NYZANVZANYZANYZANY /AN

A\YA\YA\YA\Y/A\Y/4
N2\ Y4\

NYZANYZANYZANYZANYZANYZAN TN

FJANVIANVIANVIANVIANVIANVIANY S

WELCOME TO CS 346| ‘ CCCCC . Application

eeeeeeeeeee

FJANVIANVIAN

0 U T |- I N E CS 346: Application
Development

INTRODUCTIONS

Dr. Jeffery Avery
Associate Professor, Teaching Stream \OU

Cheriton School of Computer Science == l

Caroline Kierstead —

Instructional Support Coordinator
https:/ /student.cs.uwaterloo.ca/~cs346

/1249 /course-outline /contact-us/

Teaching Assistants

. . .) aka “Jeff” or Prof Avery
Yiwen Dong, Favour Kio, Aniruddhan Murali, please not Jeffery

Gareema Ranjan, Hauton Tsang, Amber Wang

https://student.cs.uwaterloo.ca/~cs346/1249/course-outline/contact-us/
https://student.cs.uwaterloo.ca/~cs346/1249/course-outline/contact-us/

WHAT IS THIS COURSE ABOUT?

CS 346 Application Development
LAB, LEC, TST 0.50

Introduction to full-stack application design and development. Students will work in
project teams to design and build complete, working applications and services using
standard tools. Topics include best practices in design, development, testing, and
deployment.

Prerequisites: CS 246; Computer Science students only.

https: //student.cs.uwaterloo.ca/~cs346/1249/

https://student.cs.uwaterloo.ca/~cs346/1249/

2:58 PM ® Z O il B @®60x

WHAT WILL YOU DO?

RECIPE ROAD:

<@ aa6%s VJOURNEY

Your Profile

o Y PICKS:

@berek
Gersk@gmai.com E:
29/09/2001

d

200 Ring Rd, Waterloo Apr 4, 2024

You will design + build an application!

DaWadGuy

Your Badges

Teams of 4 people ~

Want to watch a Blue Jay's game? WUSA is
setting up a home opener night out at the

You have answered Rogers Centre in Toronto!

10 questions! When: 08/04/2024, 15:45

; 3 Honks Add Comment

Produce a well-designed, robust application

To unlock this badge,
answer 25 questions!
Current: 14 /25

* You choose what application to build!

I'm down, anyone want to go with me? DM
on insta @mrgoosechad

CXE)

* Mobile or desktop using our technology stack.

MrGoose

To unlock this badge,
answer 100 questions!

Current: 14 /100
This is gonna be so much fun!
. . / DaWadGSy
* You and your team pick suitable advanced * A A A°
features.

* Basic requirements (e.g., graphical, saves datq,
uses cloud services).

/
k3

BI-WeekIy releases https://student.cs.uwaterloo.ca/~cs346/1249/

* Demo to your TA and submit product releases. course-project/gallery

https://student.cs.uwaterloo.ca/~cs346/1249/course-project/gallery/
https://student.cs.uwaterloo.ca/~cs346/1249/course-project/gallery/

WHAT WILL YOU LEARN?

lterative, team-based development

Work on a project team, where you need to collaborate and coordinate work.
Learn an interesting and useful tech stack, with a modern programming language.
Learn mobile development, graphical user interfaces, database connectivity.

Apply relevant design practices i.e., design principles, patterns.

Best practices

Build software the way that you would in industry. This includes software development
practices. e.g., code branching/merges, issue tracking, unit testing, software releases.

Just like real-life, you will demo your progress!
Teamwork

Practice communication, teamwork, collaboration skills.

It will be fun ehelenging frustreting rewarding!

COURSE WEBSITE (LINK)

CS 346 F24 £ schedule [E Blog AR Teams ¥ cittab QIPiazza [Learn

CS 346 Application Development

@ Home

[l course Outline

Learning Objectives Course Description

CS 346 Application Development
LAB, LEC, TST 0.50

Course Structure
Assessment

Course Policies Introduction to full-stack application design and development. Students will work

Required Resources applications and services using standard tools. Topics include best practices in ¢

Contacting Us
Prerequisites: CS 246; Computer Science students only.
88 Getting Started

'ﬂ' Teamwork

https:/ /student.cs.uwaterloo.ca/~cs346/1249/

https://student.cs.uwaterloo.ca/~cs346/1249/
https://student.cs.uwaterloo.ca/~cs346/1249/

COURSE STRUCTURE (LINK)

A A A
‘ -

Lectures, Videos, Tests Assignments, Studying Lectures, Videos, Tests Assignments, Studying
3 hours/week 3-5 hours/week 2 hours/week 4-6 hours/week

Traditional Class Flipped Class

Mon: The instructor will post videos & slides on Mon morning, which you should review before Wed.
Wed (In-class): The instructor will review, show demos etc. Most of the class is time for your project.

