GDB Tutorial

University of Waterloo

Version 1.0

Caroline Kierstead and Peter A. Buigy2002

April 1, 2002

*Permission is granted to make copies for personal or eduradtiise

2 GDB Tutorial

Contents
1 Introduction 3
2 Before Using GDB 3
2.1 Debug Print Statements e e e 3
2.2 EITOIS . . o o e
3 Getting Started 5
4 Using GDB 5
4.1 GettingHelp. e 5
4.2 StartingaProgram e 6
4.3 Settinga Breakpoint L e e e e 6
4.4 ListingSource Code e e 7
4.5 PrintingVariables L e e 7
4.6 Controlling Execution L e e 8
4.7 ControllingBreakpoints. e 9
4.8 ChangingValues e 9
5 Debugging Example 1 10
6 Debugging Example?2 14
A Basic 16
B ArraySum 17
C Strings 17

Index 21

GDB Tutorial 3

1 Introduction

This tutorial is designed to give a very basic introductiotiie GNU Source-Level Debugger. It is organized with
a basic introduction to the debugger commands and then tagrgms with several errors are debugged using the
debugger. By working through the exercises, basic conaptintroduced and can be practiced. The tutorial is not
intended as a complete instructional guide. A manual on GDi#vailable.

GDB can be used in and out of the Emacs environment. It is rewamed that GDB be run within Emacs as it
is easier to trace the execution of a program. While thisriaitases GDB within Emacs, additional instructions are
given on how to run GDB outside of Emacs; it is assumed thatayedfamiliar with Emacs. As well, you should be
familiar with the UNIX environment. (UNIX consultants areafiable in MC3011.)

Throughout the tutorial, the following symbols are used:

=- This symbol indicates that you are to perform the action matiy the arrow.

>1 This symbol indicates that the section explains a concegitrttay be unfamiliar even if you have some previ-
ous experience using a computer (e.g., DOS). Make sure yderstand this concept before advancing in the
tutorial.

2 BeforeUsing GDB

Before starting any debugger it is important to understahdtwou are looking for. A debugger does not debug your
program for you, it merely helps in the debugging proceseréfore, you must have some idea about what is wrong
with a program before starting to look or you will simply wagtour time. Furthermore, you should not rely solely
on a debugger to debug a program. You may work on a system wtighdebugger or the debugger may not work for
certain kinds of problems. This section discusses tratiliapproaches to debugging.

2.1 Debug Print Statements

The best way to debug a program isstart by inserting debug print statements as the program is writteloes take
a few extra minutes to include debug print statements, ualtiernative is wasting hours trying to figure out what the
program is doing.

The two aspects of a program that you need to know about arerethe program is executing and what values it
is calculating. Debug print statements show the flow of adritrough a program and print out intermediate values.
For example, every routine should have a debug print stateat¢he beginning and end, as in:

intp(...){
/I declarations
cerr << "Enter p(...)\n" << parameter variables << endl;

cerr << "Exit p: ...\n" << returnvalue(s) << endl
return i

Yip
This results in a high-level audit trail of where the progranexecuting and what values are being passed around.
To get finer resolution of a program’s execution, more dehgt gtatements can be included in important control
structures, as in:

if(a>b){
cerr << "a > b" << endl; /I debug print
for (...){
cerr << "x=" << x << ", y=" <<y << endl /I debug print
} /I for
} else {
cerr << "a <= b" << endl; /I debug print
Y if

By examining the control paths the program takes and thenm@giate values calculated, it is possible to determine if
the program is executing correctly.

4 GDB Tutorial

Unfortunately, debug print statements can generate engia@mounts of output, far more than is useful.

Itis of the highestimportance in the art of detection to ble &dvrecognize out of a number of facts which
are incidental and which vital.

Sherlock Holmes, The Reigate Squires

So gradually comment out debug statements as parts of thegondbegin to work to remove clutter from the output,
but do not delete them until the program works completely Never know when they will be needed again.

In general, when you go for help, either from your instructioan advisor, you should have debug print statements
in your program. Their presence shows that you have at |#&shjpted to track the problem yourself. If you have no
debug print statements, you may be told to come back when geel firinally, debug print statements never appear in
the program you hand in for marking. They are only there tp lget the program working.

2.2 Errors

Debug print statements do not prevent errors, they simplindinding the errors; your programs will still have errors.
What you do about an error depends on the kind of error. Efatirsito two basic categories:

Syntax Errors are errors in the arrangement of the basic tokens of the anuging language. These errors cor-
respond to spelling or punctuation errors when writing inuann language. Fixing syntax errors is usually
straight forward especially if the compiler generates amivegul error message. Alwaysad the error mes-
sage carefully and check the statement in error.

