
SOFTWARE DEVELOPMENT PROCESS CS 346: Application
Development

WHAT IS A PROJECT (AND WHY DOES IT MATTER?)
A project a set of tasks that collectively produce a desired outcome. e.g., redesigning
my backyard, which includes planting flowers, cutting down trees.

Projects are often:
­ More complex than individual tasks, with many tasks that need to be coordinated.
­ Repeatable using the same steps (important if you care about reliability, reproducibility).

Regardless of their goal, projects usually include these high-level activities:
­ Communication – discussion among people involved.
­ Planning – agreement on the people, resources and objectives.
­ Modelling – an abstract representation e.g., a sketch or blueprints.
­ Construction – performing the required tasks!
­ Deployment – delivering to a customer, getting paid etc.

2

PROCESS MODEL
We use the term process model to describe this structure of activities.

“A process model defines the complete set of activities that are required to specify, design, develop,
test and deploy a product, and describes how they fit together.“

A software process model is a process model adapted to describe how we might
build software systems. Here’s an example of a simple software process model that
adapts these common project activities.

^ How do these fit? Can
we just do them in order?

3

ADDING ORDER: WATERFALL
In a 1970 paper, Winston Royce laid out a mechanism for formalizing the large-scale
management of software projects [Royce 1970], dubbed the Waterfall model. This
process model envisions software production as a series of cascading steps.
­ Stages were assigned to organizational units (e.g. Requirements “belonged” to Product Mgmt).
­ Steps needed to be followed in order. There were often gating criteria when progressing
through steps.

“Business” “Engineering”

4

CHALLENGES
Key challenges when project planning using the Waterfall model:

1. Customer priorities will likely change over the course of a project. It is difficult to predict
in advance which software requirements will persist and which will change.

2. Waterfall suggests that you can define requirements without technical analysis. This is
difficult, since technical analysis is necessary to know how long a task might take, risks etc. Your
understanding of a problem will increase as you move through the project.

3. For many types of software, design and construction are interwoven. That is, both
activities should be performed in tandem so that the design is proven as it is created.

4. Analysis, design, construction, and testing are not as predictable as we might wish.
We’re often designing something new or novel, which by its nature will be difficult to predict!

These challenges make it extremely difficult for any model to accurately describe software
production. There’s often “too many unknowns” for precise up-front planning.

5

https://agilemanifesto.org/ (2001)
6

https://agilemanifesto.org/

WHAT IS AGILE?
[Agile Software Development] encourages team structures and attitudes that make

communication easier (among team members, business-people, and between
software engineers and their managers). It emphasizes rapid delivery of operational
software, but also recognizes that planning has its limits and that a project plan must

be flexible.

— Pressman & Maxim 2020.

There are MANY Agile process models e.g., Crystal, Lean, Scrum, XP.

They share some principles:
­ Focus on teams! Communication, honesty and collaboration are critical.
­ Be responsive and ready to adapt as requirements change.
­ Focus on quality at every step. Never “just get it working”. // why not?

7

ITERATIVE MODELS
In modern software development, we now
view development as an iterative process.

Instead of building a “complete” system
and then asking for feedback, we instead
attempt to deliver features in small
increments.

This allows us to respond to changing
requirements and provides a regular
mechanism to check our progress and get
feedback.

︖

This is a first-draft of a process model.
It’s probably not sufficient to just iterate like this…

8

WHY ITERATE? TO IDENTIFY CHANGES EARLY!
The cost of change increases
nonlinearly as a project progresses.

Agility allows for project and
requirements changes as the project
progresses and reduces the
likelihood of breaking late-project
changes.

In other words, iteration encourages
you to make required changes
earlier in the process, when the cost
of doing so (in money, time, effort) is
lower.

9

DESIGN MODEL > UCD CS 346: Application
Development

DESIGN & THE BIRTH OF UX
In the mid 1980s, while on sabbatical at the Applied
Psychology Unit at Cambridge University, Don Norman
found himself puzzled by the light switches he encountered.
Why light switches? The switches moved in the opposite
direction to what he expected ("up" denotes "on" by North
American convention, but not in the UK).

These ponderings eventually led to the publication of The
Design of Everyday Things in 1988 [Norman 1988, 2013].
This book launched the UX movement.

11

PRINCIPLES OF INTERACTION
Norman illustrates what he considers the fundamental principles of interaction:

Affordances: cues that allow a person to figure out what an object does without any
instructions. e.g., a door with a "pull" handle (formally called "perceived affordance", which
positions then as properties of the perceiver, as much as the object itself).

