
GDB Tutorial

University of Waterloo

Version 1.0

Caroline Kierstead and Peter A. Buhrc�2002

April 1, 2002

�Permission is granted to make copies for personal or educational use

2 GDB Tutorial

Contents

1 Introduction 3

2 Before Using GDB 3
2.1 Debug Print Statements 3
2.2 Errors 4

3 Getting Started 5

4 Using GDB 5
4.1 Getting Help 5
4.2 Starting a Program 6
4.3 Setting a Breakpoint 6
4.4 Listing Source Code 7
4.5 Printing Variables 7
4.6 Controlling Execution 8
4.7 Controlling Breakpoints 9
4.8 Changing Values 9

5 Debugging Example 1 10

6 Debugging Example 2 14

A Basic 16

B ArraySum 17

C Strings 17

Index 21

GDB Tutorial 3

1 Introduction

This tutorial is designed to give a very basic introduction to the GNU Source-Level Debugger. It is organized with
a basic introduction to the debugger commands and then two programs with several errors are debugged using the
debugger. By working through the exercises, basic conceptsare introduced and can be practiced. The tutorial is not
intended as a complete instructional guide. A manual on GDB is available.

GDB can be used in and out of the Emacs environment. It is recommended that GDB be run within Emacs as it
is easier to trace the execution of a program. While this tutorial uses GDB within Emacs, additional instructions are
given on how to run GDB outside of Emacs; it is assumed that youare familiar with Emacs. As well, you should be
familiar with the UNIX environment. (UNIX consultants are available in MC3011.)

Throughout the tutorial, the following symbols are used:) This symbol indicates that you are to perform the action marked by the arrow../ This symbol indicates that the section explains a concept that may be unfamiliar even if you have some previ-
ous experience using a computer (e.g., DOS). Make sure you understand this concept before advancing in the
tutorial.

2 Before Using GDB

Before starting any debugger it is important to understand what you are looking for. A debugger does not debug your
program for you, it merely helps in the debugging process. Therefore, you must have some idea about what is wrong
with a program before starting to look or you will simply waste your time. Furthermore, you should not rely solely
on a debugger to debug a program. You may work on a system without a debugger or the debugger may not work for
certain kinds of problems. This section discusses traditional approaches to debugging.

2.1 Debug Print Statements

The best way to debug a program is tostart by inserting debug print statements as the program is written. It does take
a few extra minutes to include debug print statements, but the alternative is wasting hours trying to figure out what the
program is doing.

The two aspects of a program that you need to know about are: where the program is executing and what values it
is calculating. Debug print statements show the flow of control through a program and print out intermediate values.
For example, every routine should have a debug print statement at the beginning and end, as in:

int p(. . .) {
// declarations
cerr << "Enter p(...)\n" << parameter variables << endl;
. . .
cerr << "Exit p: ...\n" << return value(s) << endl;
return i;

} // p

This results in a high-level audit trail of where the programis executing and what values are being passed around.
To get finer resolution of a program’s execution, more debug print statements can be included in important control
structures, as in:

if (a > b) {
cerr << "a > b" << endl ; // debug print
for (. . .) {

cerr << "x=" << x << ", y=" << y << endl; // debug print
. . .

} // for
} else {

cerr << "a <= b" << endl; // debug print
. . .

} // if

By examining the control paths the program takes and the intermediate values calculated, it is possible to determine if
the program is executing correctly.

4 GDB Tutorial

Unfortunately, debug print statements can generate enormous amounts of output, far more than is useful.

It is of the highest importance in the art of detection to be able to recognize out of a number of facts which
are incidental and which vital.

Sherlock Holmes, The Reigate Squires

So gradually comment out debug statements as parts of the program begin to work to remove clutter from the output,
but do not delete them until the program works completely. You never know when they will be needed again.

In general, when you go for help, either from your instructoror an advisor, you should have debug print statements
in your program. Their presence shows that you have at least attempted to track the problem yourself. If you have no
debug print statements, you may be told to come back when you have! Finally, debug print statements never appear in
the program you hand in for marking. They are only there to help get the program working.

2.2 Errors

Debug print statements do not prevent errors, they simply aid in finding the errors; your programs will still have errors.
What you do about an error depends on the kind of error. Errorsfall into two basic categories:

Syntax Errors are errors in the arrangement of the basic tokens of the programming language. These errors cor-
respond to spelling or punctuation errors when writing in a human language. Fixing syntax errors is usually
straight forward especially if the compiler generates a meaningful error message. Alwaysread the error mes-
sage carefully and check the statement in error.

You see (Watson), but do not observe.

