
WELCOME TO CS 346! CS 346: Application
Development

OUTLINE CS 346: Application
Development

2

INTRODUCTIONS
Dr. Jeffery Avery
Associate Professor, Teaching Stream
Cheriton School of Computer Science

Caroline Kierstead
Instructional Support Coordinator

Teaching Assistants

Yiwen Dong, Favour Kio, Aniruddhan Murali ,
Gareema Ranjan, Hauton Tsang, Amber Wang

https://student.cs.uwaterloo.ca/~cs346
/1249/course-outline/contact-us/

aka “Jeff” or Prof Avery
please not Jeffery

3

https://student.cs.uwaterloo.ca/~cs346/1249/course-outline/contact-us/
https://student.cs.uwaterloo.ca/~cs346/1249/course-outline/contact-us/

WHAT IS THIS COURSE ABOUT?
CS 346 Application Development
LAB, LEC, TST 0.50

Introduction to full-stack application design and development. Students will work in
project teams to design and build complete, working applications and services using
standard tools. Topics include best practices in design, development, testing, and
deployment.

Prerequisites: CS 246; Computer Science students only.

https://student.cs.uwaterloo.ca/~cs346/1249/

5

https://student.cs.uwaterloo.ca/~cs346/1249/

WHAT WILL YOU DO?
You will design + build an application!

Teams of 4 people

Produce a well-designed, robust application
­ You choose what application to build!
­ Mobile or desktop using our technology stack.
­ Basic requirements (e.g., graphical, saves data,
uses cloud services).

­ You and your team pick suitable advanced
features.

Bi-weekly releases
­ Demo to your TA and submit product releases.

https://student.cs.uwaterloo.ca/~cs346/1249/
course-project/gallery/

6

https://student.cs.uwaterloo.ca/~cs346/1249/course-project/gallery/
https://student.cs.uwaterloo.ca/~cs346/1249/course-project/gallery/

WHAT WILL YOU LEARN?
Iterative, team-based development
­ Work on a project team, where you need to collaborate and coordinate work.
­ Learn an interesting and useful tech stack, with a modern programming language.
­ Learn mobile development, graphical user interfaces, database connectivity.
­ Apply relevant design practices i.e., design principles, patterns.

Best practices
­ Build software the way that you would in industry. This includes software development
practices. e.g., code branching/merges, issue tracking, unit testing, software releases.

­ Just like real-life, you will demo your progress!

Teamwork
­ Practice communication, teamwork, collaboration skills.
­ It will be fun challenging frustrating rewarding!

7

COURSE WEBSITE (LINK)

https://student.cs.uwaterloo.ca/~cs346/1249/

8

https://student.cs.uwaterloo.ca/~cs346/1249/
https://student.cs.uwaterloo.ca/~cs346/1249/

COURSE STRUCTURE (LINK)

Mon: The instructor will post videos & slides on Mon morning, which you should review before Wed.
Wed (In-class): The instructor will review, show demos etc. Most of the class is time for your project.

Fri (In-class): Friday is dedicated to working on your project. Instructor + TAs will be present.

9

https://student.cs.uwaterloo.ca/~cs346/1249/course-outline/structure/

SCHEDULE (LINK)

10

Link to
weekly
agenda

Everything
due end of
the week!

Videos and slides
under weekly
agenda (testable)

Quizzes and
project components
due

Things we’ll
discuss/demo in-
class (not testable)

https://student.cs.uwaterloo.ca/~cs346/1249/course-outline/schedule/

WEEKLY AGENDA (LINK)

11

Link to
weekly
agenda

https://student.cs.uwaterloo.ca/~cs346/1249/blog/

WEEKLY AGENDA (LINK)

12

Also has links to
videos, slides
each week.

Posted Mon 10
AM.

https://student.cs.uwaterloo.ca/~cs346/1249/blog/

ASSESSMENT (LINK)
Individual
­ Quizzes (weeks 2-11): 10 x 2% = 20%
­ Weekly attendance (weeks 2-13): 12 weeks x 1% = 12% // I’ll pass around an attendance sheet

Team Project
­ M1. Project setup: 2% // see schedule; something due approximately every 2 weeks
­ M2. Project proposal: 5%
­ M3. Design proposal: 6%
­ M4-M6. Product releases (including demo): 3 x 10% = 30%
­ M7. Final release (release + documentation): 25%

13

https://student.cs.uwaterloo.ca/~cs346/1249/course-outline/assessment/

POLICIES (LINK)
Grading
­ Quizzes are auto-graded and returned the next Monday.
­ Everything else is graded and returned ~1 week after submission. Grades in Learn.
­ Regrade policy: 1week from the time they are returned.

