
KOTLIN PART 1: BASICS CS 346: Application
Development

WHY KOTLIN?
There are literally hundreds of programming languages to choose from.

How do you pick a programming language?
­ Does it offer features and capabilities that you require?
­ How mature is the ecosystem around the language — do you have useful libraries and tools
support to use it effectively?

­ How productive can you be with it - are there books, tutorials, videos etc.?
­ Is it suitable for the type of software + environment in which you are working?

“Why can’t we just build everything in C++?”
— every C++ developer, ever

2

https://en.wikipedia.org/wiki/List_of_programming_languages

We need to extend our programming
language capabilities to address
required functionality.

Combination of base language + stdlib
+ ext-libs + frameworks

Problematic layers:
­ User interface (UI, graphics)
­ Presentation (screens/flow)
­ Data (data files/databases)
­ Services (web, bluetooth, camera) - not
shown

We need libraries to provide all of this.
­ We want to leverage OS capabilities.
­ We want all of this to work on our
supported platforms.

3

KOTLIN > INTRODUCTION CS 346: Application
Development

4

FEATURES
Kotlin is a modern, general-purpose language. Like Swift.

Developed by JetBrains (IDE company), initially as a Java replacement.
­ Imperative, object-oriented, functional programming styles (hybrid language, like JS, Swift).
­ Statically-typed; type inference; NULL safety; automatic memory management (GC).

It’s multi-platform.
­ Currently: Android (native), Desktop (Windows, Linux, Mac on JVM)
­ Future: iOS (beta), JS (beta), WASM/web (alpha), and more.

It has broad library support!
­ Compose (UI), Ktor (Networking), Exposed (DB) and others.

kotlinlang.org

5

http://kotlinlang.org/

HOW TO LEARN KOTLIN
Online (free)
­ Kotlin Documentation. https://kotlinlang.org/
­ Dave Leeds on Kotlin. https://typealias.com/start/
­ Kotlin Basics course. JetBrains Academy. https://www.jetbrains.com/academy

Books (not free)
­ Elizarov, Isakova, Aigner, Jemerov. Kotlin in Action. 2nd ed. Manning.
https://www.manning.com/books/kotlin-in-action-second-edition

­ Marcin Moskala. 2022. Kotlin Essentials. Packt. ISBN 978-8396684721.
https://leanpub.com/kotlin_developers

6

https://kotlinlang.org/
https://typealias.com/start/
https://www.jetbrains.com/academy
https://www.manning.com/books/kotlin-in-action-second-edition
https://leanpub.com/kotlin_developers

INSTALLATION
You need the Kotlin compiler and runtime. We’ll run on the Java JVM.

1. Install Java 17.0.5 or later from azul.com or another site of your choice.

2. Install Kotlin from kotlinlang.org

3. Check installation from shell:

❯ java -version

openjdk version "18.0.2.1" 2022-08-18

OpenJDK Runtime Environment Zulu18.32+13-CA (build 18.0.2.1+1)
OpenJDK 64-Bit Server VM Zulu18.32+13-CA (build 18.0.2.1+1, mixed mode, sharing)

❯ kotlinc -version
info: kotlinc-jvm 1.9.10 (JRE 18.0.2.1+1)

7

https://www.azul.com/

IDE INSTALLATION (SEE “GETTING STARTED”)
We highly recommend installing and using IntelliJ IDEA in this course.

IDEs offer advanced features: debugging, profiling, code-completion, refactoring.

Install from: IntelliJ Downloads
­ Community Edition will work fine.
­ You can get a free Student license for Ultimate Edition which provides extra features —
highly recommended

­ Runs on macOS (Intel or Apple), Windows, Linux.
­ Requires you to setup projects (which we will demonstrate/discuss soon).

Demo!

8

https://www.jetbrains.com/idea/
https://www.jetbrains.com/community/education/

KOTLIN > COMPILING CODE CS 346: Application
Development

9

COMPILING CODE
The kotlinc compiler consists of multiple backend compilers:
­ Kotlin/Native compiles Kotlin code to native binaries. It includes an LLVM based backend for
the Kotlin compiler and native implementation of the Kotlin standard library. Works for
Windows, macOS, Linux (iOS, JS).

­ Kotlin/Android compiles Kotlin code to native Android binaries.
­ Kotlin/JVM compiles Kotlin code to JVM bytecode. This is common used for desktop/server
support, so that we can leverage existing JVM libraries!

Kotlin/JVM compiler generates bytecode that executes in a native JVM.
10

https://kotlinlang.org/docs/native-overview.html
https://developer.android.com/kotlin
https://kotlinlang.org/docs/jvm-get-started.html

COMPILING “HELLO WORLD”
It’s tradition to write ”Hello World” when learning a new programming language.

Here’s the Kotlin version!

fun main() {
println("Hello World")

}

So how do we run it? We have multiple options.

