
Midterm Answers – CS 343 Winter 2023

Instructor: Caroline Kierstead

March 8, 2023

These are not the only answers that are acceptable, but these answers come from the notes, assignments,

or lectures.

1. (a) 5 marks

Mechanism
Exit type

static multi exit static multi-level exit dynamic multi-level exit

unlabelled break X × ×

labelled break X X ×

goto X X ×

longjmp X X X

exception X X X

1 mark per line; -0.5 if only 1 error, -1 if 2 or more errors

(b) 2 marks The problem is that labels have routine scope. Thus label B1 isn’t known within

function rtn. [2 marks = good answer, 1 mark = on right-track, 0 marks = incorrect answer]

(c) i. 1 mark A return union combines the result with the return-code, requiring a return-code

check upon accessing the result.

ii. 1 mark Advantages (one of):

• lets you separate the error conditions from the “normal” return results

• lets you return multiple types (variadic template, similar effect to a tagged union)

iii. 1 mark Disadvantages (one of):

• still a passive check i.e. programmer needs to explicitly check so can be omitted

• pay a performance penalty for a more complex data structure and more checks (more

than exceptions, global return codes or a tagged union)

2. (a) 2 marks

Object Line number Cocaller

b 12 ::main / program main

a 29 b

(b) 4 marks

Line number Becomes inactive Becomes active

5 b ::main

6 b b

18 ::main b

29 b a

(c) 2 marks Yes. [1 mark] The order is: a, b, ::main [1 mark]

(d) i. 1 mark One of:

_Resume Stop{} _At *partner; // star is optional

_Resume Stop() _At resumer(); // alternative approach

ii. 2 marks Coroutine a must be activated to receive the exception [1 mark] by calling partner->next()

or suspend() [1 mark].

1

iii. 2 marks Coroutine a needs a guarded block (try block) containing _Enable [1 mark] and a

handler for Stop [1 mark] (could be more specific and say either a resumption handler, or a

termination handler i.e. either is fine).

iv. 3 marks When no matching resumption handlers are found, the exception is thrown/raised

as a termination exception. [1 mark] When no matching termination handlers are found,

the exception UnhandledException (more fully, it’s a uBaseCoroutine::UnhandledException

though I don’t expect them to remember that) is raised. [1 mark] The exception is propa-

gated to the terminating coroutine’s most recent resumer. [1 mark]

(e) i. 1 mark The yield statement can only be used in the coroutine’s main method (i.e. cannot

call other routines and suspend/yield).

ii. 1 mark full coroutining

3. (a) i. 1 mark Concurrent execution can occur when there is only 1 CPU/processor.

ii. 2 marks Since concurrent execution simulates parallelism (by rapidly context-switching

between threads), only 1 CPU/processor is necessary. [1 mark]

Parallel execution requires multiple CPUs/processors (there is no such thing as a parallel

program since parallelism comes from the hardware) i.e. requires execution on multiple

CPUs/processors. [1 mark]

(b) 2 marks Unbounded overtaking allows entry into the critical section until the other task that

retracted its intent redeclares it.

Bounded overtaking disallows entry into the critical section because the other task never re-

tracted its intent.

(c) i. 1 mark Yes.

ii. 2 marks The algorithm uses static priorities based upon task’s index position in the ticket

array to break ticket value ties. [2 marks = good answer, 1 mark = on right-track, 0 marks

= incorrect answer]

4. (a) 2 marks In the busy-waiting approach, the producers/consumers would block for mutual exclu-

sion, and depending upon the state of the buffer, the barging task and the signalled task may not

have to block. If there is no busy-waiting, in addition to blocking for mutual exclusion, barging

tasks have to block, and incoming tasks whose turn it is may have to block depending upon the

state of the buffer. Therefore, there is more blocking/context-switching in the second approach,

which slows down performance. [2 marks = good answer, 1 mark = on right-track, 0 marks =

incorrect answer]

(b) i. 1 mark It uses barging avoidance.

