October 29, 2020

This assignment introduces complex locks in µC++ and continues examining synchronization and mutual exclusion. Use it to become familiar with these new facilities, and ensure you use these concepts in your assignment solution. (Tasks may not have public members except for constructors and/or destructors.)

1. Given the C++ program in Figure 1, compare buffering using internal-data versus external-data format. Redirect the program output to /dev/null to discard the output; otherwise, the output distorts the performance measurements.

(a) Compare the two versions of the program with respect to performance by doing the following:

- Run the program with preprocessor variables -DINTERNAL and -DEXTERNAL.
- Time the executions using the time command:

```
$ /usr/bin/time -f "%Uu %Ss %E" ./a.out > /dev/null  # ignore program output
```

```
3.21u 0.02s 0:03.32
```

```
#include <iostream>
using namespace std;

int main( int argc, char *argv[] ) {
    int times = 1000000, size = 40; // defaults

    try {
        switch ( argc ) {
            case 3: size = stoi( argv[2] ); if ( size <= 0 ) throw 1;
            case 2: times = stoi( argv[1] ); if ( times <= 0 ) throw 1;
            case 1: break; // use defaults
            default: throw 1;
        } // switch
    } catch ( . . . ) {
        cout << "Usage: " << argv[0] << " [ times (> 0) [ size (> 0) ] ]" << endl;
        exit( 1 );
    } // try

    for ( int i = 0; i < times; i += 1 ) {
        #if defined( INTERNAL )
            int intbuf[size]; // internal-data buffer
            for ( int i = 0; i < size; i += 1 ) intbuf[i] = i;
            cout << endl;
        #elif defined( EXTERNAL )
            string strbuf; // external-data buffer
            for ( int i = 0; i < size; i += 1 ) strbuf += to_string( i ) + ' '; // external buffering
            cout << endl;
        #else
            #error unknown buffering style
        #endif
    } // for

Figure 1: Internal versus External Buffering
enum Intent { WantIn, DontWantIn };  
Intent * Last;

_Dekker_ {  
    Intent & me, & you;
    
    void main() {  
        for ( int i = 1; i <= 1000; i += 1 ) {  
            for ( ;; ) {  
                // entry protocol, high priority

                me = WantIn;

                if ( you == DontWantIn ) break;

                if ( ::Last == &me ) {
                    me = DontWantIn;
                    while ( ::Last == &me ){}
                }

                CriticalSection();  
                // critical section

                ::Last = &me;  
                // exit protocol

                me = DontWantIn;
            }
        }

        // arbitrary who starts as last
        Dekker t0( me, you ), t1( you, me );
    }

    public:
        Dekker( Intent & me, Intent & you ) : me(me), you(you) {};

    int main() {
        Intent me = DontWantIn, you = DontWantIn;
        ::Last = &me;  
        // arbitrary who starts as last
        Dekker t0( me, you ), t1( you, me );
    }

    Figure 2: Dekker 2-Thread Mutual Exclusion

    (Output from time differs depending on the shell, so use the system time command.) Compare the user time (3.21u) only, which is the CPU time consumed solely by the execution of user code (versus system and real time).

    • Use the program command-line arguments (as necessary) to adjust program execution into the range 1 to 100 seconds. (Timing results below 1 second are inaccurate.) Use the same command-line values for all experiments, if possible; otherwise, increase/decrease the arguments as necessary and scale the difference in the answer.

    • Run both the experiments again after recompiling the programs with compiler optimization turned on (i.e., compiler flag -O2).

    • Include 4 timing results to validate the experiments.

    (b) State the performance difference (larger/smaller/by how much) between the two versions of the program, and what caused the difference.

    (c) State the performance difference (larger/smaller/by how much) between the original and transformed programs when compiler optimization is used.

    (d) For interest, change endl to \n to see if there is any performance difference.

2. Figure 2 shows a Dekker solution to the mutual exclusion problem.

    (a) Assume line 6 is replaced with _while_ (you == WantIn).

        i. Explain which rule of the critical-section game is broken and the steps resulting in failure.

        ii. Explain why the broken rule is unlikely to be noticeable even during a test of 100,000 or more tries.

    (b) Explain what property of Dekker’s algorithm changes if lines 9 and 10 are interchanged and show the steps resulting in the change.
3. (a) Consider the following situation involving a tour group of $V$ tourists. The tourists arrive at the Louvre museum for a tour. However, a tour group can only be composed of $G$ people at a time, otherwise the tourists cannot hear the guide. As well, there are 3 kinds of tours available at the Louvre: pictures, statues and gift shop. Therefore, each tour group must vote to select the kind of tour to take. Voting is a ranked ballot, where each tourist ranks the 3 tours with values 0, 1, 2, where 2 is the highest rank. Tallying the votes sums the ranks for each kind of tour and selects the highest ranking. If tie votes occur among rankings, prioritize the results by gift shop, pictures, and then statues, e.g.:

- P S G
- tourist1 0 1 2
- tourist2 2 1 0
- tally 2 2 2 all ties, select G

During voting, a tourist blocks until all votes are cast, i.e., assume a secret ballot. Once a decision is made, the tourists in that group proceed on the specified tour. Tourists may take multiple tours, but because of voting, end up taking the same kind of tour.

The tour size $G$ may not evenly divide the number of tourists, resulting in a quorum failure when the remaining tourists is less than $G$. Note, even when $V$ is a multiple of $G$ and tourists take multiple tours, a quorum failure can occur. For example, one tour is faster than another or a tourist leaves a tour early and comes back to vote on another tour, so the quick tourist finishes all their tours and terminates. The slower tourists then encounter a situation where there are insufficient tourists to form a quorum for later tours.

Implement a general vote-tallier for $G$-way voting as a class using only:

i. a single uOwnerLock and possibly multiple uCondLocks to provide mutual exclusion and synchronization.
ii. multiple uSemaphores, used as binary rather than counting, to provide mutual exclusion and synchronization.
iii. a single uBarrier to provide mutual exclusion and synchronization. Note, a uBarrier has implicit mutual exclusion so it is only necessary to manage the synchronization. As well, only the basic aspects of the uBarrier are needed to solve this problem.

No busy waiting is allowed in any solution, and barging tasks can spoil an election and must be avoided/prevented.

Figure 3 shows the different forms for each $\mu$C++ vote-tallier implementation (you may add only a public destructor and private members), where the preprocessor is used to conditionally compile a specific interface. This form of header file removes duplicate code. An appropriate preprocessor variable is defined on the compilation command using the following syntax:

```
 μ++ -DSEM -c TallyVotesSEM.cc
```

At creation, a vote-tallier is passed the number of voters, size of a voting group, and a printer for printing state transitions. There is only one vote-tallying object created for all of the voters, who share a reference to it. Each voter task calls the vote method with their id and a ranked vote, indicating their desire for a picture, statue, or gift-shop tour. The vote routine does not return until group votes are cast; after which, the majority result of the voting (Picture, Statue or GiftShop) is returned to each voter, along with a number to identify the tour group (where tours are numbered 1 to $N$). The groups are formed based on voter arrival; e.g., for a group of 3, if voters 2, 5, 8 cast their votes first, they form the first group, etc. Hence, all voting is serialized. When a tourist finishes taking tours and leaves the Louvre Museum, it always calls done (even if it has a quorum failure).

TallyVotes detects a quorum failure when the number of remaining voters is less than the group size. At this point, any new calls to vote immediately raise exception Failed, and any waiting voters must be unblocked so they can raise exception Failed. When a voter calls done, it must cooperate if there is a quorum failure by helping to unblock waiting voters. For the owner/condition lock, a voter calling done in the failure case may have to pretend to be a barger if signalling is in progress, and hence, must block with other bargers. For the barrier lock, a voter calling done in the failure case may have to block on the barrier to force waiting voters to unblock.

Figure 4 shows the interface for a voting task (you may add only a public destructor and private members). The task main of a voting task first
#if defined( MC )  // mutex/condition solution
// includes for this kind of vote--tallier
class TallyVotes { 
    // private declarations for this kind of vote--tallier
#endif defined( SEM )  // semaphore solution
// includes for this kind of vote--tallier
class TallyVotes { 
    // private declarations for this kind of vote--tallier
#elif defined( BAR )  // barrier solution
    // includes for this kind of vote--tallier
  _Cormonitor TallyVotes : public uBarrier { 
    // private declarations for this kind of vote--tallier
#else
    #error unsupported voter type
#endif
  // common declarations
  public:  // common interface
    _Event Failed {};
    TallyVotes( unsigned int voters, unsigned int group, Printer & printer );
    struct Ballot { unsigned int picture, statue, giftshop; }
    enum TourKind { Picture = 'p', Statue = 's', GiftShop = 'g' };
    struct Tour { TourKind tourkind; unsigned int groupno; }
    Tour vote( unsigned int id, Ballot ballot );
    void done( 
#if defined( BAR )  // barrier solution
        unsigned int id
#endif
    #endif
    // common declarations
    public:
        // common interface
        _Event Failed {};
        TallyVotes( unsigned int voters, unsigned int group, Printer & printer );
        struct Ballot { unsigned int picture, statue, giftshop; }
        enum TourKind { Picture = 'p', Statue = 's', GiftShop = 'g' };
        struct Tour { TourKind tourkind; unsigned int groupno; }
        Tour vote( unsigned int id, Ballot ballot );
        void done( 
            #if defined( BAR )  // barrier solution
                unsigned int id
            #endif
        #endif
    });

  Figure 3: Tally Votes Interfaces

  _Task Voter { 
    Ballot cast() { 
        // cast 3--way vote
        // O(1) random selection of 3 items without replacement using divide and conquer.
        static const unsigned int voting[3][2][2] = { { {2,1}, {1,2} }, { {0,2}, {2,0} }, { {0,1}, {1,0} } }; 
        unsigned int picture = mprng( 2 ), statue = mprng( 1 );
        return (TallyVotes::Ballot){ picture, voting[picture][statue][0], voting[picture][statue][1] };
    } 
  public:
    enum States { Start = 'S', Vote = 'V', Block = 'B', Unblock = 'U', Barging = 'b',
                Done = 'D', Complete = 'C', Going = 'G', Failed = 'X', Terminated = 'T' };
    Voter( unsigned int id, unsigned int nvotes, TallyVotes & voteTallier, Printer & printer );
  };

  Figure 4: Voter Interface

  _Monitor / _Cormonitor Printer {  // chose one of the two kinds of type constructor
  public:
    Printer( unsigned int voters );
    void print( unsigned int id, Voter::States state );
    void print( unsigned int id, Voter::States state, TallyVotes::Tour tour );
    void print( unsigned int id, Voter::States state, TallyVotes::Ballot vote );
