
Midterm Examination

Winter 2023

Computer Science 343

Concurrent and Parallel Programming

Section 001

Duration of Exam: 2 hours

Number of Exam Pages (including cover sheet): 7

Total number of questions: 6

Total marks available: 97

CLOSED BOOK, NO ADDITIONAL MATERIAL ALLOWED

Instructor: Caroline Kierstead

March 8, 2023

1

Midterm Exam – CS 343 (W23) 2

1. (a) 5 marks We have seen several different mechanisms used to modify control flow in a section

of code. Complete the following table in your answer booklet, putting a checkmark (X) if the

mechanism can be used to perform the specified type of exit and an X (×) if it cannot.

Mechanism
Exit type

static multi exit static multi-level exit dynamic multi-level exit

unlabelled break

labelled break

goto

longjmp

exception

(b) 2 marks If we try to modularize the µC++ code snippet in the left-hand column of the following

table to the code appearing in the right-hand column, the modified code fails to compile. Explain

what problem causes the compilation failure.

Version 1 Version 2

void foo(/* parameter list */) {

B1: for (int i = 0; i < 10; i += 1) {

// do something
B2: for (int j = 0; j < 15; j += 1) {

// do something

if (/* some condition */) break B1;

// do something else

} // B2

// do more work

} // B1

} // foo

int rtn(/* parameter list */) {

B2: for (int j = 0; j < 15; j += 1) {

// do something
if (/* some condition */) break B1;

// do something else

} // B2

} // rtn

void foo(/* parameter list */) {

B1: for (int i = 0; i < 10; i += 1) {

// do something

w = rtn(/* parameters */);

// do more work

} // B1

} // foo

(c) When discussing traditional error handling approaches, we discussed return unions, of which

the C++-17 variant type is an example.

i. 1 mark Define the term return union.

ii. 1 mark Describe one advantage of its use.

iii. 1 mark Describe one disadvantage of its use.

Midterm Exam – CS 343 (W23) 3

2. In the following code, objects a and b are created and manipulated. The program main is ::main. Use

these names when answering the parts (a) to (c) of the question.

1 _Event Stop;

2 _Coroutine B {

3 A * partner;

4 void main() {

5 suspend();

6 resume();

7 partner->next();

8 partner->next();

9 }

10 public:

11 B() {

12 resume();

13 }

14 void setPartner(A & a) {

15 partner = &a;

16 }

17 void next() {

18 resume();

19 }

20 };

21 _Coroutine A {

22 B & partner;

23 void A::main() {

24 partner.next();

25 }

26 public:

27 A(B & b) : partner(b) {}

28 void next() {

29 resume();

30 }

31 };

32 int main() { // program main

33 B b;

34 A a(b);

35 b.setPartner(a);

36 b.next();

37 }

(a) 2 marks Fill in the table in the answer booklet with the line of code that, when executed, causes

the specified object to change into a coroutine, as well as the identity of its cocaller.

(b) 4 marks Fill in the table in the answer booklet with the name of the coroutine that becomes

inactive, and the one that becomes active, when the specified line of code is executed for the first

time.

(c) 2 marks Do all of the coroutines terminate? (Circle either “Yes” or “No” as appropriate in the

answer booklet.) Of those that do terminate, what is the order of termination? (Write the names

from left to right in the order in which they terminate.)

(d) We wish to modify the given code by having coroutine b raise a non-local exception Stop at

coroutine a between lines 8 and 9

i. 1 mark Write the code to raise the non-local exception.

ii. 2 marks Describe the next step after raising the exception for A::main to receive the non-

local exception.

iii. 2 marks Describe the changes in A::main for the non-local exception to be propagated and

handled.

iv. 3 marks Explain in general what happens if a coroutine raises a non-local resumption ex-

ception and has no handlers at all anywhere in the program.

(e) Python has stackless coroutines which have restrictions.

i. 1 mark What is the limitation on the placement of the Python yield statement? (yield is like

µC++ suspend)

ii. 1 mark What class of problems do the restrictions exclude/disallow?