You see (Watson), but do not observe.
Sherlock Holmes, A Scandal in Bohemia

Watch out for the following general errors:
e Forgetting a closing or «/. The remainder of the programswallowed as part of the character string or
comment.

e Missing a{ or }. If the program is indented and closing braces are apprayiasommented, it is easy to
find the missing block delimiter.

e Putting a semi-colon before the keyword weisk.
Semantic Errors are errors in the behaviour or logic of the program. Thesargrorrespond to incorrect meaning
when writing in a human language. Semantic errors are haodénd and fix than syntax errors. Often a

semantic or execution error message from the runtime lgsanly tells why the program stopped not what
caused the error. Usually, you must work backwards from ttor & determine the cause of the problem.

In solving a problem of this sort, the grand thing is to ableg@son backwards. This is very useful
accomplishment, and a very easy one, but people do not ggattnuch. In the everyday affairs of
life it is more useful to reason forward, and so the other ctode neglected.

Sherlock Holmes, A Study in Scarlet
For example, this is an infinite loop but there is nothing vgrarith the loop, it is the initialization that is wrong.
i=10;
while (i'=5){
I+: 2;
} /I while

In general, when a program stops with a semantic error, #tersent that caused the error is not usually the one
that must be fixed.

Watch out for the following general errors:

e Forgetting to assign a value to a variable before using ihiexression.

GDB Tutorial 5

e Using an invalid subscript or pointer value.

Finally, if a statement appears not to be working propetylboks correct, check the syntax.

if(a=b){
cerr << "a == b" << endl;
Y if

When you have eliminated the impossible whatever remamseber improbable must be the truth.
Sherlock Holmes, Sgn of Four

An interactive debugger effectively allows debug printestigents to be added and removed to/from a program dy-
namically, as will be seen shortly. However, a good programmnsually uses a combination of debug print statements
and an interactive debugger when debugging a complex progra

3 Getting Started

You need the following files for this tutorial:
=- Copy the following files to some location under your home ctivey:

/ulcssystems/examples/gdb_basic.cc
/ulcssystems/examples/gdb_ql.cc
/ulcssystems/examples/gdb_qg2.cc
Julcssystems/examples/datal
Julcssystems/examples/data2

To start GDB within Emacs, enter the commaviek gdb <Return> and you will be prompted in the mini-buffer
for the name of an executable file to be debugged. To start G8de of Emacs, the general format of the command
is:

gdb executable-file-name

4 Using GDB

=- Start up Emacs and create a buffer containing theite basic.cc.

This program’s sole purpose is to demonstrate the debuggemands; the program itself does nothing in particular
(see Appendix A).

=- Compile the program using the commare:+ -g gdb_ basic.cc

The-g option includes additional information for symbolic delgirg.

= Enter the commanadv-x gdb <Return>.
=- Enter the name of the program’s executabkeout, after the prompt in the mini-buffer and presReturn>.

GDB responds with a number of messages and with the GDB prdgaip).

41 Getting Help

To obtain help in GDB use the commanhédip. The information is divided by topic. (NOTE: All commands@DB
are executed whetReturn> is pressed.)

= Enter the commandielp

6 GDB Tutorial

GDB responds with the following list of command classes:
List of classes of commands:

aliases -- Aliases of other commands

breakpoints -- Making program stop at certain points
data -- Examining data

files -- Specifying and examining files

internals -- Maintenance commands

obscure -- Obscure features

running -- Running the program

stack -- Examining the stack

status -- Status inquiries

support -- Support facilities

tracepoints -- Tracing of program execution without stopping the program
user-defined -- User-defined commands

Type "hel p" followed by a class name for a list of commands in that class.
Type "hel p" followed by command name for full documentation.
Command name abbreviations are allowed if unambiguous.

4.2 Starting a Program

= Enter the commandielp run

GDB responds with:

Start debugged program. You may specify arguments to give it.
Args may include "+", or "[. . .]"; they are expanded using "sh".
Input and output redirection with ">", "<", or ">>" are also allowed.

With no arguments, uses arguments last specified (with "run" or "set args").
To cancel previous arguments and run with no arguments,
use "set args" without arguments.

= Enter the commandun

GDB responds with a message indicating which object file éxiscuting and that it executed normally. When there
are no errors in a program, running it via GDB is the same asingyit in a shell.

4.3 Setting a Breakpoint

In order to trace the execution of the prograongakpoints are required. A breakpoint causes suspension of the
program’s execution when that location is reached. Breatpa@an be set on routines, line numbers and addresses.
They are numbered consecutively frdnup and can be enabled or disabled as required by usingntiide, disable,
anddelete commands.

In order to allow the execution to be traced, set a breakpoithte first routine that is executeghain.

= Enter the commandireak main or b main

GDB responds with:

(gdb) break main
Breakpoint 1 at 0x10624: file gdb_ basic.cc, line 24.

indicating that breakpoint number 1 has been set at locatin0624, which is line 24 of the filegdb_ basic.cc. If a
program is not compiled with the flag, only the address location is given.