Group Participation
­ You must form teams by the end of week 2.
­ We will help, but we reserve the right to remove you if you don’t cooperate.
­ You must participate during the term! In unusual circumstances, we may adjust grades
downward if you do not adequately contribute.

Code “Sharing”
­ You are allowed to share code (up to 25 lines) with appropriate citation. No AI/LLM!

14

Has not
been used
previously.

https://student.cs.uwaterloo.ca/~cs346/1249/course-outline/policies/

WEEK 01: WHAT TO DO?
Attend lectures
­ Wed: Introduction; Software Process
­ Fri: Teamwork; Development Best-Practices.

Register for the course!
­ Talk to the instructor (i.e., me) if you are not registered.
­ You must be in all morning or all afternoon sections; you cannot mix/match.
­ You must attend in-person. You may also be removed if you fail to participate.

Form teams
­ Four people
­ All team members must be in the same sections. Talk to me if you need to switch sections.
­ A mix of skills and interests is desirable! There’s lots to do.

15

Contact me after class if you
1. Aren’t registered yet.
2. Need to switch sections.
3. Have any other questions!

WHAT IS AN APPLICATION? CS 346: Application
Development

16

WHAT IS AN APPLICATION?
An application is “software designed to solve
a problem for users”.
­ Tends to be task-oriented.
­ Term covers mobile, desktop, web apps.
­ Distinct from system software, which is software
that provides services for other software e.g.,
drivers.

What is a full-stack application?
­ Division of application into front-end (user
interface) and back-end (part that processes
data).

­ Doesn’t really apply to all applications (but
applies to your project!)

17

1. COMMAND-LINE
The first interactive applications were text-based and designed to be executed from
a terminal or console. e.g., ls, grep, vim.

Characteristics of command-line applications:
­ Keyboard driven. Not intended to support mice, trackpads.
­ Non-graphical. Intended to be run from a shell/terminal, with limited character graphics.
­ Standard text I/O. Read/write from the terminal, or file system.
­ Scriptable. Very suitable for automation or chaining tasks.

User pro/con:
­ Efficient. Small executables.
­ Targeted at experts. Usually a high learning curve.
­ Not discoverable. Not graphical.

20

2. DESKTOP
Desktop applications run on a desktop operating system e.g. Windows or macOS.

Characteristics of desktop applications include:
­ Keyboard and mouse are used for input. Possibly other pointing devices e.g., trackpad.
­ Windows on a desktop is the primary abstraction. Application input/output is contained within a

window, which can be moved, resized, and stacked on one another.
­ Multiple-window support. Applications may have multiple windows, each with their own content.
­ Multi-tasking by design. Multiple windows supports multiple applications running side-by-side.
­ Rich user experience. Applications can use graphics, animations, and other visual effects to make

the user experience more engaging.

User pro/con:
­ Handles richer input and output.
­ Features are more ”discoverable” for new users.

21

Desktop applications are suitable for tasks that require a lot of screen real-estate, or that need to be
used for long periods of time. They also support mouse/trackpad and other input devices which makes
them suitable for precise input as well.

22

3. MOBILE
Mobile applications are designed for use on a smartphone, tablet or similar device.

Characteristics of mobile applications include:
­ Touch-enabled. Users interact using gestures e.g., tapping, swiping, and pinching.
­ Small-screen enabled. Applications are designed to be used on a small screen and are
often optimized for portrait mode (due to hand orientation).

­ Single-tasking. Due to the screen size, applications tend to be single tasking and are not
designed for long periods of use.

­ Rich-user experience. Like desktop applications, mobile applications can use graphics,
animations, and other visual effects to make the user experience more engaging.

User pro/con:
­ Lack of precision. Small devices and touch-interfaces make precision interaction difficult.
­ Small screen. Smaller interaction surface is less suitable for “large” output. See desktop.

23

Mobile applications are usually designed for casual, on-the-go use. They also tend to favor content
consumption vs. creation, where touch-input isn’t a significant restriction. Otherwise, they are
functionally very similar to desktop applications.