Sherlock Holmes, A Scandal in Bohemia

Watch out for the following general errors:� Forgetting a closing" or */. The remainder of the program isswallowed as part of the character string or
comment.� Missing a{ or }. If the program is indented and closing braces are appropriately commented, it is easy to
find the missing block delimiter.� Putting a semi-colon before the keyword wordelse.

Semantic Errors are errors in the behaviour or logic of the program. These errors correspond to incorrect meaning
when writing in a human language. Semantic errors are harderto find and fix than syntax errors. Often a
semantic or execution error message from the runtime libraries only tells why the program stopped not what
caused the error. Usually, you must work backwards from the error to determine the cause of the problem.

In solving a problem of this sort, the grand thing is to able toreason backwards. This is very useful
accomplishment, and a very easy one, but people do not practise it much. In the everyday affairs of
life it is more useful to reason forward, and so the other comes to be neglected.

Sherlock Holmes, A Study in Scarlet

For example, this is an infinite loop but there is nothing wrong with the loop, it is the initialization that is wrong.

i = 10;
while (i != 5) {

. . .
i += 2;

} // while

In general, when a program stops with a semantic error, the statement that caused the error is not usually the one
that must be fixed.

Watch out for the following general errors:� Forgetting to assign a value to a variable before using it in an expression.

GDB Tutorial 5� Using an invalid subscript or pointer value.

Finally, if a statement appears not to be working properly, but looks correct, check the syntax.

if (a = b) {
cerr << "a == b" << endl;

} // if

When you have eliminated the impossible whatever remains, however improbable must be the truth.

Sherlock Holmes, Sign of Four

An interactive debugger effectively allows debug print statements to be added and removed to/from a program dy-
namically, as will be seen shortly. However, a good programmer usually uses a combination of debug print statements
and an interactive debugger when debugging a complex program.

3 Getting Started

You need the following files for this tutorial:) Copy the following files to some location under your home directory:

/u/cssystems/examples/gdb_basic.cc
/u/cssystems/examples/gdb_q1.cc
/u/cssystems/examples/gdb_q2.cc
/u/cssystems/examples/data1
/u/cssystems/examples/data2

To start GDB within Emacs, enter the commandM-x gdb <Return> and you will be prompted in the mini-buffer
for the name of an executable file to be debugged. To start GDB outside of Emacs, the general format of the command
is:

gdb executable-file-name

4 Using GDB) Start up Emacs and create a buffer containing the filegdb_ basic.cc.

This program’s sole purpose is to demonstrate the debugger commands; the program itself does nothing in particular
(see Appendix A).) Compile the program using the command:g++ -g gdb_ basic.cc

The-g option includes additional information for symbolic debugging.) Enter the command:M-x gdb <Return>.) Enter the name of the program’s executable,./a.out, after the prompt in the mini-buffer and press<Return>.

GDB responds with a number of messages and with the GDB prompt, (gdb).

4.1 Getting Help

To obtain help in GDB use the commandhelp. The information is divided by topic. (NOTE: All commands inGDB
are executed when<Return> is pressed.)) Enter the command:help

6 GDB Tutorial

GDB responds with the following list of command classes:
List of classes of commands:

aliases -- Aliases of other commands
breakpoints -- Making program stop at certain points
data -- Examining data
files -- Specifying and examining files
internals -- Maintenance commands
obscure -- Obscure features
running -- Running the program
stack -- Examining the stack
status -- Status inquiries
support -- Support facilities
tracepoints -- Tracing of program execution without stopping the program
user-defined -- User-defined commands

Type "help" followed by a class name for a list of commands in that class.
Type "help" followed by command name for full documentation.
Command name abbreviations are allowed if unambiguous.

4.2 Starting a Program) Enter the command:help run

GDB responds with:
Start debugged program. You may specify arguments to give it.
Args may include "*", or "[...]"; they are expanded using "sh".
Input and output redirection with ">", "<", or ">>" are also allowed.

With no arguments, uses arguments last specified (with "run" or "set args").
To cancel previous arguments and run with no arguments,
use "set args" without arguments.) Enter the command:run

GDB responds with a message indicating which object file it isexecuting and that it executed normally. When there
are no errors in a program, running it via GDB is the same as running it in a shell.

4.3 Setting a Breakpoint

In order to trace the execution of the program,breakpoints are required. A breakpoint causes suspension of the
program’s execution when that location is reached. Breakpoints can be set on routines, line numbers and addresses.
They are numbered consecutively from1 up and can be enabled or disabled as required by using theenable, disable,
anddelete commands.