Signifiers: visible signs or sounds that communicate meaning. They indicate what is happening,
or what can be done. e.g., a door that says "push" on it.

Mapping: the relationship between two sets of things that conveys associated meaning. e.g.
grouping controls and putting them next to the thing that you want to manipulate.

Feedback: the result of an action, communicated to a user. e.g., a button changing color when
depressed; a walk indicator that lights up when the walk button is activated.

Conceptual models: simplified explanations of how something works; related to mental
models that people automatically form when working with an object to help them explain and
predict its behavior.

12

USER-CENTERED DESIGN (UCD)
“The first requirement for an exemplary user experience is to meet the exact needs of
the customer, without fuss or bother. Next comes simplicity and elegance that produce

products that are a joy to own, a joy to use.“

– Don Norman & Jacob Nielsen

User-Centered Design is a design process that focuses on addressing the needs of
users first, to ensure that we're solving the correct problem for them. UCD uses a
mixture of investigative tools (e.g., interviewing) and generative methods (e.g.,
brainstorming) to design systems and collect user feedback through the entire process.

13

UCD > IDENTIFYING USERS CS 346: Application
Development

14

IDENTIFYING A PROBLEM
Application software is intended to solve a real-world problem for a user.

Building something “because you can”, or “because you find it interesting” doesn’t
guarantee that it is useful for anyone else.

We should attempt to:
­ (a) identify a body of users that you know well or have access to.
­ (b) find some problems those users have that haven’t been adequately addressed yet (the
key word is adequate - there’s often room to offer an improved solution).

How do you figure this out? Talk to people!

Find out what challenges them at home/work?

15

INTERVIEWING USERS
You need to understand the details about the problem your set of users has. To do
this, you need to speak with them.
­ Determine your target user group.
­ Find people that fall into this group.
­ Get their opinion! (Yes it’s that simple).

Ideally, interview 5 users [Nielsen 2000]*
­ Ask open-ended questions.
­ Use follow-up questions to to make sure that you understand what they are saying.
­ Take lots of notes (you can even record the interview and review afterwards).

* 5 users is enough to identify 75% or more of your usability problems.
16

INTERVIEW QUESTIONS
Good interview questions
­ “We are building X. Would it be useful to you in your role as <something>?”
­ “If not, what could we change to make it more useful for you. “
­ “What features would you like to see added? What is “missing” from your perspective?”
­ “How would you expect X to work?”

Poor interview questions:
­ “I built this. Isn’t it cool?”
­ “You want what? That’s a dumb idea.”

17

DESCRIBING YOUR USERS: PERSONA
A persona is an archetypal description of a user of your product. Creating personas can help
you step out of yourself… It can help you to identify with the user you’re designing for.

There are three approaches to take when defining a persona:

1. Goal-based persona: represents a user’s attitudes, situation, and their goal in that moment.

2. Role-based persona: focuses on the role that the user plays in the organization, and designs
from the perspective of expectations of that role (somewhat goal-driven as well).

3. Engaging persona: incorporate both goal and role-directed personas. Engaging personas
are designed so that the designers who use them can become more engaged with them.

Personas are created after your interviews. Use your interviews to identify characteristics that you
can build into your persona.

18

EXAMPLE PERSONAS
Bio: Fictional name, job title, company, job
description, family status, and more. Include
any details that can help your team
understand the persona better.

Demographic info: Fictional age, gender,
income, education, location, and other
background information.

Image: A vivid image can help your team
picture your users clearly and help establish
a consistent understanding of the target.

Goals & motivations: You should also make
it clear what your audience wants to get or
to do with your product.

19

UCD > USER STORIES CS 346: Application
Development

20

COLLECTING USER STORIES
From your user interviews, you should have identified some basic activities that are
important to your users! These will often come in the form of stories or narratives…

User-Stories are a description of activities that are performed with a system, from
the perspective of a user.
­ “As the HR manager, I want to create a screening quiz so that I can understand whether I
want to send possible recruits to the hiring manager.”

­ “As a user, I can indicate folders to skip when backing up, so that my backup drive isn’t filled
up with things I don’t need”.

Use these stories to identify problems and desirable solutions. e.g., Jessica and Max
both have problems keeping track of information and would be amenable to a
mobile solution.