11

1. KOTLIN PLAYGROUND
https://play.kotlinlang.org/
Works great for simple code.
Fine for demoing basic
language features.
Auto-imports the Kotlin
standard library (stdlib) but
nothing more; it has limited
usefulness.

https://pl.kotl.in/tZ2NfMKUv

12

https://play.kotlinlang.org/
https://pl.kotl.in/tZ2NfMKUv

2. REPL (READ-EVALUATE-PRINT LOOP)
REPL is a paradigm where you type and submit expressions to the compiler one line-
at-a-time. It’s commonly used with dynamic languages for debugging or checking
short expressions.

❯ kotlinc

Welcome to Kotlin version 1.9.10 (JRE 18.0.2.1+1)

Type :help for help, :quit for quit

>>> println("Hello world")

Hello world

13

3. COMPILE TO AN APPLICATION
Let’s look at the application code again.

Hello.kt

/*
* Insert your design recipe :)
*/

fun main(args: Array<String>) {
println(“Hello Kotlin”)

}

// Kotlin filename ends in .kt

// Standard C++ comment style

// Notice the function signature.
// No top-level class is required - take that Java!
// Semi-colons are optional

https://pl.kotl.in/tZ2NfMKUv
14

https://pl.kotl.in/tZ2NfMKUv

COMPILING COMMAND-LINE
$ kotlinc Hello.kt

$ ls Hello*
Hello.kt HelloKt.class

$ kotlin HelloKt
Hello Kotlin

$ javap HelloKt
Compiled from "Hello.kt"
public final class HelloKt {
 public static final void main();
 public static void main(java.lang.String[]);
}

Sidebar: The JVM expects every file to contain
a top-level class (since that’s how it was
originally designed).

Kotlin needs to mimic this structure. If you have
a top-level function, Kotlin will create a
“wrapper class” for our file.

This is why our compiled class has a different
class name!

15

EXECUTING CODE
Each source file (.kt) will get compiled into a separate class file (.class). This can
expand out to a large number of files very quickly!

The best-practice is to store compiled classes in a JAR file (basically a ZIP file with
some extra data included).

We can distribute this single JAR file to users, and then run the program directly from
that jar file.
­ -d means create a jar file
­ -include-runtime means include Kotlin runtime classes (not in the JRE)

$ kotlinc Hello.kt -include-runtime -d Hello.jar
$ java -jar Hello.jar
Hello Kotlin!

16

EXECUTING IN INTELLIJ IDEA
IntelliJ IDEA can do this silently in the
background for you.

1. Create a new empty project.

2. Create a file named main.kt.

3. Add a main method.
4. Press the run arrow.

5. Victory!

17

SIDEBAR: EXE FILES
Outside of command-line applications, we almost never encounter standalone
executables. Why? Shared libraries!

Operating systems have mechanisms in place to allow your application to share
common libraries with other applications. You will probably need to distribute
multiple files with your application, and they need to be installed properly.

When you install an application, you typically are running an installer that:
­ Installs libraries in a common location (e.g., /Library, or Windows/System32).
­ Installs your application in a desired location (e.g., /Applications or Program Files).
­ Installs supporting files e.g., preferences, sound clips, icons, README file.
­ Registers libraries and your application with the system if needed (i.e., registry).

18

KOTLIN > PROGRAM STRUCTURE CS 346: Application
Development

19

MAIN METHOD
Kotlin borrows familiar syntax from C++, Java and similar C-style languages.

Programs require a single main method to serve as the entry point:

fun main() {
println("Hello World")

}

Optionally, you can pass command-line arguments into main.

fun main(args: Array<String>) {
println("Hello World")

}

Arrays have methods, so you can check args.size() for instance.

20

FILE STRUCTURE
Kotlin source files must end with a .kt
extension.

A source file can contain:
­ top-level functions
­ class definitions
­ global variables
­ enums

You can have as many (or as few)
source files as you wish.

However, you will likely want to
introduce modularity (later!)

/*
* Main entry point for mm
* (c) 2024 Jeff Avery
*/

private val HOMEDIR = System.getProperty(“user.home”)
private val FILENAME = “${HOMEDIR}/mm.json"

fun main(args: Array<String>) {
val list = mutableListOf<Note>()
list.load(FILENAME)
list.process(CommandFactory.createFromArgs(args))
list.save(FILENAME)

}

data class Note(
val id: String = UUID.randomUUID().toString(),
var index: Int = 0,
val title: String? = null,
val content: String? = null

)

Main.kt

21

KOTLIN > TYPE SYSTEM CS 346: Application
Development

22

TYPE SYSTEMS
Programming languages can take different approaches to handling types:
­ Dynamic typing: type is inferred at runtime. e.g. Python, JS.
­ Static typing: variable types need to be declared before use. e.g. C++, Java, Kotlin, TS.
This means that types are verified at compile time! This eliminates runtime type errors.