In order to allow the execution to be traced, set a breakpointin the first routine that is executed,main.) Enter the command:break main or b main

GDB responds with:
(gdb) break main
Breakpoint 1 at 0x10624: file gdb_ basic.cc, line 24.

indicating that breakpoint number 1 has been set at location0x10624, which is line 24 of the filegdb_ basic.cc. If a
program is not compiled with the-g flag, only the address location is given.) Enter the command:run

GDB Tutorial 7

The program is restarted (it was run once already) and execution continues until the first breakpoint is reached. The
breakpoint is at the first executable line withinmain, line 24. Your screen will have split horizontally and the source
codeabout to be executed is displayed with an arrow (=>). (The arrow may cover the first two characters of the current
line of code.)

4.4 Listing Source Code

When not executing GDB in Emacs, the source file does not appear in another window. To list source code around the
execution location, use thelist command.) Enter the command:list 24 or l 24.

GDB responds with:
(gdb) list 24
19 return r;
20 }
21 };
22
23 int main() {
24 int r, x = 1;
25 mary m;
26 r = m.bar(x);
27 return 0;
28 }

4.5 Printing Variables

The print command is used to print the values of variables accessible in the current routine, plus all those whose
declared in the global/external area.) Print the contents of variabler by entering the command:print r or p r.

GDB responds with:
(gdb) p r
$1 = 0

The value ofr is 0. The$1 is the name of a history variable (like history variables in ashell). The name$1 can be used
in subsequent commands to access previous values ofr.

The value to be printed may be any C++ expression, so if the variable is a pointer, the pointer and the value it
references are printed with the commands:

(gdb) print p
(gdb) print *p

(Unfortunately, a list of variables is taken to be a C++ language “comma expression” and only the last value in the list
is printed.)

During debugging, it is often necessary to print certain variables each time the program stops at a breakpoint.
This requires typing in a series ofprint commands each time the program stop. Thedisplay command is like the print
command, and in addition, it prints the specified variable each time the program stops.) Enter the command:display r or disp r

GDB responds with:
(gdb) disp r
1: r = 0) Enter the command:display x or disp x

8 GDB Tutorial

Each displayed variable is numbered, in this case,r is numbered 1 andx is numbered 2. The number is used to stop
displaying a variable using theundisplay n command.

Note: variablesr and x have not yet been initialized. The values displayed are thatof the memory where the
variables are allocated. Sometimes the values are 0, and sometimes they are not.Do not assume that the values are
always 0.

4.6 Controlling Execution

Once a breakpoint is reached, execution of the program can becontinued in several ways.

step [n] Execute the nextn lines of the program and stop. Ifn is not present, 1 is assumed. If the next line is
a routine call, control stops at the first line in that routine. Abbreviated tos.

next [n] Like step, but routine calls are treated as a single statement, so control stops at the statement after
the routine call instead of the first statement of the called routine. Abbreviated ton.

continue Continue execution until the next breakpoint is reached. Abbreviated toc.
finish Finish execution of the current routine and stop at the statment after the routine call. Print the value

returned by the finished routine, if any. Abbreviated tofin.) Step to the next line to be executed.

Notice that the arrow (=>) has moved and the variablesr andx are printed (x has changed). The program has now
stopped execution on the liner = m.bar(x);.) Step into routinemary::bar.

GDB responds with:
(gdb) s
mary::bar (this=0xffbefaf7, x=1) at gdb_ basic.cc:17

indicating that execution has stopped withinmary::bar at line 17, and thatbar has a single parameter,x, containing the
value1. Also the arrow has moved to line 17 in the buffer containinggdb_ basic.cc.) Display the values of variablesx andr.) Step to the next line.) Step into routinefred::foo.

GDB responds with:
(gdb) s
fred::foo (this=0xffbefaf7, x=2) at gdb_ basic.cc:5) Display the variablei.) Set a breakpoint at line 8 (return x;).) Enter the command:step 4 or s 4.) Continue to the next breakpoint by entering the command:cont or c.) Print the contents of variablex. Why is the value 7?) Enter the command:step 2 or s 2

Control has returned to routinemary::bar, which is about to return a value of 7. From the display statements, it can be
seen that the changes tox in fred::foo have not affectedx in mary::bar becausex was passed by value.) Continue execution.

GDB responds with:
(gdb) c
Continuing

Program exited normally

Notice that the arrow has not moved to the end of the routinemain.

GDB Tutorial 9) Set a breakpoint at line 28.) Set a breakpoint in routinemary::bar by entering the command:break mary::bar) Run the program again.) Enter the commandstep 3 to move you to the liner = f.foo(x);) Enter the commandnext or n to step over the call to routinefred::foo.

Why did execution stop in fred? (Because there is a breakpoint at line 8.)) Enter the commandfinish to complete execution of routinefred.