ii. 2 marks Barging prevention would require the release code to not release the lock upon

determining that there is a waiting task. This implementation releases the lock, so it’s

barging avoidance. [2 marks = good answer, 1 mark = on right-track, 0 marks = incorrect

answer]

2

5. 18 marks

void HexDump::main() {

static const char Blank = ’ ’;

1 int i = 0, j = 0, k = 0;

1 try {

1 _Enable {

1 for (;;) {

1 for (i = 0;; i += 1) { // 4 main groups of characters

1 for (j = 0;; j += 1) { // 2 sub-groups within each main group

1 for (k = 0; k < PAIRS; k += 1) { // 2 characters within each sub-sub-group

1 cout << s[ch >> 4] << s[ch & 0x0f];

1 suspend();

} // for

1 if (j == SUBGROUP - 1) break;

1 cout << Blank;

} // for PAIR

1 if (i == GROUP - 1) break;

1 cout << Blank << Blank << Blank;

} // for SUBGROUP
1 cout << endl;

} // for GROUP

} // infinite loop

2 } catch(Eof & e) {

1 if (i < GROUP-1 | | k < PAIRS | | j < SUBGROUP-1)

1 cout << endl;

} // catch

} // HexDump::main

-5 if not using coroutine state.

if statement in handler not needed due to placement of suspend but may be needed if code structured

differently

Placement of handler should ensure coroutine main terminates so cannot be resumed (-1 if not done).

3

6. (a) 2 marks

2 _Resume Found{} _At pgmMain;

(b) 2 marks

1 COFOR(i, 0, NumFiles,

1 search(fileNames[i], key, pgmMain);
);

(c) 6 marks

struct WorkMsg : public uActor::Message {

1 const string & key, & filename;

1 uBaseTask & pgmMain;

1 WorkMsg(const string & key, const string & filename, uBaseTask & pgmMain)

: Message{uActor::Delete}, key{key}, filename{filename}, pgmMain{pgmMain} {}

};

_Actor Search {

Allocation receive(Message & msg) {

1 Case(WorkMsg, msg) {

- WorkMsg & w = *msg_d; // not required but nice; else use msg_d->. . .

1 search(w.filename, w.key, w.pgmMain);
} else assert(false); // bad message

1 return Finished; // one-shot

}

};

(d) 7 marks

_Task Search {

public:

_Event Stop {}; // concurrent exception

private:

1 const string & key, & filename;

1 uBaseTask & pgmMain;

void main() {

1 try {

1 _Enable { // allow delivery of Stop
1 search(filename, key, pgmMain);

} // _Enable

1 } catch(Search::Stop &) {}

} // Search::main

public:

1 Search(const string & key, const string & filename, uBaseTask & pgmMain) :

key{key}, filename{filename}, pgmMain{pgmMain} {}

}; // Search

4

(e) i. 9 marks

1 try {

1 _Enable {

1 uActor::start(); // start actor system

1 Search searchers[numFiles];
1 for (unsigned int i = 0; i < numFiles; i += 1) {

1 searchers[i] | *new WorkMsg(i, key, fileNames[i], pgmMain);

} // for

1 uActor::stop();

}

1 } catch(Found &) {

1 found = true;

}

ii. 12 marks

1 Search * workers[numFiles];

1 for (unsigned int i = 0; i < numFiles; i += 1) {

1 workers[i] = new Search(i, key, fileNames[i], pgmMain);

} // for

unsigned int s = 0; // initialize before Enable

1 try {

1 for (; s < numFiles; s += 1) { // wait for completion and delete tasks

1 _Enable {

1 delete workers[s];

} // _Enable

} // for
1 } _CatchResume(Found &) {

1 if (! found) {

1 found = true;

1 for (unsigned int i = s + 1; i < numFiles; i += 1) {

1 _Resume Search::Stop() _At *workers[i];

} // for

} // if

} // try

Solutions of the form:

for (unsigned int i = 0; i < numFiles; i += 1) {

_Resume Search::Stop() _At *workers[i];

delete workers[i];

} // for

have a -3 deduction for prohibiting concurrency by waiting for each worker to end before

notifying the next to stop.

5