= Enter the commandun

GDB Tutorial 7

The program is restarted (it was run once already) and execoontinues until the first breakpoint is reached. The
breakpoint is at the first executable line withirin, line 24. Your screen will have split horizontally and theisme
codeabout to be executed is displayed with an arrew). (The arrow may cover the first two characters of the current
line of code.)

4.4 Listing Source Code

When not executing GDB in Emacs, the source file does not ajppaaother window. To list source code around the
execution location, use thist command.

= Enter the commandist 24 or| 24.

GDB responds with:

(gdb) list 24

19 return r;
20 }

21 %

22

23 int main() {

24 intr, x =1;
25 mary m;

26 r = m.bar(x);
27 return O;

28 }

45 Printing Variables

The print command is used to print the values of variables accesgibthea current routine, plus all those whose
declared in the global/external area.

=- Print the contents of variableby entering the commangrint r orp r.

GDB responds with:
(gdb) p r
$1=0
The value of is 0. The$1 is the name of a history variable (like history variables ghall). The namé1 can be used
in subsequent commands to access previous values of
The value to be printed may be any C++ expression, so if thablaris a pointer, the pointer and the value it
references are printed with the commands:
(gdb) print p
(gdb) print *p
(Unfortunately, a list of variables is taken to be a C++ laamgri“comma expression” and only the last value in the list
is printed.)
During debugging, it is often necessary to print certairialdes each time the program stops at a breakpoint.
This requires typing in a series pfint commands each time the program stop. @isplay command is like the print
command, and in addition, it prints the specified variabtihgane the program stops.

= Enter the commandiisplay r or disp r
GDB responds with:

(gdb) disp r
1:r=0

= Enter the commandiisplay x or disp x

8 GDB Tutorial

Each displayed variable is numbered, in this casenumbered 1 and is numbered 2. The number is used to stop
displaying a variable using theadisplay n command.

Note: variables andx have not yet been initialized. The values displayed are ah#tte memory where the
variables are allocated. Sometimes the values are 0, anetisoas they are notDo not assume that the values are
alwaysO0.

4.6 Controlling Execution

Once a breakpoint is reached, execution of the program canritéhued in several ways.

step [n] | Execute the nexi lines of the program and stop.rfis not present, 1 is assumed. If the next ling
a routine call, control stops at the first line in that routiAbbreviated tc.

next [n] | Like step, but routine calls are treated as a single statement, soot@hbps at the statement after
the routine call instead of the first statement of the caltedine. Abbreviated to.
continue | Continue execution until the next breakpoint is reachedorAbiated tac.

finish Finish execution of the current routine and stop at the statrafter the routine call. Print the valye
returned by the finished routine, if any. Abbreviatedito

S

U

=- Step to the next line to be executed.

Notice that the arrow=(>) has moved and the variableandx are printed X has changed). The program has now
stopped execution on the limes m.bar(x);.

=- Step into routinenary::bar.

GDB responds with:

(gdb) s

mary::bar (this=0xffbefaf7, x=1) at gdb_basic.cc:17
indicating that execution has stopped withiary::bar at line 17, and thatar has a single parametex, containing the
valuel. Also the arrow has moved to line 17 in the buffer contairgdy_basic.cc.

=- Display the values of variablesandr.
=- Step to the next line.
=- Step into routindred::foo.

GDB responds with:
(gdb) s
fred::foo (this=0xffbefaf7, x=2) at gdb_basic.cc:5

Display the variablé

Set a breakpoint at line 8gfurn x;).

Enter the commandktep 4 ors 4.

Continue to the next breakpoint by entering the commandt or c.
Print the contents of variable Why isthe value 7?

Enter the commandktep 2 ors 2

R R R

Control has returned to routimeary::bar, which is about to return a value of 7. From the display stat&s it can be
seen that the changesxdn fred::foo have not affected in mary::bar becausex was passed by value.

= Continue execution.

GDB responds with:
(gdb) c
Continuing

Program exited normally
Notice that the arrow has not moved to the end of the routisie.

GDB Tutorial

=- Set a breakpoint at line 28.

=- Set a breakpoint in routineary::bar by entering the commandreak mary::bar
=- Run the program again.

= Enter the commanstep 3 to move you to the line = f.foo(x);

=- Enter the commandext or n to step over the call to routirfeed::foo.

Why did execution stop in fred? (Because there is a breakpoint at line 8.)
=- Enter the commanfinish to complete execution of routiried.

