
Final Examination

Term: Winter Year: 2023

CS343

Concurrent and Parallel Programming

Section 001

Instructor: Caroline Kierstead

Thursday, April 13, 2023

Start Time: 19:30 End Time: 22:00

Duration of Exam: 2.5 hours

Number of Exam Pages (including cover sheet): 6

Total number of questions: 24 multiple-choice, 2 short-answer, 2

coding

Total marks available: 77

CLOSED BOOK, NO ADDITIONAL MATERIAL ALLOWED

1

Final Exam – CS 343 (W23) 2

Part A – Multiple Choice

Elided for reuse.

Final Exam – CS 343 (W23) 3

Part B – Short Answer

1. (a) 2 marks Explain why preventing synchronization deadlocks is not practical.

(b) 2 marks Briefly explain the difference between deadlock prevention and deadlock avoidance.

(c) 1 mark Name a technique for mutual exclusion deadlock avoidance.

(d) 1 mark What is the only reasonably practical method for preventing mutual exclusion deadlock?

2. Assume a programming language that provides blocking mutual exclusion locks and condition locks:

MutexLock m

m.acquire()

m.release();

CondLock c;

c.wait();

c.wait(m); // atomically block and release m, no reacquire of m on unblock

c.signal();

c.empty();

Note, MutexLock maybe acquired and released by different threads.

Create a Monitor class that is capable of performing internal scheduling, similar to the one shown

below, where methods foo and bar are mutually exclusive with themselves and each other (just like

_Mutex public methods in µC++ monitors):

Monitor M {

CondQueue bench; // blocking bench

int value;

public:

void foo();

int bar();

};

(a) 3 marks Write the locking declaration in M and the entry and exit protocol needed to provide

mutual exclusion for method foo.

(b) 3 marks Write the entry and exit protocol needed to provide mutual exclusion for method bar.

(c) 3 marks Assume a thread enters foo and performs bench.wait(m), where bench is a CondLock

and m is the MutexLock providing the monitor mutual-exclusion. Assume a thread now enters

bar, performs bench.signal() and immediately returns. Assume signal() returns a boolean value

indicating true if a thread is signalled and false otherwise. Write barging-prevention code in foo

and bar that guarantees the signalled thread acquires the monitor next.

Final Exam – CS 343 (W23) 4

Part C – Long Answer

1. (a) The taxi cab company, Maple Leaf Cabs, has N taxi cabs scattered throughout the city. The

dispatcher’s job is to take requests from clients for a taxi and to dispatch a taxi to the client for a

pickup. The dispatcher also takes requests from taxis for a client at the start of the day and after

each client is delivered to their destination.

The interface for the dispatcher monitor is the following (you may not change this interface; you

may only add code in the designated areas L1, L2 and L3). (Do not copy the starting code into

your answer booklet.)

_Monitor Dispatcher {

// communication variables

int xclient, yclient; // client (x,y) coordinates

int taxiId, clientId; // identities of taxi/client pairing

// L1: ANY VARIABLES NEEDED FOR EACH IMPLEMENTATION

public: // common interface

int getTaxi(int id, int x, int y) { // called by client

// L2: ANY SYNCHRONIZATION NEEDED FOR EACH IMPLEMENTATION

return taxiId;

}

int getClient(int id, int & x, int & y) { // called by taxi, x,y in/out parameters

// L3: ANY SYNCHRONIZATION NEEDED FOR EACH IMPLEMENTATION

return clientId;

}

};

A client calls the getTaxi routine to ask for a taxi to pick them up at an address given by parameter

coordinates (x,y). getTaxi returns the id of the taxi picking up the client, taxiId.

A taxi calls the getClient routine to indicate it is available and tell the dispatcher the taxi’s current

(x,y) location. The taxi’s call to getClient returns the client’s (x,y) position in arguments x and y,

and returns the id of the client being collected, clientId.

Do not write or create either the taxi or client tasks. You may assume for this question that

the dispatcher never shuts down.

Implement the Dispatcher monitor using:

i. 10 marks external scheduling,

ii. 14 marks internal scheduling,

iii. 13 marks implicit (automatic) signalling, using only the 3 macros defined below.

Assume the existence of the following preprocessor macros for implicit (automatic) signalling

(1(a)iii):

#define AUTOMATIC_SIGNAL . . .

#define WAITUNTIL(predicate) . . .

#define EXIT() . . .

Macro AUTOMATIC_SIGNAL is placed only once in an automatic-signal monitor as a private

member, and contains any private variables needed to implement the automatic-signal monitor.

Macro WAITUNTIL is used to wait until the predicate evaluates to true. Macro EXIT must be

called on return from every public routine of an automatic-signal monitor.

The µC++ uCondition operations are available at the end of the exam.

Final Exam – CS 343 (W23) 5

(b) 25 marks Write an administrator task to handle the dispatcher’s role for the Maple Leaf Taxi

company. Figure 1 contains the starting code for the dispatcher-Administrator (you may add

only a public destructor and private members). (Do not copy the starting code into your exam

booklet.)