Midterm Exam – CS 343 (W23) 4

3. (a) When introducing the topic of concurrency, we defined the terms parallel execution and concur-

rent execution.

i. 1 mark Which of these two forms of execution can occur when there is only 1 CPU/processor?

ii. 2 marks Explain why it can, and the other cannot.

(b) 2 marks For software solutions for mutual exclusion, explain what the terms unbounded and

bounded overtaking mean in terms of declaring and retracting intent.

(c) The Hehner and Shyamasundar version of the Bakery algorithm for N-tasks uses a ticket-taking

mechanism.

i. 1 mark Is it possible for two or more competing tasks to end up with the same ticket value?

(Circle either “Yes” or “No” in the answer booklet.)

ii. 2 marks If your answer is “Yes”, explain how mutual exclusion is preserved; if your answer

is “No”, explain how unique values are guaranteed.

4. (a) 2 marks As we saw in the bounded-buffer producer-consumer problem on assignment 3, in

certain situations, a busy-waiting solution for mutual exclusion may have better performance

than a non-busy-waiting approach. Explain what is happening in that situation that would have

a negative impact on the user (real time) speed of the solution.

(b) You are given the following lock implementation:

class MyLock {

SpinLock lock;

bool avail = true;

uBaseTask * owner = nullptr;

public:

void acquire();

void release();

};

void MyLock::acquire() {

lock.acquire();

if (! avail && owner != currThread()) {

// add self to lock’s blocked list

yieldNoSchedule(lock);

// DO NOT REACQUIRE LOCK

} else {

avail = false;

lock.release();

}

owner = currThread();

}

void MyLock::release() {

lock.acquire();

owner = nullptr;

if (! blocked.empty()) {

// remove task from blocked list

// and make ready

} else {

avail = true;

}

lock.release();

}

i. 1 mark Does the lock implementation use barging avoidance or barging prevention?

ii. 2 marks Justify your choice.

Midterm Exam – CS 343 (W23) 5

5. 18 marks Write a semi-coroutine filter with the following public interface (you may only add a public

destructor and private members, which includes helper methods):

_Coroutine HexDump {

enum { GROUP = 4, SUBGROUP = 2, PAIRS = 2 }; // defined constants

const char s[17] = "0123456789abcdef"; // hexadecimal characters

char ch; // character passed by cocaller

void main();

public:

_Event Eof {};

void next(char c) {

ch = c;

resume();

};

}; // HexDump

that receives a sequence of characters. It replaces each character in the stream with its corresponding

ASCII 2-hexadecimal digit value and outputs it to standard output (cout). For example, the character

’a’ is transformed into the two characters ’6’ and ’1’, as 61 is the ASCII hexadecimal value for

character ’a’. The HexDump coroutine also formats its output by:

• transforming two characters into 4 hexadecimal digits followed by one space (),

• transforming the next two characters into 4 hexadecimal digits followed by three spaces (),

• repeating this sequence four times, and adding a newline at the end of the group.

For example, this input sequence:

The quick brown fox jumps over the lazy dog.\n

generates the following:

5468 6520 7175 6963 6b20 6272 6f77 6e20

666f 7820 6a75 6d70 7320 6f76 6572 2074

6865 206c 617a 7920 646f 672e 0a

Note, the spaces are separators not terminators, and hence, there are no spaces at the end of a line.

As well, a newline must be produced if the coroutine terminates without having output a newline, but

never outputs two newline characters in a row.

The exception Eof is raised at coroutine HexDump when there are no more characters, indicating the

coroutine must terminate. You must ensure that upon receiving Eof the coroutine main terminates.