GDB responds with:
Run till exit from #0 fred::foo (this=0xffbefaf7, x=7) at gdb_basic.cc:8
0x10718 in mary::bar (this=0xffbefaf7, x=2) at gdb_ basic.cc:18
4:r=0
3:x=2
Value returned is $3 = 7
which indicates thafted::foo is returning the value 7 as it finishes. Control now return®tdinemary::bar.

= PressReturn>. This repeats the last command, which iash.

GDB responds with:
(gdb)
Run till exit from #0 0x10718 in mary::bar (this=0xffbefaf7, x=2) at gdb_ basic.cc:18
0x10640 in main () at gdb_basic.cc:26
2:x=1
1: r = -268436580
Value returned is $4 = 7

which indicates thahary::bar is returning the value 7 as it finishes.

=- Continue until execution of the program completes.

4.7 Controlling Breakpoints

=- Enter the commanihfo breakpoints to obtain information on the breakpoints currently set.

GDB responds with:

Num Type Disp Enb Address What

1 breakpoint keepy 0x00010624 in main at gdb_basic.cc:24
breakpoint already hit 1 time

2 breakpoint keepy 0x00010778 in fred::foo(int) at gdb_basic.cc:8
breakpoint already hit 1 time

3 breakpoint keepy 0x0001065c in main at gdb_basic.cc:28
breakpoint already hit 1 time

3 breakpoint keepy 0x00010704 in mary::bar(int) at gdb_basic.cc:17
breakpoint already hit 1 time

= In order to avoid stopping at the breakpoint on line 8, digdtby entering the commandisable 2
= Disable breakpoint 4.

4.8 Changing Values

Theset command changes the values of variables in the currenhmatiglobal/external variables.

=- Run the program again.

=- Step to the next line.

=- Change the initial value ofto 6 by entering the commandet x = 6
=- Continue execution.

10 GDB Tutorial

Notice how the value of is larger. In this way, it is possible to change the valuesasfables while debugging to
investigate how the program behaves with new values instHaaving to restart the debugging process or change and
recompile the program.

=- Continue the program.
= Quit out of GDB. If using Emacs, enter the commatd k; otherwise, enter the commandit or g.
= Close thegdb_ basic.cc buffer.

5 Debugging Example 1

= Create a buffer within Emacs containing the fith_qg1.cc.

This program calculates the sum of an array of sizgivenn (see Appendix B), and it currently contains some errors.
The program is terminated by entering either the end of fijesegjuence@-c C-d in Emacs, okCTRL>-d in the Unix
shell) or the sentinel value -999.

=- Compile the program using the commard:+ -g gdb_ql.cc

Notice the compilation error message displayed in the ctatipn buffer.
gdb_ql.cc:38: unterminated string or character constant
gdb_ql.cc:22: possible real start of unterminated constant

The compiler believes that a string or character constamttiserminated in line 38.
=- Goto line 38. Since the error probably consists of a missumgation mark, start by examining line 38.

cout << array[i] << "] is " << returnValue << endl;
Examining line 38 of the code, it is clear that the string cat tne is terminated properly! Therefore, the error comes
from a previous line that contained a string that is not teated properly. Start searching from line 22 forwards, as
indicated by the second compiler error message.

=- Make the required correction.
=- Save the program.
=- Compile the program.

Having achieved a successful compilation:

=- Start up GDB on the program’s executatdeut.

= Enter the commandun

= Enter the numbes in response to the promghter the size of the array to sum [<CTRL>-D or -999 for EOF]:
and pressReturn>.

=- Enter a number at the next prom@titer value [1].

GDB responds with:

(gdb) run
Starting program: /u/cssystems/tutorial/GDB/C++/a.out

Enter the size of the array to sum [<CTRL>-D or -999 for EOF]: 5
Enter value [1] 1
Program received signal SIGSEGV, Segmentation fault.

0xff153974 in istream::operator>> (this=0x20ed0, i=@0x4) at iostream.cc:352
352 iostream.cc: No such file or directory.

The program received a “Segmentation fault” signal at askinesff738e in routineistream::operator>>. This message
often indicates a pointer addressing problem.

=- Enter the commandhere to receive more information about the location of the emnahie program.

GDB Tutorial 11

GDB responds with:
(gdb) where
#0 Oxff153974 in istream::operator>> (this=0x20ed0, i=@0x4) at iostream.cc:352
#1 0x108cO in readIinArrayAndSum (array=0x4, size=1) at gdb_ql.cc:11
#2 0x109cc in main () at gdb_qg1.cc:32
This information is about thetack frames. A frame is the data associated with a call to a routine. It contaies th
arguments passed to the routine, variables local to theewind the executing routine’s address.
Upon starting a program, the stack has only one framed(tite-most frame) which is for routinenain. A new
frame is created for each routine called. The frame lab@[ggeinner-most frame) is the most recently created frame.
In this example, frame 0 involves the I/O output operator, This routine is invoked by the routimeadinArrayAndSum
in frame 1. The information associated with frame 2 givesfileename containing the programgdb_ql.cc. Each
frame also gives a line number. This number is either thedmehich the error occurred, or the line from which the
routine containing the error was invoked. The frame for fledperator-> has no file and line numbers because it was
not compiled with theg flag. As a result, GDB cannot display the source code wherertioe occurred. Therefore,
you have to manually begin the search in your program.