GDB responds with:
Run till exit from #0 fred::foo (this=0xffbefaf7, x=7) at gdb_ basic.cc:8
0x10718 in mary::bar (this=0xffbefaf7, x=2) at gdb_ basic.cc:18
4: r = 0
3: x = 2
Value returned is $3 = 7

which indicates thatfred::foo is returning the value 7 as it finishes. Control now returns toroutinemary::bar.) Press<Return>. This repeats the last command, which wasfinish.

GDB responds with:
(gdb)
Run till exit from #0 0x10718 in mary::bar (this=0xffbefaf7, x=2) at gdb_ basic.cc:18
0x10640 in main () at gdb_ basic.cc:26
2: x = 1
1: r = -268436580
Value returned is $4 = 7

which indicates thatmary::bar is returning the value 7 as it finishes.) Continue until execution of the program completes.

4.7 Controlling Breakpoints) Enter the commandinfo breakpoints to obtain information on the breakpoints currently set.

GDB responds with:
Num Type Disp Enb Address What
1 breakpoint keep y 0x00010624 in main at gdb_ basic.cc:24

breakpoint already hit 1 time
2 breakpoint keep y 0x00010778 in fred::foo(int) at gdb_ basic.cc:8

breakpoint already hit 1 time
3 breakpoint keep y 0x0001065c in main at gdb_ basic.cc:28

breakpoint already hit 1 time
3 breakpoint keep y 0x00010704 in mary::bar(int) at gdb_ basic.cc:17

breakpoint already hit 1 time) In order to avoid stopping at the breakpoint on line 8, disable it by entering the command:disable 2) Disable breakpoint 4.

4.8 Changing Values

Theset command changes the values of variables in the current routine or global/external variables.) Run the program again.) Step to the next line.) Change the initial value ofx to 6 by entering the command:set x = 6) Continue execution.

10 GDB Tutorial

Notice how the value ofr is larger. In this way, it is possible to change the values of variables while debugging to
investigate how the program behaves with new values insteadof having to restart the debugging process or change and
recompile the program.) Continue the program.) Quit out of GDB. If using Emacs, enter the commandC-x k; otherwise, enter the commandquit or q.) Close thegdb_ basic.cc buffer.

5 Debugging Example 1) Create a buffer within Emacs containing the filegdb_ q1.cc.

This program calculates the sum of an array of sizen, givenn (see Appendix B), and it currently contains some errors.
The program is terminated by entering either the end of file key sequence (C-c C-d in Emacs, or<CTRL>-d in the Unix
shell) or the sentinel value -999.) Compile the program using the command:g++ -g gdb_ q1.cc

Notice the compilation error message displayed in the compilation buffer.
gdb_ q1.cc:38: unterminated string or character constant
gdb_ q1.cc:22: possible real start of unterminated constant

The compiler believes that a string or character constant isnot terminated in line 38.) Go to line 38. Since the error probably consists of a missing quotation mark, start by examining line 38.

cout << array[i] << "] is " << returnValue << endl;

Examining line 38 of the code, it is clear that the string on that line is terminated properly! Therefore, the error comes
from a previous line that contained a string that is not terminated properly. Start searching from line 22 forwards, as
indicated by the second compiler error message.) Make the required correction.) Save the program.) Compile the program.

Having achieved a successful compilation:) Start up GDB on the program’s executable,a.out.) Enter the command:run) Enter the number5 in response to the promptEnter the size of the array to sum [<CTRL>-D or -999 for EOF]:
and press<Return>.) Enter a number at the next prompt,Enter value [1].

GDB responds with:
(gdb) run
Starting program: /u/cssystems/tutorial/GDB/C++/a.out

Enter the size of the array to sum [<CTRL>-D or -999 for EOF]: 5

Enter value [1] 1

Program received signal SIGSEGV, Segmentation fault.
0xff153974 in istream::operator>> (this=0x20ed0, i=@0x4) at iostream.cc:352
352 iostream.cc: No such file or directory.

The program received a “Segmentation fault” signal at address0x6ff738e in routineistream::operator>>. This message
often indicates a pointer addressing problem.) Enter the commandwhere to receive more information about the location of the error in the program.

GDB Tutorial 11

GDB responds with:
(gdb) where
#0 0xff153974 in istream::operator>> (this=0x20ed0, i=@0x4) at iostream.cc:352
#1 0x108c0 in readInArrayAndSum (array=0x4, size=1) at gdb_ q1.cc:11
#2 0x109cc in main () at gdb_ q1.cc:32

This information is about thestack frames. A frame is the data associated with a call to a routine. It contains the
arguments passed to the routine, variables local to the routine, and the executing routine’s address.

Upon starting a program, the stack has only one frame (theouter-most frame) which is for routinemain. A new
frame is created for each routine called. The frame labeled0 (theinner-most frame) is the most recently created frame.

