
Final Examination

Term: Fall Year: 2022

CS343

Concurrent and Parallel Programming

Sections 001, 002

Instructor: Peter Buhr

Saturday, December 10, 2022

Start Time: 12:30 End Time: 15:00

Duration of Exam: 2.5 hours

Number of Exam Pages (including cover sheet): 7

Total number of questions: 7

Total marks available: 123

CLOSED BOOK, NO ADDITIONAL MATERIAL ALLOWED

1

Final Exam – CS 343 (F22) 2

1. (a) 2 marks When creating a cyclic barrier, an extra Coordinator task is often created. What is the

advantage of the Coordinator?

(b) 2 marks In a barrier lock, explain the purpose of members block and last.

(c) 3 marks Explain how a semaphore is used to create the synchronization pattern, i.e., do S1

before S2. Use words not code.

(d) 2 marks Explain the difference between a simple and complex critical section?

(e) 7 marks Given the following precedence graph:

S1 S2

| |

S3 |

\ /

S4

/ \

S5 S6

construct an optimal solution, i.e., minimal threads and locks, using COBEGIN and COEND in

conjunction with binary semaphores using P and V to achieve the precedence graph. Use BEGIN

and END to make several statements into a single statement and show the initial value (0/1) for

all semaphores. Name your semaphores Ln, e.g., L1, L2, ..., to simplify marking.

(f) 1 mark Is staleness / freshness a form of barging?

(g) 2 marks Explain the purpose of a shadow queue with respect to locks.

(h) 2 marks With respect to the readers/writer problem, there are two kinds of temporal reordering

that can lead to incorrect behaviour. Describe these two reorderings.

2. (a) 2 marks What two aspects of concurrency may be missing when there is a race condition?

(b) 6 marks Restructure the following code in two different ways so the deadlock is prevented.

uSemaphore L1(1), L2(1); // open

task1 task2
L1.P() L2.P()

R1 R2 // access resource

L2.P() L1.P()
R1 & R2 R2 & R1 // access resources

(c) Consider a system in which there is a single resource with 11 identical units. The system uses

the banker’s algorithm to avoid deadlock. Suppose there are four processes P1, P2, P3, P4 with

maximum resource requirements of 2, 5, 8, and 8 units, respectively. A system state is denoted

by (a1a2a3a4), where ai is the number of resource units held by Pi, i = 1, 2, 3, 4. Which of the

following states are safe? Justify your answers with the steps of the banker’s algorithm and a

concluding statement.

i. 3 marks P1 P2 P3 P4

Maximum Needed 2 5 8 8

Current Acquired 1 1 4 4

Needed to Max. 1 4 4 4

ii. 3 marks P1 P2 P3 P4

Maximum Needed 2 5 8 8

Current Acquired 0 1 2 7

Needed to Max. 2 4 6 1

Final Exam – CS 343 (F22) 3

iii. 4 marks P1 P2 P3 P4

Maximum Needed 2 5 8 8

Current Acquired 1 2 4 2

Needed to Max. 1 3 4 6

3. (a) 2 marks The following monitor simulation using a mutex lock has a problem returning v. Ex-

plain the problem and how to fix it. Use words not code.

class Mon {
MutexLock mlock;
int v;

public:
int x(. . .) {

mlock.acquire();
. . .
mlock.release();
return v;

}
};

(b) 2 marks What is unusual about signalling a condition in a monitor?

(c) 2 marks Explain the difference between signal and signalBlock on a monitor condition variable.

(d) 1 mark Does _Accept behave like a signal or signalBlock?

(e) 2 marks Give two situation where a monitor uses a _Nomutex public member.

(f) 2 marks Explain the transformation from this general monitor into the specific µC++ monitor.

mutex

object

variables
conditions

signalled (W)

signaller (S)

exit

blocked taskactive task

calling (C)

4. (a) 2 marks Explain two capabilities added with the long form of the _Accept /_Select statements.