=- Enter frame 2 by typingrame 2 or f 2
= Listline 32.

27 if (!cin.good()) {

28 cerr << "\ nERRCOR: cannot have char or string for the array size\n";
29 exit(-2);

30 Y if

31 int *array;

32 int returnValue = readInArrayAndSum(array, size);

33 cout << "\ nsumof [";

34 int i;

35 for (i = 0; i < size-1; i += 1); {

36 cout << array[i] << ", ";

Line 32 is the invocation ofeadlnArrayAndSum. Since it appears correct, move into the frame associattdtie
routine and examine its associated information.

= Enter frame 1.

GDB responds with

(gdb) frame 1
#1 0x108cO in readIinArrayAndSum (array=0x4, size=1) at gdb_ql.cc:11

You should notice that the address associated with the aeaanray looks a bit odd.
=- Try printing the element at index 1.

GDB responds with

(gdb) print array[1]
Cannot access memory at address 0x4

So, the address containedamay is invalid.

Make the buffer containingdb_q1.cc visible.

Goto line 31 C-x @ command).

The declaration ofirray doesn’t actually allocate any space. Change the declar&tioeadint array[size];
instead.

Save and recompile the file.

Create buffer containindatal and examine its contents.

Make the thegdb-a.outx buffer visible in a window.

Run the program again, but now use a data file for the input. thseommandrun < datal What does the
< datal do after the run command? You will be prompted to restart ikvhy isthis essential ?

L4y

L4 vy

12 GDB Tutorial

Isthe programworking correctly? No, we still have a segmentation fault.

=- Printthe value of. You should see that it is significantly larger than 10, tlze sif the array.

=- Correct the code by changing the incremenitaf line 9 to be by one rather than by two.

= Recompile the code.

= Run the program as before by entering just on the GDB command line. Be aware that entening is
equivalent taun < datal (seehelp run).

I's the output correct given the contents of datal? No, the output just have been a single sum, not two, and the
single sum should have be#®, not9. To determine the exact location of the error, the execuifdhe program needs
to be traced. The error is likely to be igadIinArrayAndSum since that routine handles the input and summation.

= Enter the commandireak readInArrayAndSum.
= Run the program as before.

The program continues execution until the first breakpaiméached.
The following code is displayed in thelb_qg1.cc buffer:

#include <iostream.h>

int readIlnArrayAndSum(int *array, int size) {
=> int sum = O;
for (inti=1;il=size;i+=1) {
cout << "\ nEnter value: ";
cin >> array[il;
sum += array[i];
} 1 for
return sum;
} /I readIinArrayAndSum

GDB tells you the values of the parametarsay andsize.

To trace the values of the variables thatdinArrayAndSum() uses as they change, use tiigplay command.

Step through the next two statements by usingithe 2 command.

Display the variableg sum, andarrayf[i].

Step through the next statemesdut << "\ nEnter value [" <<i<<"] ";.

Step through the next statemetity >> array[i];.

Step through the next statemenrym += array[i];.

Step to the next statement, the loop. sum is now set to 1, the value iarray[1]. So far, everything seems
appropriate.

Notice that the parameter teadinArrayAndSum indicates that 10 values will be read in. We don’t want to step
through all of the statements, we want to concentrate onnlaédtages of our loop, so set a break point on line
13.

Continue to the next breakpoint.

Bypass the next 8 crossings of the breakpoint by entexings

¢y

¢l

GDB responds with

GDB Tutorial 13

(gdb) cont 8
Will ignore next 7 crossings of breakpoint 3. Continuing.

Enter value:
Enter value:
Enter value:
Enter value:
Enter value:
Enter value:
Enter value:
Enter value:
Breakpoint 3, readInArrayAndSum (array=0xffbafac8, size=10) at gdb_qgl.cc:13
3:array[i] = 1
2:sum=9
1.i=9

=- Step to the next instruction. Suddenly, we're about to resum instead of executing the loop one more time.
= Print the value ofrray.
= Print the address of the element at index hrody.

GDB responds with
(gdb) print array
$1 = (int ») Oxffbefac8
(gdb) print &(array[1])
$2 = (int) Oxffbefacc

These two addresses do not match. So, the array actually steg position earlier, at index 0.

=- Change the initialization dfin the for loop to O rather than 1.

=- Save and compile the code.

= Move back to thegdb-a.out+ buffer.

