
SOFTWARE ARCHITECTURE & DESIGN CS 346: Application
Development

MEETING OUR GOALS
We have orthogonal goals, that we somehow need to align.

1. Features
 We want our program to accomplish something for our users.
 We will rely on UCD and our iterative process to ensure that they are useful.

2. Quality
 Robustness: stability of the solution
 Flexibility: can we add new features or extend existing features?
 Reusability: how can we reuse our code?

2

Software architecture (and design) can help us address both functional and quality goals.

From Mark Richards & Neal Ford. 2020. Fundamentals of Software Architecture: An Engineering Approach. O’Reilly.

Architecture & Design operate at different levels of abstraction, but address similar goals.

3

SOFTWARE ARCHITECTURE CS 346: Application
Development

4

SOFTWARE ARCHITECTURE
Software architecture is primarily concerned with the building blocks of a system
and how they interact. These building blocks implement the functional requirements
that a software system must satisfy. There are also many non-functional
requirements, and these are also important: for example, performance, time to
market, costs, maintainability, reusability, modifiability, availability, and simplicity…

— Oliver Vogel et al (2011)

5

Architecture is about structure and how the choice of structure affects the features that we
build, and the qualities that resulting solution will have. e.g., extensibility, reusability,

scalability, and so on.

How do we meet both functional goals,
and non-functional goals?

We can apply some software
engineering principles that improve our
ability to maintain and extend our
software.

We’ll focus on these:
 Loose coupling & high cohesion
 Modularity
 Separation of concerns
 Information hiding

- Oliver Vogel et al. 2011. Software Architecture. Springer.
7

ARCHITECTURAL PRINCIPLES

COUPLING-COHESION
Loose Coupling: reduce coupling between components as much as
possible; functionality should be isolated within a component.

High Cohesion: parts of a class (or module) should be self-contained.

These work together:
 Each module is easier to understand (if functionality is self-contained)
 Each module is easier to modify (if changes are contained)

Examples:
 High coupling: classes can access each other’s (private) data. (BAD)
 Medium coupling: classes communicate via a global data structure.

(BETTER)
 Low coupling: classes communicate through an interface/methods.

(BEST)

8

You can identify the level of coupling
between modules or classes by looking
at the methods calls that are made.

High number of calls within a class?
High cohesion.

High number of calls between classes?
High coupling.

We generally want to be on the ‘lower-
right-hand corner’ of this diagram.

- Oliver Vogel et al. 2011. Software Architecture. Springer.

9

MODULARITY
Modularity refers to the logical grouping of source code into related groups. This can
be realized as namespaces (C++), or packages (Java or Kotlin). Modularity
reinforces a separation of concerns and encourages reuse of source code.
 Technical partitioning: group functionality according to technical capabilities.
 Domain partitioning: group functionality according to the domain/area of interest.

Applications often
leverage technical

partitioning

Mark Richards & Neal Ford. 2020.
Fundamentals of Software Architecture:
An Engineering Approach. O’Reilly.10

Related principles that support and work with modularity:
• Separation of concerns also includes keeping responsibility contained within a module.
• Information hiding makes a particular module responsible for its own data exclusively. (This
obviously applies to classes as well; modules are just a different level of abstraction).

- Oliver Vogel et al. 2011. Software Architecture. Springer.

11

WHAT IS A STYLE?
An architectural style (aka pattern) is an overall structure that describes how our
components are organized and structured, and how they communicate.

Like design patterns, an architectural style is a general solution that has been found
to work well at solving specific types of problems.

An architectural style describes both the topology (organization of components) and
the associated architectural characteristics (qualities) for that topology.

12

ANTI-STYLE: BIG BALL OF MUD
A Big Ball of Mud is a haphazardly

structured, sprawling, sloppy, duct-tape-and-
baling-wire, spaghetti-code jungle.

These systems show unmistakable signs of
unregulated growth, and repeated,

expedient repair. Information is shared
promiscuously among distant elements of the

system, often to the point where nearly all the
important information becomes global or

duplicated.

-- Foote & Yoder 1997.

13

MONOLITHIC: PIPELINE
A pipeline architecture is appropriate when we want to
transform data sequentially. It consists of pipes and filters.

Pipes form the communication channel between filters. Each
pipe is unidirectional, accepting input, and producing output.