Type systems are often referred to as strong or weakly typed.
­ Strong typed: stricter typing rules enforced at compile-time. e.g. Java, C++, Kotlin.
­ Weak typed: looser typing rules and may allow automatic coercing of variables to different
types. Errors deferred to runtime. e.g. JS.

Kotlin is a statically typed language. Kotlin has type inference (like C++ auto).
­ Types: Short, Int, Long, Float, Double, Char, String, Byte ß as you might expect!

23

TYPE DECLARATION
The `var` keyword is used to declare variables. The type of the variable is listed
after the name.

e.g.,

var pi: Float = 3.14

var e: Float = 2.718

If you don’t provide a type, the compiler will infer a type if it’s unambiguous.

e.g.,
var name = “Jeff” // string

24

MUTABILITY
Declaration keywords are used to indicate mutability.
­ var: the value of the variable can be changed (it’s mutable).
­ val: the variable cannot be changed after initialization (it’s immutable)

Examples:

var a: Int = 0 // regular declaration
a = 10 // reassignment is allowed
val b = 3.14
b = 3.14159 // compilation error

This is a common feature of newer languages, to encourage safer programming
practices. Use `val` as much as you can!

25

NULL SAFETY
Recall: NULL is the absence of a value.

NULLs typically have special rules governing how they can be used (e.g., you cannot
operate on a NULL value).
­ If a type system allows NULL in place of a regular value, then you need to be very careful
to ensure that you are not accidentally passing a NULL value where a specific value is
expected.

Risk: NULL values being mishandled can cause runtime exceptions and crash your
application.

Tony Hoare: NULL was my “billion dollar mistake”.

26

NULL SAFETY
Kotlin has special semantics for dealing with nulls that avoids the need to explicitly
check for them. By default, Kotlin regular types are not nullable. If you want a
nullable type, it needs to be declared as-such.

By default, a variable cannot be assigned a NULL value. A ? suffix indicates a
NULLABLE type that can be NULL.
var length: Int = null // ERROR, cannot be null

var nlength: Int? = null // OK, can be null

If you have a nullable type, then evaluations of that variable must handle nulls.
var name: String? = “…” // nullable, so need null checks

if (name != null) println(name)

27

NULL SYNTAX
We have special syntax to make dealing with NULL values a little easier.

?. is the “safe call operator”. Method can only be invoked if the object is not null.

var name: String? = null

val len = name?.length // len == null

val len = if (name != null) name.length else 0 // could do this

?: is a ternary operator for NULL data (“elvis operator”)
val len = name?.length ?: 0 // much nicer syntax

https://pl.kotl.in/Fd8L89CPb

28

https://pl.kotl.in/Fd8L89CPb

KOTLIN > FUNCTIONS
29

FUNCTION SYNTAX
// No arguments

fun hello() {

println("Hello World")

}

// Arguments require type annotations!

fun sum(a: Int, b: Int): Int {

return a + b

}

// Return type specified

fun sum(a: Int, b: Int):Int {

return a + b

}

// Return type inferred

fun sum(a: Int, b: Int) = a + b

Function
body vs

expression

30

DEFAULT ARGUMENTS
We can supply default values for parameters.
A parameter with a default value is optional for the caller, since the default
will be used if not provided.
fun mult(a:Int, n:Int = 1): Int {

return a * n

}

fun main() {

println(mult(1)) // 1 since a=1, b defaults to 1
println(mult(5,2)) // 10 since a=5, b=2 positionally

}

https://pl.kotl.in/GW424Hz-q
31

https://pl.kotl.in/GW424Hz-q

NAMED ARGUMENTS
You can (optionally) provide the argument names when you call a function.
If you do this, you can change the calling order!
fun repeat(s:String="*", n:Int=1):String {

return s.repeat(n)

}

fun main() {
println(repeat()) // prints ‘*’ using both defaults
println(repeat("#")) // prints ‘#’ using default n==1
println(repeat("=", 3)) // prints ‘===’ positional assignment
println(repeat(n=5, s="#")) // prints ‘#####’ using named arguments

}

https://pl.kotl.in/vBjdzjDmf
32

https://pl.kotl.in/vBjdzjDmf

KOTLIN > CONTROL FLOW CS 346: Application
Development

33

STANDARD CONTROL FLOW
https://kotlinlang.org/docs/reference/control-flow.html
Traditional control flow is supported
if... then.. else
while, do... while
break, continue

New constructs!
when // replaces switch
for (s in collection) // iteration
for (a in 1.. 5) // iteration up through range
for (a in 5 downTo 1) // iteration down through range

34

https://kotlinlang.org/docs/reference/control-flow.html

IF… THEN
if... then has both statement and expression forms.