Fri (In-class): Friday is dedicated to working on your project. Instructor + TAs will be present.

https://student.cs.uwaterloo.ca/~cs346/1249/course-outline/structure/

SCHEDULE (LINK)

5 Schedule =] Blog AR Teams £ GitLab Clj Piazza

[Learn

Things we’ll
discuss/demo in-
class (not testable)

Lecture Posted
Week .
(Mon online)
Link to Week 1:
weekly =T gepr3- -
agenda 6
Week
2:
Kotlin, Gradle
Sept 9=
Videos and slides
under weekly I

P

In-Class Activities
(Wed & Fri)

M Introduction
H Teamwork
H Development
Process

M Setup GitLab

Project

B |nstall toolchain
M Create a Gradle

project

Everything
Due «— due end of
(Fri 11:59 PM) the weekl!
B W2 Quiz Quizzes and
L IVAE <+<T—— project components
Project Setup due

agenda (testable)

https://student.cs.uwaterloo.ca/~cs346/1249/course-outline/schedule/

WEEKLY AGENDA (LINK)
3 schedule A Teams ¥’ Gittab WjPiazza Learn

Blog

BLOG

Week 01 - Introduction
Link to

l This first week, we will have lectures on both Wed and Fri; you can expect this material to
weekly —™

agenda be spread across both days.

2024-09-03

https://student.cs.uwaterloo.ca/~cs346/1249/blog/

WEEKLY AGENDA (LINK)

Week 01 - Introduction

e Jeff Avery

Welcome to the course!

This first week, we will have lectures on both Wed and Fri; you can expect this material to be
spread across both days.

If you haven't registered in the course, then you should email the instructor right away.
There will be a department consent on the course preventing enrolment, so we'll need to
work together to get you enrolled.

Topics

Also has links to
videos, slides
each week.

Posted Mon 10
AM.

https://student.cs.uwaterloo.ca/~cs346/1249/blog/

ASSESSMENT (LINK)

Individual
* Quizzes (weeks 2-11): 10 x 2% = 20%
* Weekly attendance (weeks 2-13): 12 weeks x 1% = 12% // I'll pass around an attendance sheet

Team Project

* M1. Project setup: 2% // see schedule; something due approximately every 2 weeks
* M2. Project proposal: 5%

* M3. Design proposal: 6%

* M4-Mé6. Product releases (including demo): 3 x 10% = 30%

* M7. Final release (release + documentation): 25%

https://student.cs.uwaterloo.ca/~cs346/1249/course-outline/assessment/

POLICIES (LINK)

Grading
* Quizzes are auto-graded and returned the next Monday.
* Everything else is graded and returned ~1 week after submission. Grades in Learn.

* Regrade policy: 1week from the time they are returned.

Group Participation
* You must form teams by the end of week 2. —

* We will help, but we reserve the right to remove you if you don’t cooperate.

Has not
* You must participate during the term! In unusual circumstances, we may adjust grades been used
downward if you do not adequately contribute. previously.

Code “Sharing”
“ You are allowed to share code (up to 25 lines) with appropriate citation. No Al /LLM!

https://student.cs.uwaterloo.ca/~cs346/1249/course-outline/policies/

W E E K 0] - W H AT TO D 0 ? Contact me after class if you

1. Aren’t registered yet.
2. Need to switch sections.

3. Have any other questions!
Attend lectures

Wed: Introduction; Software Process

Fri: Teamwork; Development Best-Practices.

Register for the coursel!
Talk to the instructor (i.e., me) if you are not registered.
You must be in all morning or all afternoon sections; you cannot mix/match.

You must attend in-person. You may also be removed if you fail to participate.

Form teams

Four people

All team members must be in the same sections. Talk to me if you need to switch sections.
A mix of skills and interests is desirable! There’s lots to do.