= Runthe program again. You will be prompted to restart it. flogram stops at the breakpointéadinArrayAndSum.
= Delete breakpoints 1 and 2.

=- Continue execution.

Does the code work correctly now? The sum is calculated correctly, but the array is not pritgdcorrectly.

= Listline 32, since the print loop is in that general vicinity

=- Put abreak point on line 34.

=- Run the program again.

=- When you reach the loop, display variable

=- Step through the loop. Notice that the value lb&s suddenly reached 9.

While the for loop appears to be correct, there is a very sudstior, which is the semi-colon at the end of fhdine
terminating the loop body; therefore, the code in the bréessnply a block separate from the for statement. In other
words, the for loop executes until it is done, and then theeawithin the braces is executed.

= Remove the semi-colon from the end of the for statement.
=- Save and compile the code.

= Move back to thegdb-a.out+ buffer.

=- Run the program again.

Does the code work correctly now?

= Close all of the current buffers.

14 GDB Tutorial

6 Debugging Example 2
= Create a buffer containing the figglb_ g2.cc.

This program reads in strings, and stores the string alpiallg, along with its number of occurrences, in a linked
list (see Appendix C). The program currently contains somare.

= Compile the code by using the commarmd#+ -g gdb_g2.cc.
= Create a buffer containing filgata2 and examine the data.
=- Start up GDB on the program’s executatdeut.

=- Enter the commandun data2

GDB responds with:

(gdb) run data2
Starting program: /u3/ctkierstead/GDB/a.out data2

Program received signal SIGSEGV, Segmentation fault.
basic_string<char, string_ char_traits<char>, __ default_alloc_template<false, 0> >::irep (this=0x1)
at /.software/arch/gcc-2.95.2/distribution/lib/gcc-lib/sparc-sun-solaris2.6/2.95.2/. ./. ./. /. ./include/g++-3/std/bastring.h:147
with the arrow on a line in the string library.
An error of “Segmentation Fault” usually indicates a prabheith a pointer.

= Itis unlikely the string library has a bug, so let’s determimhere the offending call was made. Useiilhere
command.

GDB responds with:
(gdb) where
#0 basic_string<char, string_char_traits<char>, __default_alloc_template<false, 0> >:irep (this=0x1)
at /.software/arch/gcc-2.95.2/distribution/lib/gcc-lib/sparc-sun-solaris2.6/2.95.2/. ./. ./. /. ./include/g++-3/std/bastring.h:147
#1 0x14b88 in basic_ string<char, string_char_traits<char>, __ default_alloc_template<false, 0> >::basic_ string (
this=0xeffff998, str=@0x1)
at /.software/arch/gcc-2.95.2/distribution/lib/gcc-lib/sparc-sun-solaris2.6/2.95.2/. ./. ./. /. ./include/g++-3/std/bastring.h:172
#2 0x14df0 in ListNode::getWord (this=0x1) at gdb_g2.cc:20
#3 0x13170 in ListADT::searchlnsert (this=0xeffffblc, word={static npos = 4294967295, static nilRep = {len = 0,
res = 0, ref = 1, selfish = false}, dat = 0x27d20 " Thi s"}) at gdb_g2.cc:112
#4 0x12f28 in ListADT::ListADT (this=0xeffffblc, fileName=0xeffffcc6 " dat a2") at gdb_q2.cc:78
#5 0x12d30 in main (argc=2, argv=0xeffffb94) at gdb_q2.cc:49

The call listed in frame 2 has an invalid address assignetiganternal object pointethis. So, the error probably
came from the previous frame.

= Use theframe 3 command to enter the frame so we can examine the previous'Samiues.

GDB puts the arrow on the following line:
=> if (head == NULL || head->getWord() > word) {

Since it was the call tgetword that failed, and the method was being calledhead, the problem likely lies with
head.

=- Print the contents ofiead. This is the first word that we are inserting into the list, aletihead contains an
address of 1 rather than the expected 0.

= Find the initialization ohead in ListADT’s constructor. Replace the stateméhistNodex) 1 with NULL.

= Recompile the code and try running the program again.

Isthe program correct? No, since no information is output for the list. Either th&t is empty, or there is something
wrong with the printing of its contents. The execution of gnegram must be traced in order to pinpoint the problem
by setting some breakpoints and observing what happens thbamde is run.

=- Set a breakpoint at line 112. This location is at the starhefihsertion routine (If you had written the program,
you would know this.) We could have set a breakpoint at lingju& after the first word is read in; however,
when we step inteearchinsert, we'd have to first get through a number of string library gall

GDB Tutorial 15

Run the program again.

GDB stops at the breakpoint. To ensure that the list is bedngectly maintained, print the value béad, which

should bedx0/NULL.

=- Display the object pointed to by the pointerad using the commandisplay *head. (GDB will complain that it
cannot display &lULL pointer and will disable the display.)