It is possible to convert a character to its hexadecimal value using a simple, short expression. No

complex library routines are required. For example, an 8-bit byte (character) is composed of two 4-bit

(hex) “nibbles”, so

ch >> 4; // shift and return the (high-order) first nibble, a value in the range 0 to 15

ch & 0x0f; // mask and return the (low-order) second nibble, a value in the range 0 to 15

Write ONLY HexDump::main, do NOT write the program main that uses it! No documentation or

error-checking of any form is required.

Few marks will be given for a solution that does not take advantage of the capabilities of the coroutine,

i.e., you must use the coroutine’s ability to retain data and execution state.

Midterm Exam – CS 343 (W23) 6

6. Divide and conquer is a technique that can be applied to certain kinds of problems. These problems

are characterized by the ability to subdivide the work across the data, such that the work can be

performed independently on the data. In general, the work performed on each group of data is identical

to the work that is performed on the data as a whole. What is important is that only termination

synchronization is required to know the work is done; the partial results can then be processed further.

Write the following µC++ code fragments to efficiently check if a set of files contains the std::string

key. Perform this check using the minimal number of (logical) threads required to achieve maximum

concurrency.

Assume the following code is the program main.

int main() {

unsigned int numFiles;

string key;

cin >> key >> numFiles;

string fileNames[numFiles];

// read ordered list of file names and store in array fileNames

bool found = false; // used for output below

uBaseTask & prgMain = uThisTask(); // program main’s task id for search

// COFOR/ACTOR/TASK code to drive the concurrent solutions

cout << "key" << (found ? " " : " not ") << "found" << endl;

}

(a) 2 marks Complete the sequential function with the following interface that checks if the speci-

fied file contains the key.

_Event Found {};

void search(const string & filename, const string & key, uBaseTask & pgmMain) {

ifstream input{ filename.c_str() };

string line;

for (;;) {

getline(input, line);

if (input.fail()) break;

if (line.find(key) != string::npos) {

// Found the key, so notify pgmMain!

// PLACE YOUR ANSWER HERE IN THE ANSWER BOOKLET.

}

} // for

where filename is the name of the file to search, key is the string to search for in the file, and

pgmMain is the program-main task, ::main. If the function determines the key exists, it raises

the exception Found at the program main and returns. Note: a concurrent non-local exception

works between a COFOR thread and the program main thread; similarly, it works between an

actor executor thread and the program main thread.

(b) 2 marks Write a fragment of the program main using a COFOR statement that calls the search

function to check the files concurrently.

Midterm Exam – CS 343 (W23) 7

(c) 6 marks Write a message and actor type with the following interface that uses the search func-

tion to check the files concurrently.

struct WorkMsg : public uActor::Message {

// YOU WRITE THIS TYPE

}; // WorkMsg

_Actor Search {

Allocation receive(Message & msg) {

// YOU WRITE THIS MEMBER

} // Search::receive

}; // Search

The program main in question 6(e)i) creates these messages/actors and passes each actor a mes-

sage containing all the information needed to call function search.

(d) 7 marks Write a task type with the following interface that uses the search function to check the

files concurrently (you may only add a public destructor and private members).

_Task Search { // check rows

public:

_Event Stop {}; // concurrent exception

private:

// YOU ADD MEMBERS HERE

void main() {

// YOU WRITE THIS MEMBER

} // Search::main

public:

Search(. . .) {

// YOU WRITE THIS MEMBER

}

};

The program main in question 6(e)ii) creates these tasks and passes via its constructor all the

information needed to call function search.

As an optimization, if the program main receives the concurrent Found exception, it raises ex-

ception Search::Stop at any non-deleted Search tasks. When the concurrent Stop exception is

propagated in a Search task, it stops performing its search, and returns.

(e) With respect to the body of the program main write:

i. 9 marks For the actor implementation, create the actor system and handle the Found excep-

tion. Create the actors on the stack and dynamically allocate the messages.

ii. 12 marks For the task implementation, create the task system, handle the Found exception,

and raise exception Search::Stop at any non-deleted Search tasks. Note: all tasks must be

created, even if a Found exception is raised during creation.

No documentation or error-checking of any form is required.