NYZANYZANYZANYZANY /AN
A\YA\YA\YA\Y/A\Y/4
NYZANYZANYZANYZ\ Y4

NYZANYZANYZANYZANYZANYZAN T4

FJANVIANVIANVIANVIANVIANVIANY S

WHAT IS AN APPLICATION? ‘ ppppppppppppppp

eeeeeeeeeee

WHAT IS AN APPLICATION?

An application is “software designed to solve
a problem for users”.

* Tends to be task-oriented.
* Term covers mobile, desktop, web apps.

* Distinct from system software, which is software
that provides services for other software e.g.,
drivers.

What is a full-stack application?

* Division of application into front-end (user
interface) and back-end (part that processes
data).

* Doesn’t really apply to all applications (but
applies to your project!)

eoe < Applications
utomator.app app
pp
] K
Cisco Webex Clock.app ComposeWidgets
Meetings.app Gallery.app
a \
- o
[
Docker.app Downie 4.2pp draw.io.app
- a
Freeformapp GarageBand.app Gifox.app
JetBrains Keynote.app Kindle.app
Toolbox.app
Messenger.app Microsoft Microsoft
Excel.app OneNote.app

Microsoft Teams
(work or...ool).app

Word.app

sssssss

1. COMMAND-LINE

The first interactive applications were text-based and designed to be executed from
a terminal or console. e.g., Is, grep, vim.

Characteristics of command-line applications:

* Keyboard driven. Not intended to support mice, trackpads.

* Non-graphical. Intended to be run from a shell /terminal, with limited character graphics.
- Standard text 1/O. Read/write from the terminal, or file system.

* Scriptable. Very suitable for automation or chaining tasks.

User pro/con:
" Efficient. Small executables.
* Targeted at experts. Usually a high learning curve.

* Not discoverable. Not graphical.

2. DESKTOP

Desktop applications run on a desktop operating system e.g. Windows or macOS.

Characteristics of desktop applications include:
Keyboard and mouse are used for input. Possibly other pointing devices e.g., trackpad.

Windows on a desktop is the primary abstraction. Application input/output is contained within a
window, which can be moved, resized, and stacked on one another.

Multiple-window support. Applications may have multiple windows, each with their own content.
Multi-tasking by design. Multiple windows supports multiple applications running side-by-side.

Rich user experience. Applications can use graphics, animations, and other visual effects to make
the user experience more engaging.

User pro/con:
Handles richer input and output.

Features are more "discoverable” for new users.

2

[e

30 All Themes
315 New

@ Recents
[Basic
% Dynamic
(= Minimal
&3 Bold

&3 Editorial
(@ Portfolio
€2 Craft

Textured

Choose a Theme

New
My My Presentation

Minimalist Light

Recents

My Presentati

Color Gradient
Basic
2y rosentatin
- Basic White Basic Blac

1

Desktop applications are suitable for tasks that require a lot of screen real-estate, or that need to

Minimalist D,

Wide (16:9) ¢
® © @ Fender American Ultra Stratocaster SSS in Arctic Pearl

Description
American Ultra is our most advanced series of guitars and basses
precision, performance and tone. The American Ultra Stratocaster|
Ultra rolled fingerboard edges for hours of playing comfort, and thi
highest register. A speedy 10"-14" compound-radius fingerboard
accurate soloing, while the Ultra Noiseless™ Vintage pickups and ¢
possibilities - without hum. The sculpted rear body contours are a
adds the neck pickup in to any switch position. This versatile, statg
playing to new heights.

Adjust Filters

® e o

ADJUST

Light

D Color S

e e
el e S S e

Other features include sealed locking tuning machines, chrome hal
hardshell case.

Pictures D Black & White

Retouch
Red-Eye
> P White Balance
> B4 Curves
> @ Levels
| Definition
"= Selective Color
[E) Noise Reduction
{ Sharpen
Vignette

peepeSneee

<)

Live

be

used for long periods of time. They also support mouse /trackpad and other input devices which makes
them suitable for precise input as well.

22

3. MOBILE

Mobile applications are designed for use on a smartphone, tablet or similar device.

Characteristics of mobile applications include:
Touch-enabled. Users interact using gestures e.g., tapping, swiping, and pinching.

Small-screen enabled. Applications are designed to be used on a small screen and are
often optimized for portrait mode (due to hand orientation).

Single-tasking. Due to the screen size, applications tend to be single tasking and are not
designed for long periods of use.