= Display the value ofead instead. We can always turn the other display back on latex.pbinter to the top of
the list is stillNULL, which is correct for inserting the first token.

=- Step through the next 3 lines using text command (watch the arrow), carefully observing the valuieeatfi.

=
=

head suddenly went from a non-zero value backo. This indicates an error with the if statement. Close exatim
of the if statement reveals that an assignment operatomappdiere an equals operator should be. Instead of is
used which assigns the valuef/LL to *head and causes the program lose all previous information stioré list.

=- Correct the error.

=- Save and compile the program.

= Enter thexgdb-a.out buffer.

=- Run the program again. (You will be prompted to restart i program stops at the breakpointviain.
= Delete breakpoint 1 and continue execution.

The program now runs properly.
Before leaving GDB, two more useful features are worth nogmitig: the ability to print out structures and the
ability to easily follow pointers and print out the objectipted to.

= Enter buffergdb_qg2.cc

= Move the cursor down to the limayList.printList();.

= Enter the commandv-x what-line <Return>. The line number of the line containing the cursor is priritethe
mini-buffer.

=- Set a breakpoint at this line.

=- Run the program again.

= Enter the commands *myList.head

GDB responds with:
$1 = {token = {static npos = 4294967295, static nilRep = {len = 0, res = 0, ref = 1, selfish = false},
dat = 0x27f60 "Ei t her "}, timesFound = 1, next = 0x28388}

= Enter the commandket print pretty to print structures in a nice format.
= Print*myList.nead again.

GDB responds with:
$2 ={
token = {

static npos = 4294967295,

static nilRep = {
len = 0,
res = 0,
ref = 1,
selfish = false

b
dat = 0x27f60 "Ei t her"

12

timesFound = 1,
next = 0x28388

= Enter the commandrint *myList.head.next:

16 GDB Tutorial

GDB responds with:
$3={
token = {
static npos = 4294967295,
static nilRep = {
len = 0,
res = 0,
ref =1,
selfish = false
b
dat = 0x27f00 " Sone"
b
timesFound = 1,
next = 0x28220

}

= Enter the commandarint *$3.next:

GDB responds with:
$4 = {
token = {
static npos = 4294967295,
static nilRep = {
len = 0,
res = 0,
ref = 1,
selfish = false
b
dat = 0x27d20 " Thi s"
b
timesFound = 1,
next = 0x28268

}
Notice the use of a history variable to save typing. This caedntinued until the end of the list is reached, allowing
a user to verify that the data structure is set up correctly.

= Enter the command:ont
= Close all of Emacs buffers.
=- Terminate Emacs by using ti@&=x C-c command.

A Basc

class fred {
public:
int foo(int x) {
int i;
for (i=1;i<=5;i+=1){
X += 1,
} Il for
return x;
} /I foo

b

class mary {
fred f;
public:
int bar(int x) {
intr;
X += 1,

GDB Tutorial

r = f.foo(x);
return r;
}
h

int main() {
intr, x=1;
mary m;
r=m.bar(x);
return O;

}
B ArraySum

/.
/

GDB Test File 1 - contains several errors

#include <iostream.h>

int readlnArrayAndSum(int =array, int size) {
int sum = 0;
for (inti=1;il=size;i+=2){
cout << "\ nEnter value [" <<i<<"] ";
cin >> arrayl[i];
sum += array[i];
} Il for
return sum;
} /I readinArrayAndSum

/. /
/ !

int main() {
int size;

cout << "\ nEnter the size of the array to sum[<CTRL>-D or -999 for ECF]:;
for(;i) {

cin >>size;

if (cin.eof()) break;

if (size==-999) break;

if (!cin.good()) {

cerr << "\nERROR: cannot have char or string for the array size\n";
exit(-2);

Yy /if

int rarray;

int returnVal ue = readl nArrayAndSun{ array, size);

cout << "\nsum of [";

inti,;

for (i =0; i <size-1; i +=1); {

cout << array[i] <<",";

Y 11 for

cout << array[i] <<"]is" <<returnVal ue << endl ;
Yy 11 for
return O;

} /1 main

C Strings

/.
/

GDB Test File 2 - contains a few errors

#include <iostream.h>
#include <fstream.h>
#include <string>

17

18

/ Class Declarations #xxxkssxkkkrxx/

class ListNode {
string token;

int timesFound; /I Times that token has been found
ListNode *next; /I Next node in the list
public:

ListNode(string word) : token(word), timesFound(1), next(NULL) {}

ListNode(string word, ListNode *next) : token(word), timesFound(1), next(next) {}

~ListNode() { if (next != NULL) delete next; }

string getWord() { return token; }

int getNumOccurrences() { return timesFound; }

void incNumOccurrences() { timesFound++; }

ListNode * getNext() { return next; }

void setNext(ListNode * next) { ListNode::next = next; }

class ListADT {

ListNode *head; /I Head of the list

public:
ListADT(char * fileName); /I Initialize the list from the specified file
~ListADT();

bool findWord(string word);
void searchlnsert(string word);
void printList ();

—

int main(int argc, char *argv[]) {
/I Must have an input file specified on the command line.
if (argc!1=2){
cerr << argv[0] << " input-file" << endl
exit(-1);
Y Iif

ListADT myList(argv[1]); /I List of words.
cout << "\ nThe I i nked | i st contai ns:" << endl;

myList.printList();
} /I main

/ Class Implementations

Builds a list of words contained in the specified input file.