A client calls the getTaxi routine to ask for a taxi to pick them up at an address given by parameter

coordinates (x,y). A future taxi is returned immediate to the client, so the client can execute

asynchronously (e.g., get ready to leave) before accessing the taxi. When the client accesses the

future taxi, they may block because the taxi is not there; otherwise, the client gets into the taxi

whose id is in the future.

A taxi calls the getClient routine to indicate it is available and tell the dispatcher the taxi’s current

(x,y) location. The taxi is dispatched to a client if there is an outstanding request from a client;

otherwise, the taxi blocks until a client request is made. The taxi’s call to getClient returns with

the (x,y) arguments changed to the next client’s location.

The dispatcher creates a pool of 5 taxis, and dispatches the nearest taxi to the client’s address to

minimize client waiting time, if a taxi is available. The taxi constructor is

Taxi(MapleLeafTaxi & employer, int id);

Routine nearestTaxi is used by the dispatcher to find the nearest available taxi address to the

given client address. (Do not write nearestTaxi; just use the member interface in Figure 1.)

When the dispatcher’s close routine is called at the end of the day, it prints out the message

“Closed for the day”, and stops accepting calls to getTaxi. (Assume no outstanding client re-

quests for a taxi after this point.) Then, the dispatcher must deal with outstanding futures to

clients that cannot be serviced (no cab will come to service their request), and it must wait for

all the taxis to check in before telling them to go home so they can be deleted. Any client with

an outstanding taxi-future has the exception Closed inserted into the future, so the client gets

this exception raised when it accesses the future. Any waiting or arriving taxi has the exception

Closed raised on its stack. The dispatcher must delete any allocated storage before terminating.

Ensure the dispatcher task does as much administration works as possible; a monitor-style so-

lution will receive little or no marks. Write the code for MapleLeafTaxi::main and any necessary

declarations/initializations; do NOT write the client, taxi, or program main. Assume the pro-

gram main creates and deletes all the necessary tasks, appropriately, and calls the dispatcher’s

close routine. µC++ future server operations are:

• delivery(T result) - copy result to be returned to the client(s) into the future, unblocking

clients waiting for the result.

• delivery(uBaseEvent *cause) - copy a server-generated exception into the future, and the

exception cause is thrown at clients accessing the future.

The C++ list operations are:

µC++ uCondition operations C++ list operations

bool empty() // true if nobody blocked

void wait() // wait on condition

void wait(int info) // wait with info

bool signal() // signal condition

bool signalBlock() // signal condition

int front() // return front element info

int size() // list size

bool empty() // size() == 0

T front() // first element

T back() // last element

void push_front(const T & x) // add x before first element

void push_back(const T & x) // add x after last element

void pop_front()// remove first element

void pop_back() // remove last element

void clear() // erase all elements

Final Exam – CS 343 (W23) 6

_Task MapleLeafTaxiDispatcher {
public:

_Event Closed {}; // indicate MapleLeafTaxi closed

typedef Future_ISM<int> Ftaxi; // future taxi

private:

struct LocnClient {

int id, x, y; // client id and location coordinates

Ftaxi ftaxi; // future returned to client

LocnClient(int id, int x, int y) : id(id), x(x), y(y) {}

};

struct LocnTaxi {

int id, x, y; // taxi id and location coordinates

uCondition idle;

LocnTaxi(int id, int x, int y) : id(id), x(x), y(y) {}

};

enum { NoOfTaxi = 5 };

list<LocnClient *> clients; // client requests for taxis

list<LocnTaxi *> taxis; // waiting taxis

int xclient, yclient; // communication variables

bool closed = false;

public:

Ftaxi getTaxi(int id, int x, int y) { // called by client

LocnClient *client = new LocnClient(id, x, y); // create work request

clients.push_back(client); // add to request list

return client->ftaxi; // return future request

}

void getClient(int id, int & x, int & y) { // called by taxi, x,y in/out parameters

LocnTaxi taxi(id, x, y); // use the stack!

taxis.push_back(&taxi); // add to waiting taxi list

taxi.idle.wait(); // taxi always blocks

if (closed) _Throw Closed();

x = xclient; y = yclient; // taxi returns client info

}

void close() {} // called at closing time

private:

list<LocnTaxi *>::iterator nearestTaxi(LocnClient * node, list<LocnTaxi *> & alist) {

// Find the element in parameter alist whose address is closest

// to the address in parameter node. “alist” must be non-empty.

// ASSUME THIS ROUTINE IS WRITTEN; DO NOT WRITE IT.

}

void main() {

// YOU WRITE ONLY THIS ROUTINE!!!!

// allocate taxi tasks

// dispatch taxis to clients, until close called

// print closed message

// mark outstanding futures with Closed exception

// tell each taxi to go home

// delete taxi tasks

}

};

Figure 1: Maple Leaf Taxi Dispatcher-Administrator