Rich-user experience. Like desktop applications, mobile applications can use graphics,
animations, and other visual effects to make the user experience more engaging.

User pro/con:
Lack of precision. Small devices and touch-interfaces make precision interaction difficult.
Small screen. Smaller interaction surface is less suitable for “large” output. See desktop.

23

Small Plant Sill for desk Agent Mug

and fits up to 3 plants!

£89.99
Kk kAL

£19.00
* ok ok kA

Hardwood Stool Ceramic Plate Set

Classic design, timless

@ Q @

9:30 [) LT

= Wood & House's Products ¥

246 Results = Sort = Filter
©)

Beautiful made from wood Handcrafted porcelain mug

Hand made in our personal

material kiln, with a textured glaze.
£99.00 £59.99
*kok kg * K K & fr 84 reviews

Q

€ Maria Diaz

It was such a good trip! How
are the kids?

Sounds good

They are all doing super well,
Benjamin just had his birthday in January!

Do you have any pictures!?

| remember when mine were 7 and 9
the crazy things they did!

9:30

[N e N 7 o™ A oV

< Recent files

Sort by name v

03 Music /[Grouseling

Aura

Blameless

Book the first

Botany

Mix part 1

Mix part 2

Lostless MP3

Locator

On your left

71]

/' £ Blameless

2,833 KB

_—

00:35:07 01:05:23

®© O <

Decode

Thriller starring Emily Miller and Lydia Franci,
paints in a future where we've figured out
sustainability, yet the question is what to do now
with all the abundance. How will we in earth
remain in harmony and how will it inspire to help

[] al @ i

Mobile applications are usually designed for casual, on-the-go use. They also tend to favor content
consumption vs. creation, where touch-input isn’t a significant restriction. Otherwise, they are

functionally very similar to desktop applications.

24

YOUR PROJECT?

Can be any of:
Console application (with some graphics and rich functionality)

Desktop application (standard features e.g., cut/copy/paste and undo/redo)
Android application (standard features, e.g., device orientation)

Tip
Pick what interests youl!
Pick an application that suits this style of application.

25

NYZANYZANYZANYZANY /AN

A\YA\YA\YA\Y/A\Y/4
N2\ Y4\

NYZANYZANYZANYZANYZANYZAN T4

FJANVIANVIANVIANVIANVIANVIANY S

DEVEI_OPMENT THEMES ‘ CCCCC . Application

eeeeeeeeeee

WE WANT TO BUILD SOFTWARE “CORRECTLY"

It doesn’t take a huge amount of knowledge and skill to get a program working. Kids in high
school do it all the time... The code they produce may not be pretty; but it works. It works
because getting something to work once just isn’t that hard.

Getting software right is hard. When software is done right, it requires a fraction of the
human resources to create and maintain. Changes are simple and rapid. Defects are few and

far between. Effort is minimized, and functionality and flexibility are maximized.

— Robert C. Martin, Clean Architecture (2016).

Recognize that we requirements and our software will change over time.
* We will need to add new features or extend existing features.
* We will inevitably have bugs and defects to address.

27

GOAL: ROBUSTNESS

Software rarely works in a vacuum.
* Your operating environment may change (OS, libi

* You are probably getting inputs from many sourc
Sometimes they are in a format you don’t expect.

These things can result in expected behaviour.

Robustness means that your software needs t«
faced with unintended inputs, or changes to th

* It cannot crash. Ever. Manage faults and exceptio
* Performance should not degrade over time.

* Data should never, ever get lost.

BUSINESS

Delta's CEO says the CrowdStrike outage
cost the airline $500 million in 5 days

JULY 31, 2024 - 12:38 PM ET

By Jason Breslow

A Delta Air Lines jet takes off at the Los Angeles International Airport in April. Ed Bastian, the airline's CEO, says

the CrowdStrike outage has cost the carrier $500 million.

Damian Dovarganes/AP

Robust means this doesn’t happen. Ever.
28

GOAL: FLEXIBILITY ..

P Release Notes: 1.91.1 X m -

Our needs change over time, and software ne suner2024wersion)

Show release notes after an update

FIeXibiIiiy implies tht you can mqke Chqnges Update 1.91.1: The update addresses these issues.
the opposite of “brittle code”). This also sugge

Welcome to the June 2024 release of Visual Studio Code. There are many updates in this version that

breaking chcmges, like adding dI'CISﬁCCI”y NEW we hope you'lllike, some of the key highlights include:
qdding SUpporf for Code fences and Syn‘l‘qx hi * Preview: Incoming/Outgoing changes graph - Visualize incoming and outgoing changes in the

Source Control view.