In this example, frame 0 involves the I/O output operator,>>. This routine is invoked by the routinereadInArrayAndSum
in frame 1. The information associated with frame 2 gives thefile name containing the program (gdb_ q1.cc. Each
frame also gives a line number. This number is either the lineon which the error occurred, or the line from which the
routine containing the error was invoked. The frame for the I/O operator>> has no file and line numbers because it was
not compiled with the-g flag. As a result, GDB cannot display the source code where theerror occurred. Therefore,
you have to manually begin the search in your program.) Enter frame 2 by typing:frame 2 or f 2) List line 32.

27 if (!cin.good()) {
28 cerr << "\nERROR: cannot have char or string for the array size\n";
29 exit(-2);
30 } // if
31 int *array;
32 int returnValue = readInArrayAndSum(array, size);
33 cout << "\nsum of [";
34 int i;
35 for (i = 0; i < size-1; i += 1); {
36 cout << array[i] << ", ";

Line 32 is the invocation ofreadInArrayAndSum. Since it appears correct, move into the frame associated with the
routine and examine its associated information.) Enter frame 1.

GDB responds with
(gdb) frame 1
#1 0x108c0 in readInArrayAndSum (array=0x4, size=1) at gdb_ q1.cc:11

You should notice that the address associated with the parameterarray looks a bit odd.) Try printing the element at index 1.

GDB responds with
(gdb) print array[1]
Cannot access memory at address 0x4

So, the address contained inarray is invalid.) Make the buffer containinggdb_ q1.cc visible.) Go to line 31 (C-x @ command).) The declaration ofarray doesn’t actually allocate any space. Change the declaration to readint array[size];
instead.) Save and recompile the file.) Create buffer containingdata1 and examine its contents.) Make the the*gdb-a.out* buffer visible in a window.) Run the program again, but now use a data file for the input. Usethe command:run < data1 What does the
< data1 do after the run command? You will be prompted to restart it.Why is this essential?

12 GDB Tutorial

Is the program working correctly? No, we still have a segmentation fault.) Print the value ofi. You should see that it is significantly larger than 10, the size of the array.) Correct the code by changing the increment ofi on line 9 to be by one rather than by two.) Recompile the code.) Run the program as before by entering justrun on the GDB command line. Be aware that enteringrun is
equivalent torun < data1 (seehelp run).

Is the output correct given the contents of data1? No, the output just have been a single sum, not two, and the
single sum should have been10, not9. To determine the exact location of the error, the executionof the program needs
to be traced. The error is likely to be inreadInArrayAndSum since that routine handles the input and summation.) Enter the command:break readInArrayAndSum.) Run the program as before.

The program continues execution until the first breakpoint is reached.

The following code is displayed in thegdb_ q1.cc buffer:

#include <iostream.h>

int readInArrayAndSum(int *array, int size) {
=> int sum = 0;

for (int i = 1; i != size; i += 1) {
cout << "\nEnter value: ";
cin >> array[i];
sum += array[i];

} // for
return sum;

} // readInArrayAndSum

GDB tells you the values of the parametersarray andsize.

To trace the values of the variables thatreadInArrayAndSum() uses as they change, use thedisplay command.) Step through the next two statements by using thenext 2 command.) Display the variablesi, sum, andarray[i].) Step through the next statement,cout << "\nEnter value [" << i << "] ";.) Step through the next statement,cin >> array[i];.) Step through the next statement,sum += array[i];.) Step to the next statement, thefor loop. sum is now set to 1, the value inarray[1]. So far, everything seems
appropriate.) Notice that the parameter toreadInArrayAndSum indicates that 10 values will be read in. We don’t want to step
through all of the statements, we want to concentrate on the final stages of our loop, so set a break point on line
13.) Continue to the next breakpoint.) Bypass the next 8 crossings of the breakpoint by enteringcont 8

GDB responds with

GDB Tutorial 13

(gdb) cont 8
Will ignore next 7 crossings of breakpoint 3. Continuing.

Enter value:
Enter value:
Enter value:
Enter value:
Enter value:
Enter value:
Enter value:
Enter value:
Breakpoint 3, readInArrayAndSum (array=0xffbafac8, size=10) at gdb_ q1.cc:13
3: array[i] = 1
2: sum = 9
1: i = 9) Step to the next instruction. Suddenly, we’re about to return sum instead of executing the loop one more time.) Print the value ofarray.) Print the address of the element at index 1 ofarray.

GDB responds with

(gdb) print array
$1 = (int *) 0xffbefac8
(gdb) print &(array[1])
$2 = (int *) 0xffbefacc

These two addresses do not match. So, the array actually starts one position earlier, at index 0.) Change the initialization ofi in the for loop to 0 rather than 1.) Save and compile the code.) Move back to the*gdb-a.out* buffer.) Run the program again. You will be prompted to restart it. Theprogram stops at the breakpoint inreadInArrayAndSum.) Delete breakpoints 1 and 2.) Continue execution.