24

YOUR PROJECT?
Can be any of:
­Console application (with some graphics and rich functionality)
­Desktop application (standard features e.g., cut/copy/paste and undo/redo)
­Android application (standard features, e.g., device orientation)

Tip
­ Pick what interests you!
­ Pick an application that suits this style of application.

25

DEVELOPMENT THEMES CS 346: Application
Development

26

WE WANT TO BUILD SOFTWARE “CORRECTLY”
It doesn’t take a huge amount of knowledge and skill to get a program working. Kids in high
school do it all the time… The code they produce may not be pretty; but it works. It works
because getting something to work once just isn’t that hard.

Getting software right is hard. When software is done right, it requires a fraction of the
human resources to create and maintain. Changes are simple and rapid. Defects are few and
far between. Effort is minimized, and functionality and flexibility are maximized.

– Robert C. Martin, Clean Architecture (2016).

Recognize that we requirements and our software will change over time.
• We will need to add new features or extend existing features.
• We will inevitably have bugs and defects to address.

27

GOAL: ROBUSTNESS
Software rarely works in a vacuum.
­ Your operating environment may change (OS, libraries may be updated).
­ You are probably getting inputs from many sources (messages, data files, user input).
Sometimes they are in a format you don’t expect.

These things can result in expected behaviour.

Robustness means that your software needs to continue to work correctly, even when
faced with unintended inputs, or changes to the operating environment.
­ It cannot crash. Ever. Manage faults and exceptions and handle gracefully.
­ Performance should not degrade over time.
­ Data should never, ever get lost.

Robust means this doesn’t happen. Ever.
28

GOAL: FLEXIBILITY
Our needs change over time, and software needs to continue being useful.

Flexibility implies that you can make changes to your code without breaking it (i.e.
the opposite of “brittle code”). This also suggests simplicity in design, to enable non-
breaking changes, like adding drastically new functionality. e.g., a plain text editor
adding support for code fences and syntax highlighting.

Extensibility implies the ability to expand and modify existing features. e.g., a new
image file format is released, and you easily add support for it.

These properties are enabled by careful and correct design. If you structure your
application properly, you can anticipate future needs.

29

GOAL: REUSABILITY
Software is expensive and time-consuming to produce. Code reusability is literally
reusing code that you’ve written across more than one project.

Code reusability helps to reduce cost and time to delivery. It also reduces risks,
since you are reusing well-tested code, instead of writing new and potentially
defective code.

There are different levels of reuse.
­ At the lowest level, you reuse classes: class libraries, containers, maybe some class “teams”
like container/iterator.

­ At the highest level, you have frameworks. They identify the key abstractions for solving a
problem, represent them by classes and define relationships between them.

­ There also is a middle level. This is where I see patterns: design patterns are both smaller
and more abstract than frameworks. They’re really a description about how a couple of
classes can relate to and interact with each other (Eric Gamma, 2005)

30

MODERN DEVELOPMENT CS 346: Application
Development

33

PICKING A PLATFORM
What should we develop – desktop applications or mobile applications?

1. Your first consideration should be the user experience. What application style is
most suitable for your user and their requirements?

2. Consider the market share of the platform (desktop vs mobile). Mobile is arguably
a more common platform i.e., "everyone has a phone” but desktop is still very
important. Consider reach (# of users) vs. profitability of a platform.

3. Finally, consider the market share of the operating system for your specific
scenario. Ultimately you need to support the platform + OS combination that works.

34

MARKET SHARE?

35

Command-line applications account for
< 1% of commercial software, which is
why they aren’t included here.
Similarly for watches and other
wearables.

What’s the most popular software
platform in the world?

PICK A PROGRAMMING LANGUAGE
Your choice of programming language needs to
align with the software that you are developing.

We can (simplistically) divide programming
languages into two categories: low-
level and high-level languages.
­ Low-level: “close to the metal”, providing the

most control over how your code executes.
­ High-level: “more abstract”, exercising less

control over code execution.

Early assumptions in programming languages is
that we were move away from low-level
languages, and this has sort-of happened…

36

PROGRAMMING LANGUAGES
Low-level languages are suitable when you are concerned with the performance of your
software, and when you need to control memory usage and other low-level resources.
­ They are often most suitable for systems programming tasks, that are concerned with delivering

code that runs as fast as possible and uses as little memory as possible.
­ Examples of systems languages include: C, C++, and Rust.
­ Appropriate domains include: operating systems, device drivers, and game engines.