    void print( unsigned int id, Voter::States state, TallyVotes::Tour tour );
    void print( unsigned int id, Voter::States state, unsigned int numBlocked );
    void print( unsigned int id, Voter::States state, unsigned int numBlocked, unsigned int group );
  };

  Figure 5: Printer Interface
yields a random number of times, between 0 and 19 inclusive, so all tasks do not start simultaneously
and then performs the following n votes times:

- print start message
- yield a random number of times, between 0 and 4 inclusive
- vote
- yield a random number of times, between 0 and 4 inclusive
- print terminate message

Casting a vote is accomplished by calling member cast. Yielding is accomplished by calling yield(times )
to give up a task’s CPU time-slice a number of times.

All output from the program is generated by calls to a printer, excluding error messages. Figure 5 shows
the interface for the printer (you may add only a public destructor and private members). (Monitors are
discussed shortly, and are classes with public methods that implicitly provide mutual exclusion.) The
printer attempts to reduce output by storing information for each voter until one of the stored elements is
overwritten. When information is going to be overwritten, all the stored information is flushed and storing
starts again. Output must look like that in Figure 6.

Each column is assigned to a voter with an appropriate title, “V_i”, and a column entry indicates its current
status:

<table>
<thead>
<tr>
<th>State</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>start</td>
</tr>
<tr>
<td>V p,s,g</td>
<td>vote with ballot containing 3 rankings</td>
</tr>
<tr>
<td>B n</td>
<td>block during voting, n voters waiting (including self)</td>
</tr>
<tr>
<td>U n</td>
<td>unblock after group reached, n voters still waiting (not including self)</td>
</tr>
<tr>
<td>b n gn</td>
<td>block barging task, n waiting for signalled tasks to unblock (avoidance only, including self), current group number gn being service by tally votes</td>
</tr>
<tr>
<td>D</td>
<td>block in done (BAR only)</td>
</tr>
<tr>
<td>C t</td>
<td>complete group and voting result is t (p/s/g)</td>
</tr>
<tr>
<td>G t gn</td>
<td>go on tour, t (p/s/g) in tour group number gn</td>
</tr>
<tr>
<td>X</td>
<td>failed to form a group</td>
</tr>
<tr>
<td>T</td>
<td>voter terminates (after call to done)</td>
</tr>
</tbody>
</table>

Information is buffered until a column is overwritten for a particular entry, which causes the buffered
data to be flushed. If there is no new stored information for a column since the last buffer flush, an empty
column is printed. After a task has terminated, no further output appears in that column. All output spacing
can be accomplished using the standard 8-space tabbing. Buffer any information necessary for printing in
its internal representation: do not build and store strings of text for output. Calls to perform printing
may be performed from the vote-tallier and/or a voter task (you decide where to print).

For example, in line 4 of the left-hand example of Figure 6, V0 has the value “S” in its buffer slot, V1
has value “S”, and V2 is empty. When V1 attempts to print “V 0,2,1”, which overwrites its current buffer
value of “S”, the buffer must be flushed generating line 4. V1’s new value of “V 0,2,1” is then inserted
into its buffer slot. When V1 attempts to print “C”, which overwrites its current buffer value of “V 0,2,1”,
the buffer must be flushed generating line 5, and no other values are printed on the line because the print is
consecutive (i.e., no intervening call from another object). Then V1 inserts value “C” and V0 inserts value
“V 2,0,1” into the buffer. Assume V0 attempts to print “C”, which overwrites its current buffer value of
“V 2,0,1”, the buffer must be flushed generating line 6, and so on. Note, a group size of 1 means a voter
never has to block/unblock.

For example, in the right-hand example of Figure 6, there are 6 voters, 3 voters in a group, and each voter
votes twice. Voters V3 and V4 are delayed (e.g., they went to Tom’s for a coffee and donut). By looking
at the F codes, V0, V1, V5 vote together (group 1), V0, V1 V2 vote together (group 2), and V2, V4, V5 vote
together (group 3). Hence, V0, V1, V2, and V5 have voted twice and terminated. V3 needs to vote twice
and V4 needs to vote again. However, there are now insufficient voters to form a group, so both V3 and V4
fail with X.

The executable program is named vote and has the following shell interface:

```
vote [voters | ’d’ [group | ’d’ [votes | ’d’ [seed | ’d’ [processors | ’d’]]]]]
```
We refer to Section 4.6, where we have seen an example with six voters, three groups, and one vote per voter. Repeat the experiment for the following parameters:

$ vote 6 3 2
V0  V1  V2  V3  V4  V5
******** ******* ******* ******* ******* *******
S S S S
V 2,0,1  V 2,1,0  V 2,0,1
B 1  S  S
C p  G p 1  C p  U 1
T S S S
G p 3  C p  V 2,0,1
S S U 0
V 2,0,1  V 2,0,1
G p 1  B 1
T b 2 2 V 1,0,2
G p 2  U 0 G p 1
S S b 2 2 V 1,0,2
C p U 1
T S S
G g 3  U 0 G g 3
B 2  T
V 0,2,1
G g 3
T X
X
T
********
All tours started

Figure 6: Voters: Example Output

voters is the size of a tour (> 0), i.e., the number of voters (tasks) to be started. If d or no value for voters is specified, assume 6.

group is the size of a tour group (> 0). If d or no value for group is specified, assume 3.

votes is the number of tours (> 0) each voter takes of the museum. If d or no value for votes is specified, assume 1.

seed is the starting seed for the random-number generator (> 0). If d or no value for seed is specified, initialize the random number generator with an arbitrary seed value (e.g., getpid() or time), so each run of the program generates different output.

processors is the number of processors (> 0) for parallelism. If d or no value for processors is specified, assume 1.

Use the monitor MPRNG to safely generate random values (monitors will be discussed shortly). Note, because of the non-deterministic execution of concurrent programs, multiple runs with a common seed may not generate the same output. Nevertheless, short runs are often the same so the seed can be useful for testing. Check all command arguments for correct form (integers) and range; print an appropriate usage message and terminate the program if a value is missing or invalid.

Add the following declaration to the program main immediately after checking command-line arguments but before creating any tasks:

uProcessor p[processors – 1]; // number of kernel threads

to adjust the amount of parallelism for computation. The default value for processors is 1. Since the program starts with one kernel thread, only processors – 1 additional kernel threads are necessary.

(b) Recompile the program with preprocessor option −DNOOUTPUT to suppress output.
i. Compare the performance among the 3 kinds of locks by eliding all output (not even calls to the
printer) and doing the following:

- Time the executions using the `time` command:
  ```
 $ /usr/bin/time -f "%Uu %Ss %Er %Mkb" vote 100 10 10000 1003
 3.21u 0.02s 0:05.67r 32496kb
  ```
  Output from `time` differs depending on the shell, so use the system `time` command. Compare the
  `user` (3.21u) and `real` (0:05.67r) time among runs, which is the CPU time consumed solely by the
  execution of user code (versus system) and the total time from the start to the end of the program.
- If necessary, adjust the number of votes to get real time in range 1 to 100 seconds. (Timing results
  below 1 second are inaccurate.) Use the same number of votes for all experiments.
- Include all 3 timing results to validate your experiments.
- Repeat the experiment using 2 processors and include the 3 timing results to validate your exper-
  iments.

ii. State the performance difference (larger/smaller/by how much) among the locks as the kernel threads
    increase.

Use the following to elide output:
```
#ifndef NOOUTPUT
#define PRINT(args...)
#else
#define PRINT(args...) printer.print(args)
#endif // NOOUTPUT
```

Submission Guidelines

Follow these guidelines carefully. Review the Assignment Guidelines and C++ Coding Guidelines before starting each assignment. Each text or test-document file, e.g., *.txt,doc* file, must be ASCII text and not exceed 500 lines in
length, using the command fold -w120 *.doc | wc -l. Programs should be divided into separate compilation units,
i.e., *.h,cc,C,cpp* files, where applicable. Use the submit command to electronically copy the following files to the
course account.

1. q1*.txt – contains the information required by question 1, p. 1.
2. q2*.txt – contains the information required by question 2, p. 2.
3. MPRNG.h – random number generator (provided)
4. q3tallyVotes.h, q3*.h,cc,C,cpp, printer.o – code for question question 3a, p. 3. Program documentation must
   be present in your submitted code. No user, system or test documentation is to be submitted for this
   question.
5. q3*.txt – contains the information required by question 3b.
6. Modify the following Makefile to compile the programs for question 3a, p. 3 by inserting the object-file names
   matching your source-file names.