Does the code work correctly now? The sum is calculated correctly, but the array is not printedout correctly.) List line 32, since the print loop is in that general vicinity.) Put a break point on line 34.) Run the program again.) When you reach the loop, display variablei.) Step through the loop. Notice that the value ofi has suddenly reached 9.

While the for loop appears to be correct, there is a very subtle error, which is the semi-colon at the end of thefor line
terminating the loop body; therefore, the code in the bracesis simply a block separate from the for statement. In other
words, the for loop executes until it is done, and then the code within the braces is executed.) Remove the semi-colon from the end of the for statement.) Save and compile the code.) Move back to the*gdb-a.out* buffer.) Run the program again.

Does the code work correctly now?) Close all of the current buffers.

14 GDB Tutorial

6 Debugging Example 2) Create a buffer containing the filegdb_ q2.cc.

This program reads in strings, and stores the string alphabetically, along with its number of occurrences, in a linked
list (see Appendix C). The program currently contains some errors.) Compile the code by using the command:g++ -g gdb_ q2.cc.) Create a buffer containing filedata2 and examine the data.) Start up GDB on the program’s executable,a.out.) Enter the command:run data2

GDB responds with:
(gdb) run data2
Starting program: /u3/ctkierstead/GDB/a.out data2

Program received signal SIGSEGV, Segmentation fault.
basic_ string<char, string_ char_ traits<char>, _ _ default_ alloc_ template<false, 0> >::rep (this=0x1)

at /.software/arch/gcc-2.95.2/distribution/lib/gcc-lib/sparc-sun-solaris2.6/2.95.2/. ./. ./. ./. ./include/g++-3/std/bastring.h:147

with the arrow on a line in the string library.
An error of “Segmentation Fault” usually indicates a problem with a pointer.) It is unlikely the string library has a bug, so let’s determine where the offending call was made. Use thewhere

command.

GDB responds with:
(gdb) where
#0 basic_ string<char, string_ char_ traits<char>, _ _ default_ alloc_ template<false, 0> >::rep (this=0x1)

at /.software/arch/gcc-2.95.2/distribution/lib/gcc-lib/sparc-sun-solaris2.6/2.95.2/. ./. ./. ./. ./include/g++-3/std/bastring.h:147
#1 0x14b88 in basic_ string<char, string_ char_ traits<char>, _ _ default_ alloc_ template<false, 0> >::basic_ string (

this=0xeffff998, str=@0x1)
at /.software/arch/gcc-2.95.2/distribution/lib/gcc-lib/sparc-sun-solaris2.6/2.95.2/. ./. ./. ./. ./include/g++-3/std/bastring.h:172

#2 0x14df0 in ListNode::getWord (this=0x1) at gdb_ q2.cc:20
#3 0x13170 in ListADT::searchInsert (this=0xeffffb1c, word={static npos = 4294967295, static nilRep = {len = 0,

res = 0, ref = 1, selfish = false}, dat = 0x27d20 "This"}) at gdb_ q2.cc:112
#4 0x12f28 in ListADT::ListADT (this=0xeffffb1c, fileName=0xeffffcc6 "data2") at gdb_ q2.cc:78
#5 0x12d30 in main (argc=2, argv=0xeffffb94) at gdb_ q2.cc:49

The call listed in frame 2 has an invalid address assigned to the internal object pointer,this. So, the error probably
came from the previous frame.) Use theframe 3 command to enter the frame so we can examine the previous frame’s values.

GDB puts the arrow on the following line:
=> if (head == NULL | | head->getWord() > word) {

Since it was the call togetWord that failed, and the method was being called onhead, the problem likely lies with
head.) Print the contents ofhead. This is the first word that we are inserting into the list, andyet head contains an

address of 1 rather than the expected 0.) Find the initialization ofhead in ListADT’s constructor. Replace the statement(ListNode*) 1 with NULL.) Recompile the code and try running the program again.

Is the program correct? No, since no information is output for the list. Either the list is empty, or there is something
wrong with the printing of its contents. The execution of theprogram must be traced in order to pinpoint the problem
by setting some breakpoints and observing what happens whenthe code is run.) Set a breakpoint at line 112. This location is at the start of the insertion routine (If you had written the program,

you would know this.) We could have set a breakpoint at line 78, just after the first word is read in; however,
when we step intosearchInsert, we’d have to first get through a number of string library calls.