(b) 2 marks Explain a rendezvous failure.

(c) 2 marks Explain how a courier task works.

(d) 1 mark Does a future increase client or server side concurrency?

(e) 2 marks Explain the semantics of the following _Select statement.

_Select(f1 | | f2 && f3);

Final Exam – CS 343 (F22) 4

5. (a) 1 mark Are registers shared among different cores on a multiprocessor computer?

(b) 2 marks How does data replication work in a cache hierarchy?

(c) 2 marks How does volatile prevent problems when programming with race conditions?

(d) 1 mark What is the name of the problem that occurs if only the CAS instruction is used to build

a lock-free stack?

(e) 1 mark How do goroutines communicate in the programming language Go?

(f) Given the following Java monitor to implement a barrier:

class Barrier { // monitor

private int N, count = 0;
public Barrier(int N) { this.N = N; }
public synchronized void block() {

count += 1; // count each arriving task

if (count < N)
try { wait(); } catch(InterruptedException e) {}

else // barrier full

notifyAll(); // wake all barrier tasks
count -= 1; // uncount each leaving task

}
}

i. 3 marks Explain why the barrier is incorrect.

ii. 1 mark Explain a simple correction to make it work.

iii. 2 marks Explain what unusual phenomenon prevents the simple solution from working.

6. A group of students go to the horse races to gamble their tuition money. Each race, a student bets a

fixed amount of money on two different horses, which is subtracted from their tuition money. After the

race is over, if a student picks a winner, the amount won is added to their tuition money. The students

gamble until one (or more in the simultaneous case) loses enough money they cannot make the fixed

bet. Once a student cannot bet, all the students leave the race track and stop betting.. Figure 1 shows

an example day at the races. Consult this example to understand what your monitor needs to handle.

DO NOT print any output or compute any values needed only for printing!

Figure 2 shows the betting interface (you may only add code in the designated areas). (Do not copy

the starting code into your answer booklet.) Write the tally-betting office using 3 kinds of monitors.

• Member placeBet (you implement) is called by a student to place a bet on 2 horses using BetSlip.

• Member done (you implement) is called by a student with insufficient money to bet. After which,

arriving and waiting students receive a Leave exception indicating its time to stop betting.

• Member race (you implement) is randomly called by the racetrack to indicate a race is run and

deliver the winning horse.

• Member tally (given) is called to compute the race results for each student’s bet. Called to

generate the return value from placeBet.

Write only the code for the TallyBets monitors; do not write or create the student, racetrack, or

program main. Assume the program main shuts down the racetrack after the students leave.

No error checking is required.

Final Exam – CS 343 (F22) 5

fixed bet 2 x $3, 5 horses, betting odds 3 to 1
better 1 starts with $100
race 1: 1 bet, $6 bet, winning horse 2
better 0 starts with $100
better 3 starts with $100
better 2 starts with $100
better 4 starts with $100
better 5 starts with $100
race 2: 6 bets, $36 bet, winning horse 1
race 3: 3 bets, $18 bet, winning horse 4
race 4: 6 bets, $36 bet, winning horse 2
race 5: 4 bets, $24 bet, winning horse 2
race 6: 6 bets, $36 bet, winning horse 3
race 7: 5 bets, $30 bet, winning horse 0
race 8: 4 bets, $24 bet, winning horse 4
race 9: 6 bets, $36 bet, winning horse 3
race 10: 4 bets, $24 bet, winning horse 4
race 11: 5 bets, $30 bet, winning horse 3
race 12: 6 bets, $36 bet, winning horse 3

race 13: 5 bets, $30 bet, winning horse 0
race 14: 5 bets, $30 bet, winning horse 1
race 15: 4 bets, $24 bet, winning horse 0
race 16: 4 bets, $24 bet, winning horse 2
race 17: 5 bets, $30 bet, winning horse 4
race 18: 6 bets, $36 bet, winning horse 2
race 19: 5 bets, $30 bet, winning horse 3
race 20: 5 bets, $30 bet, winning horse 4
race 21: 5 bets, $30 bet, winning horse 1
race 22: 5 bets, $30 bet, winning horse 2
race 23: 5 bets, $30 bet, winning horse 3
race 24: 3 bets, $18 bet, winning horse 2
better 4 ran out of cash $4
better 3 finishes with $58
better 5 finishes with $31
better 0 finishes with $31
race 25: 1 bet, $6 bet, winning horse 0
better 1 ran out of cash $1
better 2 finishs with $34
students leave

