
Midterm Examination

Fall 2022

Computer Science 343

Concurrent and Parallel Programming

Sections 001, 002

Duration of Exam: 2 hours

Number of Exam Pages (including cover sheet): 5

Total number of questions: 5

Total marks available: 111

CLOSED BOOK, NO ADDITIONAL MATERIAL ALLOWED

Instructor: Peter Buhr

November 3, 2022

1

Midterm Exam – CS 343 (F22) 2

1. (a) 4 marks What is the software engineering problem in this code fragment and write the code to

fix it?

cin >> d;

while (! cin.fail()) {

. . . // LOOP BODY

cin >> d;

}

(b) 2 marks Define the term flag variable.

(c) 1 mark To eliminate all flag variables, what control-flow capability is required?

(d) 1 mark When is a flag variable necessary?

(e) 2 marks Explain the two kinds of dynamically-sized objects. Which can appear on the stack?

(f) 1 mark What is the control-flow issue for all return-code approaches, when unwinding multiple

levels of routine calls?

(g) 2 marks Explain why a label variable for nonlocal transfer must be a tuple of two values.

(h) 2 marks Explain the fundamental difference between termination and resumption propagation.

2. (a) 2 marks Explain what new control-flow property coroutines add to function-call semantics.

(b) 3 marks Name the coroutine that becomes inactive/active at locations 1, 2, and 3, below.

inactive active

control flow semantics

resume 2

1

suspend 3

context switch

(c) 2 marks What property is necessary for full coroutining and why is it difficult to create this

property?

(d) i. 2 marks Explain the terms stackless and stackful coroutine.

ii. 1 mark Which is more powerful and why?

(e) 2 marks What is a non-local exception and why is it more complex for coroutines than tasks?

3. (a) 2 marks Explain the difference between preemptive and non-preemptive concurrent scheduling.

(b) 2 marks Explain the difference between implicit and explicit concurrency.

(c) 3 marks Explain user and real time. Which time changes when concurrent speedup occurs?

(d) 1 mark Define critical path within concurrent speedup.

(e) 2 marks Explain why COBEGIN/COEND is not as expressive as START/WAIT.

(f) 1 mark Does an actor have a thread?

(g) 2 marks Briefly explain mutual exclusion.

(h) 2 marks Explain unbounded and bounded overtaking.

(i) 2 marks Explain the difference between a spinning and blocking lock.

(j) 2 marks Explain the difference between barging avoidance and prevention.

Midterm Exam – CS 343 (F22) 3

4. 20 marks Write a semi-coroutine with the following public interface (you may only add a public

destructor and private members):

_Coroutine Caps {

char ch; // character passed by cocaller

void main(); // YOU WRITE THIS MEMBER

public:

_Event Eof {};

void next(char c) {

ch = c;

resume();

}

};

which receives a sequence of characters forming sentences, capitalizes the first letter of each sentence,

and writes out the capitalized sentences to standard output (cout). The exception Eof is raised at

coroutine Caps by the program main when there are no more characters, indicating the coroutine

must terminate.

A sentence starts with a letter preceded by whitespace characters (space, tab, newline) that follows a

period, question mark, or exclamation point. If the starting letter is lower case, the filter transforms

the letter to upper case. There is a special case for the first letter received if there is no preceding

punctuation character. For example, given the input characters, the coroutine writes out the output

characters, where the letters to be capitalized and the capitalizations are in large bold font.

input

the first letter in this line should be capitalized. what about the next one?

that too!but not after the bang. 123 cannot be capitalized.

No space after this punctuation.so no capital.? !hi

and not another sentence. !hi!

and another sentence.

. . this is a sentence.

??? and this, too!

.

output

The first letter in this line should be capitalized. What about the next one?

That too!but not after the bang. 123 cannot be capitalized.

No space after this punctuation.so no capital.? !hi

and not another sentence. !hi!

And another sentence.

. . This is a sentence.

??? And this, too!

.

Assume the existence of the following built-in routines.

ispunc(c) – returns true for a period, question mark, or exclamation point.

isspace(c) – returns true for a white-space characters (space, tab, newline).

toupper(c) – returns the upper case versions of a character, if possible, and otherwise returns c.