This is why Kotlin doesn’t have a ternary operator: ‘if‘ as an expression serves the same purpose.

// statement
if (a > b) {

println(a)

} else {

println(b)

}

// expression
val max = if (a > b) a else b

35

FOR…
A `for` loop iterates through anything that provides an iterator (e.g., the built-
in collection classes).

val items1 = listOf("apple", "banana", "kiwifruit")
for (item in items1) {
println(item)

}

val items2 = listOf("apple", "banana", "kiwifruit")
for (index in items2.indices) {
println("item at $index is ${items2[index]}")

}

https://pl.kotl.in/D8boDJXak
36

https://pl.kotl.in/D8boDJXak

RANGES
for(i in 15..18) {

println(i) // 15 16 17 18
}
for (i in 5 downTo 1 step 2) {
println(i) // 5 3 1

}
val low=1
val high=10
val num=7
if (num in low..high) {
println("The number ${num} is between ${low} and ${high}")

}

https://pl.kotl.in/vyJZoPZAV
37

https://pl.kotl.in/vyJZoPZAV

WHEN
`when` is an improved switch statement.

val x = 13
val validNumbers = listOf(11,13,17,19)
when (x) {
0, 1 -> print("x == 0 or x == 1")
in 2..10 -> print("x is in the range")
in validNumbers -> print("x is valid")
!in 10..20 -> print("x is outside the range")
else -> print("none of the above")

}

https://pl.kotl.in/CzlL_j4zz
38

https://pl.kotl.in/CzlL_j4zz

WHEN
`when` as an expression

val x = 13

val response = when {

x < 0 -> "negative"

x >= 0 && x <= 9 -> "small"

x >=10 -> "large"

else -> "how do we get here?"

}

println(response)

https://pl.kotl.in/IEf9RSRB0
39

https://pl.kotl.in/IEf9RSRB0

KOTLIN > COLLECTIONS CS 346: Application
Development

40

COLLECTIONS
A collection is a group of some variable number of items (possibly zero) of the same
type. Objects in a collection are called elements.

Kotlin provides mutable and immutable interfaces to these collections.

List An ordered collection of objects.

Pair A tuple of two values.

Triple A tuple of three values.

Set An unordered collection of objects.

Map An associative dictionary of keys and values.

Array Indexed, fixed-size collection of object or primaries - rarely used

41

LIST
A list is an ordered collection of objects.

// immutable (due to listOf)
var fruits = listOf("advocado","banana","cantaloupe")
println(fruits.get(0)) // advocado
println(fruits[1]) // banana
// fruits.add("dragon fruit") // unresolved, since immutable

// mutable (due to mutableListOf)
var mutableFruits = mutableListOf("advocado","banana")
mutableFruits.add("cantaloupe") // this works!
println(mutableFruits.last())

https://pl.kotl.in/DcUwgxGWx
42

https://pl.kotl.in/DcUwgxGWx

PAIR

A pair is a tuple of two values.
val ns = Pair("Halifax Airport", "YHZ")

println(ns) // (Halifax Airport, YHZ)

The contents of Pair are NOT mutable, since this is a data class whose contents
aren’t expected to change. `copy` to duplicate with a modified value.
// characters.second = "Jennifer" // error!!

val characters2 = characters.copy(second = "Jennifer")

println(characters2) // (Tom, Jennifer)

https://pl.kotl.in/1uWdBModj
43

https://pl.kotl.in/1uWdBModj

MAP
A map is an associative dictionary of key and value pairs (i.e. it maps one
value to another).
// immutable (initialize with pairs)
val imap = mapOf(1 to "x", 2 to "y", 3 to "z")
println(imap) // {1=x, 2=y, 3=z}
// imap.put(4, "q") // immutable, so unresolved reference

// mutable
val mmap = mutableMapOf(5 to "x", 6 to "y")
mmap.put(7,"z") // ok

println(mmap) // {5=x, 6=y, 7=z}

https://pl.kotl.in/FcT0DJrsP
44

https://pl.kotl.in/FcT0DJrsP

ACCESSORS
Kotlin has special properties that can be used to access data elements in collections.
val list = listOf("one", “two", "three", "four")

list.contains("four")) // true

// slice - extract into a new collection

list.slice(1..2) // [two, three]

list.slice(0..2 step 2) // [one, three]

// take - extract n elements

list.take(3) // [one, two, three]

list.takeLast(2) // [three, four]

https://pl.kotl.in/TQL-o3RYI
45

https://pl.kotl.in/TQL-o3RYI

ACCESSORS
// extract using iterators

list.first { it.length > 3 } // [three]

list.last { it.startsWith("o") } // [one]

// iterate over map

for ((k, v) in imap) {

 println("$k = $v")

}

// alternate syntax

imap.forEach { k, v -> println("$k = $v") }

46