Input: name of the input file

Output: builds a list where head contains the address of the first node

Error: program ends with error message and exit code -2 if the file could
not be opened for input.

/

ListADT::ListADT(char * fileName) {

head = (ListNode *) 1; /I Initialize list to empty.
string word;
ifstream infile(fileName, ios::in); /I Open input file
if (linfile) {
cerr << "Fil e " << fileName << " coul d not be opened for input."
exit(-2);
Y if

while (true) {

<< endl;

GDB Tutorial

GDB Tutorial

infile >> word;
if (infile.eof()) break;
searchlnsert(word);
} /I while
} /I ListADT::ListADT

/.
/

Determines if the specified word is in the list or not.

Input: word to be searched for
Output: flag indicating whether a word has been found or not.
Errors: N/A

bool ListADT::findWord (string word) {
bool foundWord = false;
for (ListNode *ptr = head; ptr != NULL && !foundWord; ptr = ptr->getNext()) {
if (ptr->getWord() == word) {
foundWord = true;
Y if
} Il for
} /I ListADT::findWord

/.
/

Searches the list for the word. If the word is in the list, the
repetition count of the word is incremented. Otherwise, the word is
added to the list.

Input: Pointer to the start of the list - ListHead

Pointer to the buffer which contains the word - Token

Output: A list of words with their frequencies of occurrence

Errors: If no space for new word, then print message and exit program
/

void ListADT::searchinsert (string word) {
ListNode *newNode, *temp, *prev;
int value;

if (head == NULL || head->getWord() > word) {
head = new ListNode(word, head);

if (head = NULL) { /I Ran out of space.
cerr << "ERROR ran out of space\n";
exit(-3);

Y Iif

} else if (head->getWord() == word) {
head->incNumOccurrences();
} else {
newNode = new ListNode(word);
if (newNode == NULL) { /I Ran out of space.
cerr << "ERROR ran out of space\n";
exit(-3);
Y if
prev = head,;
for (temp = head->getNext(); temp != NULL; temp = temp->getNext()) {
if (word == temp->getWord()) {
temp->incNumOccurrences();
break;
} else if (word < temp->getWord()) {
newNode->setNext(temp);
prev->setNext(newNode);
break;
Y if
prev = temp;
} I for
if (temp == NULL && prev != NULL) { Il Fell off list
prev->setNext(newNode);
Y if
Y if
} /I ListADT::SearchInsert

20

/.
/

Prints the list with the word repetition counts.

Input: N/A
Output: The words and their frequencies of occurrence.

void ListADT::printList() {
for (ListNode *ptr = head; ptr != NULL ; ptr = ptr->getNext()) {
cout << "word: " << ptr->getWord() << " occurs "
<< ptr->getNumOccurrences() << " time(s)" << endl
} Il for
} /I ListADT::printList

/.
/

Deletes the list.

Input: N/A
Output: The list has been freed.

ListADT::~ListADT () {
if (head != NULL) {
delete head;
Y if
} /I ListADT::~ListADT

GDB Tutorial

GDB Tutorial

Index

=,3
>, 3
<Return>, 9

break, 6, 12

breakpoint, 6
continue, 8
delete, 6
disable, 6
enable, 6
finish, 8
next, 8
step, 8

continue, 8

debug print statements, 3
delete, 6

disable, 6, 9

display, 7, 12

enable, 6
execution error, 4

finish, 8, 9

gdb

<Return>, 9

break, 6

breakpoint, 6
continue, 8
delete, 6
disable, 6
enable, 6
finish, 8
next, 8
step, 8

continue, 8

delete, 6

disable, 6

disable, 9

display, 7

enable, 6

finish, 8

finish, 9

help, 5

info, 9

list, 7

next, 8

print, 7

run, 6

set, 9

21

stack frame, 11
step, 8
undisplay, 8
where, 10

gdb, 5

help, 5

info, 9
inner-most frame, 11

list, 7

next, 8

outer-most frame, 11
print, 7

run, 6

semantic error, 4
set, 9

stack frame, 11
step, 8

syntax error, 4

undisplay, 8
unix consultant, 3

where, 10