GDB Tutorial 15) Run the program again.) GDB stops at the breakpoint. To ensure that the list is being correctly maintained, print the value ofhead, which
should be0x0/NULL.) Display the object pointed to by the pointerhead using the commanddisplay *head. (GDB will complain that it
cannot display aNULL pointer and will disable the display.)) Display the value ofhead instead. We can always turn the other display back on later. The pointer to the top of
the list is stillNULL, which is correct for inserting the first token.) Step through the next 3 lines using thenext command (watch the arrow), carefully observing the value ofhead.

head suddenly went from a non-zero value back to0x0. This indicates an error with the if statement. Close examination
of the if statement reveals that an assignment operator appears where an equals operator should be. Instead of==, = is
used which assigns the value ofNULL to *head and causes the program lose all previous information storedin the list.) Correct the error.) Save and compile the program.) Enter the*gdb-a.out buffer.) Run the program again. (You will be prompted to restart it.) The program stops at the breakpoint inmain.) Delete breakpoint 1 and continue execution.

The program now runs properly.
Before leaving GDB, two more useful features are worth mentioning: the ability to print out structures and the

ability to easily follow pointers and print out the objects pointed to.) Enter buffergdb_ q2.cc) Move the cursor down to the linemyList.printList();.) Enter the command:M-x what-line <Return>. The line number of the line containing the cursor is printedin the
mini-buffer.) Set a breakpoint at this line.) Run the program again.) Enter the command:p *myList.head

GDB responds with:
$1 = {token = {static npos = 4294967295, static nilRep = {len = 0, res = 0, ref = 1, selfish = false},

dat = 0x27f60 "Either"}, timesFound = 1, next = 0x28388}) Enter the command:set print pretty to print structures in a nice format.) Print *myList.head again.

GDB responds with:
$2 = {

token = {
static npos = 4294967295,
static nilRep = {

len = 0,
res = 0,
ref = 1,
selfish = false

},
dat = 0x27f60 "Either"

},
timesFound = 1,
next = 0x28388

}) Enter the command:print *myList.head.next:

16 GDB Tutorial

GDB responds with:
$3 = {

token = {
static npos = 4294967295,
static nilRep = {

len = 0,
res = 0,
ref = 1,
selfish = false

},
dat = 0x27f00 "Some"

},
timesFound = 1,
next = 0x28220

}) Enter the command:print *$3.next:

GDB responds with:
$4 = {

token = {
static npos = 4294967295,
static nilRep = {

len = 0,
res = 0,
ref = 1,
selfish = false

},
dat = 0x27d20 "This"

},
timesFound = 1,
next = 0x28268

}

Notice the use of a history variable to save typing. This can be continued until the end of the list is reached, allowing
a user to verify that the data structure is set up correctly.) Enter the command:cont) Close all of Emacs buffers.) Terminate Emacs by using theC-x C-c command.

A Basic

class fred {
public:

int foo(int x) {
int i;
for (i = 1; i <= 5; i += 1) {

x += 1;
} // for
return x;

} // foo
};

class mary {
fred f;

public:
int bar(int x) {

int r;
x += 1;

GDB Tutorial 17

r = f.foo(x);
return r;

}
};

int main() {
int r, x = 1;
mary m;
r = m.bar(x);
return 0;

}

B ArraySum

/**
GDB Test File 1 - contains several errors

***/

#include <iostream.h>

int readInArrayAndSum(int *array, int size) {
int sum = 0;
for (int i = 1; i != size; i += 2) {

cout << "\nEnter value [" << i << "] ";
cin >> array[i];
sum += array[i];

} // for
return sum;

} // readInArrayAndSum

/**/

int main() {
int size;

cout << "\nEnter the size of the array to sum [<CTRL>-D or -999 for EOF]:;
for(; ;) {

cin >> size;
if (cin.eof()) break;
if (size == -999) break;
if (!cin.good()) {
cerr << "\nERROR: cannot have char or string for the array size\n";
exit(-2);

} // if
int *array;
int returnValue = readInArrayAndSum(array, size);
cout << "\nsum of [";
int i;
for (i = 0; i < size-1; i += 1); {

cout << array[i] << ", ";
} // for
cout << array[i] << "] is " << returnValue << endl;

} // for
return 0;

} // main

C Strings

/**
GDB Test File 2 - contains a few errors

***/

#include <iostream.h>
#include <fstream.h>
#include <string>

18 GDB Tutorial

/************************** Class Declarations ***************/

class ListNode {
string token;
int timesFound; // Times that token has been found
ListNode *next; // Next node in the list

public:
ListNode(string word) : token(word), timesFound(1), next(NULL) {}
ListNode(string word, ListNode *next) : token(word), timesFound(1), next(next) {}
~ListNode() { if (next != NULL) delete next; }

string getWord() { return token; }
int getNumOccurrences() { return timesFound; }
void incNumOccurrences() { timesFound++; }
ListNode * getNext() { return next; }
void setNext(ListNode * next) { ListNode::next = next; }

};

class ListADT {
ListNode *head; // Head of the list

public:
ListADT(char * fileName); // Initialize the list from the specified file
~ListADT();
bool findWord(string word);
void searchInsert(string word);
void printList ();

};

/**/

int main(int argc, char *argv[]) {
// Must have an input file specified on the command line.
if (argc != 2) {

cerr << argv[0] << " input-file" << endl;
exit(-1);

} // if

ListADT myList(argv[1]); // List of words.

cout << "\nThe linked list contains:" << endl;
myList.printList();

} // main

/************************** Class Implementations ***************************/

/**
Builds a list of words contained in the specified input file.