* Python environments - Enhanced environment discovery with python-environment-tools.

ExtenSibi I ity implies l|'he a bili‘ry 1‘0 eqund ant * Smart Send in native REPL - Smoothly run code chunks in the native REPL.

* GitHub Copilot extensibility - Chat and Language Model APIs available in VS Code Stable.

imCIge file fOFmCI‘I' iS I"eleCISGd, Clnd YOU eCISil)’ * Preview: Profiles Editor - Manage your profiles in a single place.

* Custom tab labels - More variable options and support for multiple extensions.

* TypeScript 5.5 - Syntax checking for regular expressions and other language features.

These p rOpe rfies CI re enq bled by Cq rerI qnd * JavaScript Debugger - Inspect shadowed variables while debugging JavaScript.
a p plicqfion p roperly, YOU cdan Gn"'iCi que foU Fi If you'd like to read these release notes online, go to Updates on code.visualstudio.com. ‘

Insiders: Want to try new features as soon as possible? You can download the nightly Insider

build and try the latest updates as soon as they are available.

®0A0 @ 0 Q &8 0

29

GOAL: REUSABILITY

Software is expensive and time-consuming to produce. Code reusability is literally
reusing code that you’ve written across more than one project.

Code reusability helps to reduce cost and time to delivery. It also reduces risks,
since you are reusing well-tested code, instead of writing new and potentially
defective code.

There are different levels of reuse.

At the lowest level, you reuse classes: class libraries, containers, maybe some class “teams”
like container /iterator.

At the highest level, you have frameworks. They identify the key abstractions for solving a
problem, represent them by classes and define relationships between them.

There also is a middle level. This is where | see patterns: design patterns are both smaller
and more abstract than frameworks. They’re really a description about how a couple of
classes can relate to and interact with each other (Eric Gamma, 2005)

30

NYZANYZANYZANYZANY /AN

A\YA\YA\YA\Y/A\Y/4
N2\ Y4\

NYZANYZANYZANYZANYZANYZAN T4

FJANVIANVIANVIANVIANVIANVIANY S

MODERN DEVELOPMENT ‘ CCCCC : Application

eeeeeeeeeee

PICKING A PLATFORM

What should we develop — desktop applications or mobile applications?

1. Your first consideration should be the user experience. What application style is
most suitable for your user and their requirements?

2. Consider the market share of the platform (desktop vs mobile). Mobile is arguably
a more common platform i.e., "everyone has a phone” but desktop is still very
important. Consider reach (# of users) vs. profitability of a platform.

3. Finally, consider the market share of the operating system for your specific
scenario. Ultimately you need to support the platform + OS combination that works.

34

MARKET SHARE?

COMBINED MARKET SHARE

mAndroid mEWindows m®iOS mEmacOS m®ELinux mUnknown

80.0%
70.0%
60.0%
50.0%
40.0%
Command-line applications account for
30.0% < 1% of commercial software, which is
20.0% why they aren’t included here.
10.0% Similarly for watches and other
.U70
wearables.
0.0%

What’s the most popular software

platform in the world?
35

PICK A PROGRAMMING LANGUAGE

Your choice of programming language needs to

align with the software that you are developing.

We can (simplistically) divide programming
languages into two categories: low-
level and high-level languages.
* Low-level: “close to the metal”, providing the
most control over how your code executes.

* High-level: “more abstract”, exercising less
control over code execution.

Early assumptions in programming languages is
that we were move away from low-level
languages, and this has sort-of happened...

5GL & DSL

PROBLEMS

Languages

Application
Languages

MEMORY REPRESENTATION
MACHINE INSTRUCTION

HARDWARE

System
Languages

Low Level
Languages

36

PROGRAMMING LANGUAGES

Low-level languages are suitable when you are concerned with the performance of your
software, and when you need to control memory usage and other low-level resources.

They are often most suitable for systems programming tasks, that are concerned with delivering
code that runs as fast as possible and uses as little memory as possible.

Examples of systems languages include: C, C++, and Rust.

Appropriate domains include: operating systems, device drivers, and game engines.

