
Final Exam Answers – CS 343 Fall 2022

Instructor: Peter Buhr

December 10, 2022

These are not the only answers that are acceptable, but these answers come from the notes or lectures.

1. (a) 2 marks The Coordinator can accumulate results (subtotals) while Workers are reinitialize.

(b) 2 marks member block waits for Nth thread, and then unblocks all waiting threads.

member last is implicitly called by the Nth thread that triggers the barrier release.

(c) 3 marks The semaphore is initialized to 0.

The P is in one thread before S2 and the V in the other thread after the S1.

(d) 2 marks A simple critical section has only one thread in it.

A complex critical section can have multiple threads in it.

(e) 7 marks

1 COBEGIN
1 BEGIN S1; S3; END

1 S2;

COEND

1 S4;

1 COBEGIN

1 S5;

1 S6;

COEND

(f) 1 mark Yes.

(g) 2 marks A shadow queue contains information about the kind of blocked thread waiting on the

lock.

(h) 2 marks Barging between reader/writer threads and barging among the writer threads.

1

2. (a) 2 marks synchronization or mutual exclusion

(b) 6 marks

acquire all resources at start acquire locks same order

L1.P() L2.P() L1.P() L2.P()

R1 R2

R1 & R2 R2 & R1

L1.P() L1.P()

R1

L2.P() L2.P()

R2

R1 & R2 R2 & R1

(c) i. 3 marks

11 Total Resources

-10 Used

1 Available for allocation

P1 0

2

The state is NOT safe as there are insufficient resources for any process to execute so no

sequence of execution is possible after this point.

ii. 3 marks

11 Total Resources

-10 Used

1 Available for allocation

P4 0

8

The state is safe as any sequence of execution after this point is safe.

iii. 4 marks

11 Total Resources

-9 Used

2 Available for allocation

P1 1

3

P2 0

5

P3 1

9

P4 3

11

The state is safe as this particular sequence of execution is safe.

2

3. (a) 2 marks A thread can be preempted between the lock release and returning v, allowing v to

change before the preemption continues with the wrong v.

Copy v to a local temporary, release the lock, return the temporary.

(b) 2 marks The signal is delayed because the signaller holds the monitor lock.

(c) 2 marks For signal, the signalled thread is postponed and signaller thread continues.

For signalBlock the signaller thread is postponed and signalled thread continues.

(d) 1 mark signalBlock

(e) 2 marks read-only member to access data.

combining multi-step protocol into a single call that still requires a complex critical-section.

(f) 2 marks The signaller queue is optimized away because the signaller has the highest priority so

it does not need to block.

The signalled queue is changed to a stack needed for _Accept.

4. (a) 2 marks Adding _When clauses before each _Accept /_Select clause and a statement after-

wards.

(b) 2 marks If an accepted member fails with an exception, the acceptor is notified with a RendezvousFailure

exception.

(c) 2 marks A courier carries message between administrators so the administrators do not make

calls to communicate with each other.

(d) 1 mark client side

(e) 2 marks The _Select blocks until either future f1 or both f2 and f3 are available.

5. (a) 1 mark No

(b) 2 marks Data values are replicated from memory through the cache levels into registers.

(c) 2 marks volatile ensures variables are loaded/stored frequently to/from registers.

(d) 1 mark ABA

(e) 1 mark channels

(f) i. 3 marks Nth task does notifyAll, leaves monitor and performs its ith step, and then races

back (barging) into the barrier before any notified task restarts. It sees count still at N and

incorrectly starts its ith+1 step before the current tasks have completed their ith step.

ii. 1 mark Nth task sets count to 0 (barging avoidance).

iii. 2 marks Spurious wakeup may spontaneously unblock a waiting thread from a condition

variable.

3

6. (a) 12 marks

1 unsigned int winner;

1 bool shutdownStarted = false;

TallyBets::Payout TallyBets::placeBet(BetSlip slip) {

1 if (shutdownStarted) _Throw Leave();

1 try {

1 _Accept(done) {

1 } or _Accept(race) {

1 } or _Accept(placeBet) {

}

1 } catch(uMutexFailure::RendezvousFailure &) {}

1 if (shutdownStarted) _Throw Leave();

1 return tally(slip);

} // TallyBets::placeBet

void TallyBets::race(unsigned int winner) {

1 TallyBets::winner = winner;

} // TallyBets::race

void done() {

1 shutdownStarted = true;

} // TallyBets::done

(b) 7 marks

1 uCondition bench;

TallyBets::Payout TallyBets::placeBet(BetSlip slip) {

1 if (shutdownStarted) _Throw Leave();

1 bench.wait();

1 bench.signal();

1 if (shutdownStarted) _Throw Leave();

1 return tally(slip);

} // TallyBets::placeBet

void TallyBets::race(unsigned int winner) {

- TallyBets::winner = winner;

1 bench.signal();

} // TallyBets::race

void done() {

- shutdownStarted = true;

} // TallyBets::done

4

(c) 7 marks

1 AUTOMATIC_SIGNAL;

1 unsigned int numBets = 0;

TallyBets::Payout TallyBets::placeBet(BetSlip slip) {

- if (shutdownStarted) _Throw Leave();

1 numBets += 1;

1 WAITUNTIL(numBets == 0, ,);

- if (shutdownStarted) _Throw Leave();

1 EXIT();

- return tally(slip);

} // TallyBets::placeBet

void TallyBets::race(unsigned int winner) {

- TallyBets::winner = winner;

1 numBets = 0;

1 EXIT();

} // TallyBets::race

void done() {

- shutdownStarted = true;

} // TallyBets::done

5

7. 25 marks

struct Work {

1 BetSlip slip;

1 FPayout fpayout;

1 Work(BetSlip slip) : slip(slip) {}

};

1 FPayout placeBet(BetSlip slip);

Work * node;

1 list<Work *> students; // students waiting for race results

1 unsigned int numStuds;

1 TallyBets(unsigned int numStuds) : numStuds(numStuds) {}

TallyBets::FPayout TallyBets::placeBet(BetSlip slip) {

1 node = new Work(slip);

1 return node->fpayout;

} // TallyBets::placeBet

- void TallyBets::race(unsigned int winner) // same as for monitor

- void TallyBets::done() // same as for monitor

void TallyBets::main() {

1 for (;;) {
1 _Accept(done) {

1 break;

1 } or _Accept(race) {

1 while (! students.empty()) {

1 Work * n = students.front();

1 students.pop_front();

1 n->fpayout.delivery(tally(n->slip));

1 delete n;

} // for

} or _Accept(placeBet) {

1 students.push_back(node); // store future

} // _Accept

} // for

// Students not waiting on futures.

1 unsigned int rem = numStuds - 1 - students.size();

1 for (unsigned int b = 0; b < rem; b += 1) {

1 _Accept(placeBet) {

- students.push_back(node); // store future

- Work * n = students.front();

- students.pop_front();

1 n->fpayout.delivery(new Leave());

- delete n;

1 } or _Accept(done) {}

} // for

// Students waiting on futures.

1 while (! students.empty()) {

- Work * n = students.front();

- students.pop_front();

- n->fpayout.delivery(new Leave());

- delete n;

} // while

} // TallyBets::main

Alternatively, put students.push_back(node) in placeBet().

6