Input: name of the input file
Output: builds a list where head contains the address of the first node
Error: program ends with error message and exit code -2 if the file could

not be opened for input.
**/

ListADT::ListADT(char * fileName) {
head = (ListNode *) 1; // Initialize list to empty.
string word;

ifstream infile(fileName, ios::in); // Open input file
if (!infile) {

cerr << "File " << fileName << " could not be opened for input." << endl;
exit(-2);

} // if

while (true) {

GDB Tutorial 19

infile >> word;
if (infile.eof()) break;
searchInsert(word);

} // while
} // ListADT::ListADT

/**
Determines if the specified word is in the list or not.

Input: word to be searched for
Output: flag indicating whether a word has been found or not.
Errors: N/A

**/
bool ListADT::findWord (string word) {

bool foundWord = false;
for (ListNode *ptr = head; ptr != NULL && !foundWord; ptr = ptr->getNext()) {

if (ptr->getWord() == word) {
foundWord = true;

} // if
} // for

} // ListADT::findWord

/**
Searches the list for the word. If the word is in the list, the
repetition count of the word is incremented. Otherwise, the word is
added to the list.

Input: Pointer to the start of the list - ListHead
Pointer to the buffer which contains the word - Token
Output: A list of words with their frequencies of occurrence
Errors: If no space for new word, then print message and exit program

**/
void ListADT::searchInsert (string word) {

ListNode *newNode, *temp, *prev;
int value;

if (head == NULL | | head->getWord() > word) {
head = new ListNode(word, head);
if (head = NULL) { // Ran out of space.

cerr << "ERROR: ran out of space\n";
exit(-3);

} // if
} else if (head->getWord() == word) {

head->incNumOccurrences();
} else {

newNode = new ListNode(word);
if (newNode == NULL) { // Ran out of space.

cerr << "ERROR: ran out of space\n";
exit(-3);

} // if
prev = head;
for (temp = head->getNext(); temp != NULL; temp = temp->getNext()) {

if (word == temp->getWord()) {
temp->incNumOccurrences();
break;

} else if (word < temp->getWord()) {
newNode->setNext(temp);
prev->setNext(newNode);
break;

} // if
prev = temp;

} // for
if (temp == NULL && prev != NULL) { // Fell off list

prev->setNext(newNode);
} // if

} // if
} // ListADT::SearchInsert

20 GDB Tutorial

/**
Prints the list with the word repetition counts.

Input: N/A
Output: The words and their frequencies of occurrence.

**/
void ListADT::printList() {

for (ListNode *ptr = head; ptr != NULL ; ptr = ptr->getNext()) {
cout << "word: " << ptr->getWord() << " occurs "

<< ptr->getNumOccurrences() << " time(s)" << endl;
} // for

} // ListADT::printList

/**
Deletes the list.

Input: N/A
Output: The list has been freed.

**/
ListADT::~ListADT () {

if (head != NULL) {
delete head;

} // if
} // ListADT::~ListADT

GDB Tutorial 21

Index), 3./, 3
<Return>, 9

break, 6, 12
breakpoint, 6

continue, 8
delete, 6
disable, 6
enable, 6
finish, 8
next, 8
step, 8

continue, 8

debug print statements, 3
delete, 6
disable, 6, 9
display, 7, 12

enable, 6
execution error, 4

finish, 8, 9

gdb
<Return>, 9
break, 6
breakpoint, 6

continue, 8
delete, 6
disable, 6
enable, 6
finish, 8
next, 8
step, 8

continue, 8
delete, 6
disable, 6
disable, 9
display, 7
enable, 6
finish, 8
finish, 9
help, 5
info, 9
list, 7
next, 8
print, 7
run, 6
set, 9

stack frame, 11
step, 8
undisplay, 8
where, 10

gdb, 5

help, 5

info, 9
inner-most frame, 11

list, 7

next, 8

outer-most frame, 11

print, 7

run, 6

semantic error, 4
set, 9
stack frame, 11
step, 8
syntax error, 4

undisplay, 8
unix consultant, 3

where, 10