21

TERMINOLOGY: INITIATIVES, EPICS, USER STORIES
Related user stories can be grouped under a heading called an epic. An epic is
simply a larger body of related user stories. Similarly, an initiative is a collection of
related epics. These terms are useful in larger products, but not used in this course.

https://www.atlassian.com/agile/project-management/epics-stories-themes
22

https://www.atlassian.com/agile/project-management/epics-stories-themes

WHAT TO DO WITH USER STORIES?
User stories identify desired features from the point-of-view of your user. Analyze
them to determine what features (or sets of related features) you would require to
meet that user’s needs.

From there, enter issues in your GitLab project corresponding to each feature that you
wish to implement. Add details provided by your user as background and motivation
for the design of that feature.

When deciding which features to include:
­ 1. Focus on the problem you are trying to solve. Make sure your feature addresses it.
­ 2. Consider features that support each other. e.g., copy-paste and keyboard shortcuts, or
cloud data storage and authentication.

23

UCD > PROTOTYPES CS 346: Application
Development

24

ITERATIONS: PROTOTYPING
It’s helpful to iterate on your product early in the project to ensure that you are
planning out the features appropriately.

One good strategy is to develop early mockups that demonstrate the layout and
structure of your application. These should NOT be 100% functional, but instead
serve as placeholders for the later functionality.

We call these early iterations prototypes. We recommend that before you start
coding, you:

1. Create a prototype of your projects interface (since the UI is what the user will see,
so it’s the best way to express how functionality will work with respect to the user).

2. Show to your user, collect feedback and revise.

25

PROTOTYPES
When iterating over an interface,
focus on low-fidelity prototypes.

Low-fidelity prototypes are
deliberately simple, low-tech, and
represent a minimal investment.
­ You can sketch something on paper.
­ Many online tools help you build
wireframe diagrams that you can demo.

­ You can even make them semi-
interactive to test progression through
the interface.

26

Low Medium High

ONLINE TOOLS
Figma is a very popular prototyping
tool (desktop, mobile, web).
­ Use it to mock screens and interactions.
­ Can build design-specific UI designs
(e.g., iPhone, iPad, desktop).

­ Makes iteration much easier compared
to paper prototyping.

­ Can export code(!)

Other options
­ Omnigraffle (mac)
­ Balsamiq (win, mac, web)
­ Hand-drawn diagrams

https://www.figma.com/

27

FEEDBACK!
Remember those users?

You really want to get their feedback
before/during your project.
­ When determining requirements (“did we
understand this correctly?”).

­ When building prototypes (“what do you
think this does? Is it clear?”)

You will submit a Design Proposal,
where your user (TA) will provide
written feedback.
­ Also solicit their feedback during demos
to help fine-tune your designs!

28

SOFTWARE DEVELOPMENT LIFECYCLE (SDLC)

Partial SDLC including
requirements and
design only.

29

PROCESS MODEL > SCRUM CS 346: Application
Development

AGILE PROCESS MODELS: SCRUM
Scrum is a popular Agile process model that we’ll use.

Scrum breaks down a project into fixed-length iterations called sprints (typically 2-4
weeks in length for each sprint). Sprints are defined so that you iterate on prioritized
features in that time and produce a fully-tested and shippable product at the end of
the sprint.

Typically, you iterate until you and the customer together decide that you are “done”.

31

Product Backlog is a list of all possible features and changes that could be considered.
­ Product Owner is responsible for gathering and placing requirements in the product backlog.

Sprint Backlog is the set of features that are assigned to a sprint.
­ Scrum Master is the person that helps facilitate work during the sprint (e.g., Technical Lead).

32

OUR ITERATIONS
In our course, we will have four sprints, each 2-weeks long. Each includes:

Feature Selection. On the first day of the Sprint, the team meets and selects features. Issues
are moved from the Product Backlog into the Sprint Issues list and assigned. You are
committing to work that you can complete in the upcoming sprint.

Implementation. During the sprint, the team iterates on their features. As each feature is
completed, unit tests are written/passed. When complete, the issue is closed.

Evaluation. At the end of the Sprint, the team meets with the Product Owner (TA) to demo
what they have completed and get feedback. Only completed work is shown. Issues that are
not completed are moved back into the Product Backlog to be reconsidered.

Retrospective. The team should also reflect on what worked well, and what could improve. You
should always be looking for ways to improve how you manage your project.

33

SOFTWARE DEVELOPMENT LIFECYCLE

Adding sprints to SDLC for managing iterations.
34