High-level languages are suitable when you are concerned with the speed of development,
extensibility, and the robustness of your solution.
­ Applications programming leans heavily on high-level languages, making some performance

concessions for more expressive programming models, and programming language features.
­ Examples of application languages include Swift, Kotlin, Go, and Dart.
­ Appropriate domains include: : web applications, mobile/desktop applications, and

servers/services.

37

WHAT DOES A HIGH-LEVEL LANGUAGE PROVIDE?
­ Automatic memory management
­ Automatic memory allocation/deallocation (via

ref-counting, or GC). This eliminates the risk of
accessing uninitialized memory.

­ Type inference
­ Type inference across the type system.

­ NULL safety
­ A type system that prevents NULL errors.

­ Concurrency
­ More control over how async code executes.

­ Broader programming models
­ Mix of functional, object-oriented paradigms.

Features Low-level High-level

Memory
management

manual garbage collection

Type system static static or dynamic

Runtime fast medium

Executables small, fast large, slow

Portability low high

38

These features contribute to our goal of building robust,
extensible, reusable software.

OTHER FUNCTIONALITY? CALL THE OS
System Call interface
­ OS specific.
­ Using this interface in your
application ties you to that OS.

System Libraries interface
­ System libraries provide a more
generic interface, at a higher level
of abstraction.

­ Programming languages tend to
implement standard libraries at
this level. e.g., C++ standard
library.

­ Other “user libraries” exist in “user
space”, for security/stability.

40

LIBRARIES
You could, in theory, access a lot of your operating system functionality through
syscalls, but this would be highly platform-specific code, that would not be portable
across operating system. Instead we use libraries, which tend to abstract away small
OS and hardware differences.

Library origin

Programming language stdlib, stdio Libraries included in the programming language;
guaranteed to exist everywhere

OS vendor Win32, Cocoa Libraries/Frameworks provided by the vendor to support
syscalls/low-level access. Includes common functionality
like graphics, networking.

Third-party OpenGL,
OpenCV

Libaries provided by other parties to allow additional
support beyond what the OS vendors provide. e.g.,
database access, computer vision.

41

APPLICATION PROGRAMMING
A technology stack is the set of related technologies that you use to develop
and deliver applications. We need a programming language + libraries that
work together on your platforms.

Platform OS Programming Languages Libraries?

Desktop Windows (Microsoft) C# .NET, UWP (Maui)

macOS (Apple) Swift, Objective-C Cocoa, UIKit, SwiftUI

Linux (Many) C, C++ GTK

Mobile Android (Google) Kotlin Android SDK, Compose

iOS (Apple) Swift, Objective-C UIKit, SwiftUI

^ Languages & Libraries are often vendor-specific !

42

HOW DO WE SUPPORT MULTIPLE PLATFORMS?
1. Build a native application for each platform. Use Microsoft's toolchain to build a
Windows application, then use Apple's toolchain to build the macOS version i.e., build
and maintain separate codebases for each platform that you wish to support.

2. Use a cross-platform framework. Find a way to leverage code and libraries
across more than one platform. This can be done using a cross-platform framework
like React Native, Xamarin, Flutter, or Compose Multiplatform. This approach can
save time and effort, but it can result in a less polished user experience.

3. Give up and just develop for the web. Part of the reason for the success of the
web is that you can, theoretically, build an application that runs in a web browser on
each platform. This is the easiest approach but can result in a less polished user
experience. You also restricted access to hardware e.g., the camera or the GPS.

🏆

43

WHAT ARE WE DOING?
We’re going to use the Kotlin toolchain. It provides:
­Native support for Android. If you want to build a mobile application, this is
the main (native) language for the most popular mobile OS. Win win.
­Cross-platform support for Desktop. You can also build reasonably good
desktop applications for Windows, Linux and macOS with Kotlin/JVM.
Libraries aren’t as well developed as Kotlin/Android but certainly “good
enough” for this course.

Kotlin is one of many “modern” application languages (along with Swift, Go,
Dart), with features that make it extremely useful for building applications.

We’ll discuss Kotlin in detail and introduce supporting libraries to extend its
functionality i.e., graphics, user interfaces, databases and so on.

44