High-level languages are suitable when you are concerned with the speed of development,
extensibility, and the robustness of your solution.

Applications programming leans heavily on high-level languages, making some performance
concessions for more expressive programming models, and programming language features.

Examples of application languages include Swift, Kotlin, Go, and Dart.

Appropriate domains include: : web applications, mobile /desktop applications, and
servers/services.

37

WHAT DOES A HIGH-LEVEL LANGUAGE PROVIDE?

Automatic memory management

Features Low-level High-level

Automatic memory allocation/deallocation (via

ref-counting, or GC). This eliminates the risk of Memory | garbage collection

accessing uninitialized memory. management
Type inference Type system static static or dynamic

Type inference across the type system. Runtime fast medium
NULL safety Executables small, fast large, slow

A type system that prevents NULL errors.

ype sy P Portability low high

Concurrency

More control over how async code executes. These features contribute to our goal of building robust,
Broader programming models extensible, reusable software.

Mix of functional, object-oriented paradigms.

38

OTHER FUNCTIONALITY? CALL THE QS

System Call interface

* OS specific.

* Using this interface in your
application ties you to that OS.

System Libraries interface

* System libraries provide a more
generic interface, at a higher level
of abstraction.

* Programming languages tend to
implement standard libraries at
this level. e.g., C++ standard
library.

* Other “user libraries” exist in “user
space”, for security /stability.

Qe
User e
Interface Users
Library Applications
Interface (editors, games, etc.)

System Call System Libraries
Interface r (open, close, read, write, fork, etc)

Operating System
(processes, memory, filesystem, I/0, etc)

Hardware
(CPU, memory, disks, devices, etc.)

User Mode

Kernel Mode

40

LIBRARIES

You could, in theory, access a lot of your operating system functionality through
syscalls, but this would be highly platform-specific code, that would not be portable
across operating system. Instead we use libraries, which tend to abstract away small
OS and hardware differences.

Library origin A

Programming language stdlib, stdio Libraries included in the programming language;
guaranteed to exist everywhere

OS vendor Win32, Cocoa Libraries/Frameworks provided by the vendor to support
syscalls/low-level access. Includes common functionality
like graphics, networking.

Third-party OpenGL, Libaries provided by other parties to allow additional
OpenCV support beyond what the OS vendors provide. e.g.,
database access, computer vision.

4

APPLICATION PROGRAMMING

A technology stack is the set of related technologies that you use to develop
and deliver applications. We need a programming language + libraries that
work together on your platforms.

Plaform OS ez

Desktop Windows (Microsoft) .NET, UWP (Maui)
macOS (Apple) Swift, Objective-C Cocoa, UIKit, SwiftUl
Linux (Many) C, C++ GTK

Mobile Android (Google) Kotlin Android SDK, Compose
iOS (Apple) Swift, Objective-C UIKit, SwiftUl

A Languages & Libraries are often vendor-specific !

42

HOW DO WE SUPPORT MULTIPLE PLATFORMS?

1. Build a native application for each platform. Use Microsoft's toolchain to build a
Windows application, then use Apple's toolchain to build the macOS version i.e., build
and maintain separate codebases for each platform that you wish to support.

2. Use a cross-platform framework. Find a way to leverage code and libraries o
across more than one platform. This can be done using a cross-platform framework %>
like React Native, Xamarin, Flutter, or Compose Multiplatform. This approach can

save time and effort, but it can result in a less polished user experience.

3. Give up and just develop for the web. Part of the reason for the success of the
web is that you can, theoretically, build an application that runs in a web browser on
each platform. This is the easiest approach but can result in a less polished user
experience. You also restricted access to hardware e.g., the camera or the GPS.

43

WHAT ARE WE DOING?

We’'re going to use the Kotlin toolchain. It provides:

Native support for Android. If you want to build a mobile application, this is
the main (native) language for the most popular mobile OS. Win win.

Cross-platform support for Desktop. You can also build reasonably good
desktop applications for Windows, Linux and macOS with Kotlin/JVM.
Libraries aren’t as well developed as Kotlin/Android but certainly “good
enough” for this course.

Kotlin is one of many “modern” application languages (along with Swift, Go,
Dart), with features that make it extremely useful for building applications.

We’'ll discuss Kotlin in detail and introduce supporting libraries to extend its
functionality i.e., graphics, user interfaces, databases and so on.

44