```
VIMPL:=MC
OUTPUT:=OUTPUT

CXX = u++
CXXFLAGS = -g -multi -O2 -Wall -Wextra -MMD -D$(VIMPL) -D$(OUTPUT) # compiler flags
MAKEFILE_NAME = $(firstword $(MAKEFILE_LIST)) # makefile name

OBJECTS = q3tallyVotes$(VIMPL).o # list of object files for question 3 prefixed with "q3"
EXEC = vote
```
DEPENDS = ${OBJECTS: .o = .d}  # substitute ".o" with ".d"

###################################################

.PHONY : all clean

all : ${EXEC}  # build all executables

-include VoteImpl

ifeq ($(LOCKVIMPL),${VIMPL})  # same implementation type as last time ?
  $(EXEC) : $(OBJECTS)
  $(CXX) $(CXXFLAGS) $^ -o $@
else
  # implementation type has changed => rebuilt
  .PHONY : $(EXEC)
  $(EXEC) :
  rm -f VoteImpl
touch q3tallyVotes.h
  $(MAKE) $(EXEC) VIMPL="${VIMPL}"
endif

VoteImpl :
  echo "LOCKVIMPL=${VIMPL}" > VoteImpl
  sleep 1

###################################################

$(OBJECTS) : $(MAKEFILE_NAME)  # OPTIONAL : changes to this file => recompile
-include $(DEPENDS)  # include *.d files containing program dependences

clean :
  rm -f *.d $(OBJECTS) $(EXEC) VoteImpl

This makefile is invoked as follows:

$ make vote VIMPL=MC
$ vote . . .
$ make vote VIMPL=SEM
$ vote . . .
$ make vote VIMPL=BAR

Put this Makefile in the directory with the programs, name the source files as specified above, and enter the appropriate make to compile a specific version of the programs. This Makefile must be submitted with the assignment to build the program, so it must be correct. Use the web tool Request Test Compilation to ensure you have submitted the appropriate files, your makefile is correct, and your code compiles in the testing environment.

Follow these guidelines. Your grade depends on it!