.await(); // release lock
// add to buffer
count += 1;
full.signal();

} finally { mlock.unlock(); } // ensure monitor lock is unlocked
}
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public Object remove() throws InterruptedException {
mlock.lock();
try {

while( count == 0 ) full.await(); // release lock
// remove from buffer
count -= 1;
empty.signal();
return elem;

} finally { mlock.unlock(); } // ensure monitor lock is unlocked
}

}

◦ Condition is nested class within ReentrantLock ⇒ condition implicitly knows its asso-

ciated (monitor) lock.

◦ Scheduling is still no-priority nonblocking ⇒ barging ⇒ wait statements must be in

while loops to recheck condition.

◦ No connection with implicit condition variable of an object.

◦ Do not mix implicit and explicit condition variables.

• Executor/Future :

◦ Executor is a server with one or more worker tasks (worker pool).

◦ Call to executor submit is asynchronous and returns a future.

◦ Future is closure with work for executor (Callable) and place for result.

◦ Result is retrieved using get routine, which may block until result inserted by executor.

import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.*;
public class Matrix {

public static void main( String[ ] args )
throws InterruptedException, ExecutionException {

class Adder implements Callable<Integer> {
int row[ ], cols; // communication
public Integer call() {

int subtotal = 0;
for ( int c = 0; c < cols; c += 1 ) subtotal += row[c];
return subtotal;

}
Adder( int [ ] r, int c ) { row = r; cols = c; }

}
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int rows = 10, cols = 10;
int matrix[ ][ ] = new int[rows][cols], total = 0;
// read matrix
ExecutorService executor = Executors.newFixedThreadPool( 4 );
List<Future<Integer>> subtotals = new ArrayList<Future<Integer>>();
for ( int r = 0; r < rows; r += 1 ) // send off work for executor

subtotals.add( executor.submit( new Adder( matrix[r], cols ) ) );
for ( int r = 0; r < rows; r += 1 ) // wait for results

total += subtotals.get( r ).get(); // retrieve result
System.out.println( total );
executor.shutdown();

}
}

• µC++ also has fixed thread-pool executor (used with actors).

struct Adder { // routine, functor or lambda
int * row, cols; // communication
int operator()() { // functor-call operator

int subtotal = 0;
for ( int c = 0; c < cols; c += 1 ) subtotal += row[c];
return subtotal;

}
Adder( int row[ ], int cols ) : row( row ), cols( cols ) {}

};

int main() {
const int rows = 10, cols = 10;
int matrix[rows][cols], total = 0;
// read matrix
uExecutor executor( 4 ); // kernel threads
Future_ISM<int> subtotals[rows];
Adder * adders[rows];
for ( int r = 0; r < rows; r += 1 ) { // send off work for executor

adders[r] = new Adder( matrix[r], cols );
subtotals[r] = executor.sendrecv( *adders[r] );

}
for ( int r = 0; r < rows; r += 1 ) { // wait for results

total += subtotals[r]();
delete adders[r];

}
cout << total << endl;

}

• Collections : LinkedBlockingQueue, ArrayBlockingQueue, SynchronousQueue,

PriorityBlockingQueue, DelayQueue, ConcurrentHashMap, ConcurrentSkipListMap,

ConcurrentSkipListSet, CopyOnWriteArrayList, CopyOnWriteArraySet.

◦ Create threads that interact indirectly through atomic data structures, e.g., producer/-

consumer interact via LinkedBlockingQueue.

• Atomic Types using compare-and-set (see Section 11.1.1, p. 193) (i.e., lock-free).
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AtomicBoolean, AtomicInteger, AtomicIntegerArray, AtomicLong, AtomicLongArray,

AtomicReference<V>, AtomicReferenceArray<E>

int v;
AtomicInteger i = new AtomicInteger();
i.set( 1 );
System.out.println( i.get() );
v = i.addAndGet( 1 ); // i += delta
System.out.println( i.get() + " " + v );
v = i.decrementAndGet(); // --i
System.out.println( i.get() + " " + v );
v = i.getAndAdd( 1 ); // i =+ delta
System.out.println( i.get() + " " + v );
v = i.getAndDecrement(); // i--
System.out.println( i.get() + " " + v );

1
2 2
1 1
2 1
1 2

11.5.2 Pthreads

• Several libraries exist for C (pthreads) and C++ (µC++).

• C libraries built around routine abstraction and mutex/condition locks (“attribute” parameters

not shown).

int pthread_create( pthread_t * new_thread_ID,
void * (*start_func)(void *), void * arg );

int pthread_join( pthread_t target_thread, void ** status );
pthread_t pthread_self( void );
int pthread_yield(void);

int pthread_mutex_init( pthread_mutex_t * mp );
int pthread_mutex_lock( pthread_mutex_t * mp );
int pthread_mutex_unlock( pthread_mutex_t * mp );
int pthread_mutex_destroy( pthread_mutex_t * mp );

int pthread_cond_init( pthread_cond_t * cp );
int pthread_cond_wait( pthread_cond_t * cp, pthread_mutex_t * mutex );
int pthread_cond_signal( pthread_cond_t * cp );
int pthread_cond_broadcast( pthread_cond_t * cp );
int pthread_cond_destroy( pthread_cond_t * cp );

• Thread starts in routine start_func via pthread_create.