Figure 1: Betting Example

Implement the betting monitor TallyBets using:

(a) 10 marks external scheduling,

(b) 8 marks internal scheduling,

(c) 8 marks implicit (automatic) signalling, using only the following three macros.

#define AUTOMATIC_SIGNAL . . .
#define WAITUNTIL(predicate) . . .
#define EXIT() . . .

Macro AUTOMATIC_SIGNAL is placed only once in an automatic-signal monitor as a private

member, and contains any private variables needed to implement the automatic-signal monitor.

Macro WAITUNTIL is used to wait until the predicate evaluates to true. Macro EXIT is called

whenever control leaves the monitor.

7. 25 marks Write an administrator task to perform the same TallyBets as question 6. The only interface

changes are:

#include <list>
#include <uFuture.h>

_Task TallyBets {
// YOU ADD DECLARATIONS

public:
TallyBets(unsigned int numStuds); // number of students

typedef Future_ISM<Payout> FPayout; // future type

FPayout placeBet(BetSlip slip); // return future payout

. . .
private:

// YOU ADD DECLARATIONS

. . .
}; // TallyBets

Final Exam – CS 343 (F22) 6

_Monitor TallyBets {
#if defined(EXT) // external scheduling monitor solution

// YOU ADD DECLARATIONS

#elif defined(INT) // internal scheduling monitor solution

// YOU ADD DECLARATIONS

#elif defined(AUTO) // automatic-signal monitor solution

// YOU ADD DECLARATIONS

#endif
public: // common interface

enum { FixBet = 3, NumHorses = 5, BettingOdds = 3 };
_Event Leave {};
struct BetSlip { unsigned int bet1, horse1, bet2, horse2; };
struct Payout { unsigned int winner, payout; };

Payout placeBet(BetSlip slip) { // called by students

// YOU WRITE THIS CODE

}
void done() { // called by students

// YOU WRITE THIS CODE

}
void race(unsigned int winner) { // called by racetrack

// YOU WRITE THIS CODE

}
private:

// YOU ADD DECLARATIONS

Payout tally(BetSlip & slip) { // called before returning from placeBet

unsigned int payout = 0;
if (slip.horse1 == winner) payout = slip.bet1 * BettingOdds;
else if (slip.horse2 == winner) payout = slip.bet2 * BettingOdds;
return { winner, payout };

} // TallyBets::tally

}; // TallyBets

Figure 2: TallyBet Interface

where the constructor is passed the number of students in the group and placeBet returns a future to

a payout, which is filled in after a race for each student. (Do not copy the starting code into your

answer booklet.)

Ensure the TallyBets task does as much administration work as possible; a monitor-style solution will

receive little or no marks. Write only the code for the TallyBets task; do not write or create the

student, racetrack, or program main. Assume the program main shuts down the racetrack after

the students leave. No error checking is required.

µC++ future server operations are:

delivery(T result) copy result to be returned to the client(s) into the future,

unblocking clients waiting for the result.

delivery(uBaseEvent * cause) copy a server-generated exception into the future, and the

exception cause is thrown at clients accessing the future.

The C++ list operations are:

Final Exam – CS 343 (F22) 7

int size() list size

bool empty() size() == 0

T front() first element

T back() last element

void push_front(const T &x) add x before first element

void push_back(const T &x) add x after last element

void pop_front() remove first element

void pop_back() remove last element

void clear() erase all elements