Write ONLY Caps::main, do NOT write a program main that uses it! No documentation or error

checking of any form is required.

Note: Few marks will be given for a solution that does not take advantage of the capabilities of the

coroutine, i.e., you must use the coroutine’s ability to retain data and execution state.

Midterm Exam – CS 343 (F22) 4

5. Divide and conquer is a technique that can be applied to certain kinds of problems. These problems

are characterized by the ability to subdivide the work across the data, such that the work can be

performed independently on the data. In general, the work performed on each group of data is identical

to the work that is performed on the data as a whole. What is important is that only termination

synchronization is required to know the work is done; the partial results can then be processed further.

Write the following µC++ code fragments to efficiently check if all the rows of a matrix of size N ×M

are identical. The following matrices have identical rows (including the empty matrix).

()
(

7
)

(

−3 4
−3 4

)

1 2 3 −4 5
1 2 3 −4 5
1 2 3 −4 5

A matrix is checked concurrently along its rows. Perform this check using the minimal number of

(logical) threads required to achieve maximum concurrency.

Assume the following code in the program main.

int main() {

int rows, cols;

cin >> rows >> cols;

int M[rows][100], r, c;

// read/print matrix

bool notEqual = false; // used for output

uBaseTask & prgMain = uThisTask(); // program main’s task id for equalCheck

// COFOR/ACTOR/TASK code to drive the concurrent solutions

cout << "matrix is" << (notEqual ? " not " : " ") << "equal rows" << endl;

}

(a) 4 marks Write a sequential function with the following interface to check if two rows have equal

values.

_Event NotEqual {}; // not equal rows

void equalCheck(

const int row1[], // row to check

const int row2[], // row to check

const int cols, // columns in row

uBaseTask & pgmMain // contact if not equal rows

);

where row1/row2 are the rows to check for equal values, cols is the number of columns in a row,

and pgmMain is the program-main task. If the function determines the two rows are are NOT

equal, it raises the exception NotEqual at the program main and returns. Note: a concurrent

non-local exception works between a COFOR thread and the program main thread; similarly, it

works between an actor executor thread and the program main thread.

(b) 6 marks Write a fragment of the program main using a COFOR statement that calls the equalCheck

function to check the matrix rows concurrently.

Midterm Exam – CS 343 (F22) 5

(c) 7 marks Write a message and actor type with the following interface that uses the equalCheck

function to check the matrix rows concurrently.

struct WorkMsg : public uActor::Message {

// YOU WRITE THIS TYPE

}; // WorkMsg

_Actor EqualRows {

Allocation receive(Message & msg) {

// YOU WRITE THIS MEMBER

} // EqualRows::receive

}; // EqualRows

The program main in question 5(e)i creates these messages/actors and passes each actor a mes-

sage containing all the information needed to call function equalCheck.

(d) 7 marks Write a task type with the following interface that uses the equalCheck function to check

the matrix rows concurrently (you may only add a public destructor and private members).

_Task EqualRows { // check rows

public:

_Event Stop {}; // concurrent exception

private:

// YOU ADD MEMBERS HERE

void main() {

// YOU WRITE THIS MEMBER

} // EqualRows::main

public:

EqualRows(. . .) {

// YOU WRITE THIS MEMBER

}

};

The program main in question 5(e)ii creates these tasks and passes via its constructor all the

information needed to call function equalCheck.

As an optimization, if the program main receives the concurrent NotEqual exception, it raises

exception EqualRows::Stop at any non-deleted EqualRows tasks. When the concurrent Stop

exception is propagated in a EqualRows task, it stops performing its row check, and returns.

(e) With respect to the body of the program main write:

i. 9 marks For the actor implementation, create the actor system and handle the NotEqual

exception. Create the actors on the stack and dynamically allocate the messages.

ii. 12 marks For the task implementation, create the task system, handle the NotEqual excep-

tion, and raise exception EqualRows::Stop at any non-deleted EqualRows tasks. Note: all

tasks must be created, even if a NotEqual exception is raised during creation.

No documentation or error checking of any form is required.