Initialization data is single void * value.

• Termination synchronization is performed by calling pthread_join.

• Return a result on thread termination by passing back a single void * value from pthread_join.
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void * rtn( void * arg ) { . . . }
int i = 3, r, rc;
pthread_t t; // thread id
rc = pthread_create( &t, rtn, (void *)i ); // create and initialized task
if ( rc != 0 ) . . . // check for error
// concurrency
rc = pthread_join( t, &r ); // wait for thread termination and result
if ( rc != 0 ) . . . // check for error

• All C library approaches have type-unsafe communication with tasks.

• No external scheduling ⇒ complex direct-communication emulation.

• Internal scheduling is no-priority nonblocking ⇒ barging ⇒ wait statements must be in

while loops to recheck conditions

typedef struct { // simulate monitor
// buffer declarations
pthread_mutex_t mutex; // mutual exclusion
pthread_cond_t full, empty; // synchronization

} buffer;

// write your own constructor/destructor
void ctor( buffer * buf ) { // constructor

. . .
pthread_mutex_init( &buf->mutex );
pthread_cond_init( &buf->full );
pthread_cond_init( &buf->empty );

}

void dtor( buffer * buf ) { // destructor
pthread_mutex_lock( &buf->mutex ); // must be mutex
. . .
pthread_cond_destroy( &buf->empty );
pthread_cond_destroy( &buf->full );
pthread_mutex_destroy( &buf->mutex );

}

void insert( buffer * buf, int elem ) {
pthread_mutex_lock( &buf->mutex );
while ( buf->count == Size )

pthread_cond_wait( &buf->empty, &buf->mutex );
// add to buffer
buf->count += 1;
pthread_cond_signal( &buf->full );
pthread_mutex_unlock( &buf->mutex );

}
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int remove( buffer * buf ) {
pthread_mutex_lock( &buf->mutex );
while ( buf->count == 0 )

pthread_cond_wait( &buf->full, &buf->mutex );
// remove from buffer
buf->count -= 1;
pthread_cond_signal( &buf->empty );
pthread_mutex_unlock( &buf->mutex );
return elem;

}

• Since there are no constructors/destructors in C, explicit calls are necessary to ctor/dtor be-

fore/after use.

• All locks must be initialized and finalized.

• Mutual exclusion must be explicitly defined where needed.

• Condition locks should only be accessed with mutual exclusion.

• pthread_cond_wait atomically blocks thread and releases mutex lock, which is necessary to

close race condition on baton passing.

11.6 OpenMP

• Shared memory, implicit thread management (programmer hints), 1-to-1 threading model

(kernel threads), some explicit locking.

• Communicate with compiler with #pragma directives.

#pragma omp . . .

• fork/join model

◦ fork: initial thread creates a team of parallel threads (including itself)

◦ each thread executes the statements in the region construct

◦ join: when team threads complete, synchronize and terminate, except initial thread

which continues

• compile: gcc -std=c99 -fopenmp openmp.c -lgomp

• COBEGIN/COEND: each thread executes different section:
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#include <omp.h>
. . . // declarations of p1, p2, p3
int main() {

int i;
#pragma omp parallel sections num_threads( 4 ) // fork “4” threads
{ // COBEGIN

#pragma omp section
{ i = 1; } // BEGIN . . . END
#pragma omp section
{ p1( 5 ); }
#pragma omp section
{ p2( 7 ); }
#pragma omp section
{ p3( 9 ); }

} // COEND (synchronize)
}

• for directive specifies each loop iteration is executed by a team of threads (COFOR)

int main() {
const unsigned int rows = 10, cols = 10; // sequential
int matrix[rows][cols], subtotals[rows], total = 0;
// read matrix
#pragma omp parallel for // fork “rows” threads
for ( unsigned int r = 0; r < rows; r += 1 ) { // concurrent

subtotals[r] = 0;
for ( unsigned int c = 0; c < cols; c += 1 )

subtotals[r] += matrix[r][c];
}
for ( unsigned int r = 0; r < rows; r += 1 ) // sequential

total += subtotals[r];
printf( "total:%d\n", total );

} // main

• In this case, sequential code directly converted to concurrent via #pragma.

• Variables outside section are shared; variables inside are thread private.

• Programmer responsible for sharing in vector/matrix manipulation.

• barrier

int main() {
#pragma omp parallel num_threads( 4 ) // fork “4” threads
{

sleep( omp_get_thread_num() );
printf( "%d\n", omp_get_thread_num() );
#pragma omp barrier // wait for all block threads to arrive
printf( "sync\n" );

}
}
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• Without omp section, all threads run same block (like omp parallel for).

• Barrier’s trigger is the number of block threads.

• Threads sleeps for different times, but all print "sync" at same time.

• Also critical section and atomic directives.
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