Filters perform operations on data that they are fed. Each
filter performs a single operation, and they are stateless.
• Producer: The outbound starting point (also called a source).
• Transformer: Accepts input, optionally transforms it, and then

forwards to a filter (this resembles a map operation).
• Tester: Accepts input, optionally transforms it based on the

results of a test, and then forwards to a filter (aka reduce).
• Consumer: The termination point, where data can be saved.

Advantages
• Easy to extend by adding another

step in the chain.
• Filters are stateless so they can be

tested independently.
• Broadly applicable to any sequence

of operations e.g., shell programming.

14

MONOLITHIC: EVENT DRIVEN
An event-driven architecture is designed around
the production, transmission and consumption of
events between loosely-coupled components.

Unlike a pipeline architecture, which tends to
assume linear ordering of consumers, an event-
driven architecture expects multiple consumers for
a particular event and works best when ordering
isn’t critical.
• Producers and consumers have no knowledge of

one another.
• Consumers are also independent and have no

knowledge of what each other is doing with an
event.

15

Advantages
• Useful in systems that generate and handle large

volumes of data.
• Can be used in monolithic applications or distributed

applications (with restrictions).
• e.g. a system that manages hardware events or

interrupts.

MONOLITHIC: MICROKERNEL
A microkernel architecture (aka plugin
architecture) is a popular pattern that provides
the ability to easily extend application logic to
external, pluggable components.

This architecture works by focusing the primary
functionality into the core system and providing
extensibility through the plugin system.
 Plugins can be from different developers.
 e.g. IntelliJ uses a plugin architecture to allow you to
install third-party extensions.

16

Advantages
• Great flexibility and extensibility
• Can add plug-ins while the application is running
• Plug-in modules can be tested in isolation.
• Good portability

MONOLITHIC: LAYERED
A layered or n-tier architecture is a very common
architectural style that organizes software into
horizontal layers, where each layer represents a
logical division of functionality.

Each layer has specific functionality that is presents
to the layer above (i.e. lower layers provide
services up the stack).

Dependencies extend down: lower-levels provide
functionality that is consumed by higher-levels.

e.g. presentation uses business logic, but business
layer doesn’t know anything about the UI.

17

Advantages
•Layers remain isolated (“separation of concerns”)
•High testability: components belong to specific layers.
•High ease of development.

We’ll focus on this pattern for
Desktop + Mobile GUI development.

SOFTWARE DESIGN CS 346: Application
Development

18

WHAT IS SOFTWARE DESIGN?
The term “software design” is overloaded.
 A UX designer will treat design as the process of working with users to identify
requirements, and iterating on the interaction and experience design with them to fine tune
how they want the experience to work (we did this in the requirements phase!)

 A software engineer will want to consider ways of designing modules and source code that
emphasize desirable characteristics like scalability, reliability and performance.

 A software developer may want to consider structure of their code, readability and
maintainability, and correctness of the results (among other things).

19

In this course, we’ll consider design to be the implementation decisions that are
made prior to writing code, that lead to a “good” (effective, appealing) design.

DESIGN PRINCIPLES CS 346: Application
Development

20

COUPLING/COHESION (FLEXIBILITY)
When designing components, create self-contained entities (high-cohesion)
with minimal dependencies on one-another (loose-coupling).

As much as possible, minimize dependencies and enforce separation across
layers!

21

ENCAPSULATE WHAT VARIES (FLEXIBILITY)
Identify the aspects of your application that vary and separate them from what
stays the same. The goal is to minimize the effects of changes in code.

You can do this by encapsulating classes, or functions. In both cases, your goal is
separate and isolate the code that is likely to change from the rest of your code. This
minimizes what you need to change over time.

22

PROGRAM TO AN INTERFACE (EXTENSIBILITY)
Program to an interface, not an implementa-
tion.

Dependencies between classes should be based
on abstractions, not on concrete classes. This
allows for maximum flexibility.

When classes rely on one another, you want to
minimize the dependency - we say that you want
loose coupling between the classes. Do do this,
you extract an abstract interface, and use that to
describe the desired behaviour between the
classes.

e.g. our cat on the left can only eat sausage. The
cat on the right can eat anything that provides
nutrition, including sausage.

23

FAVOR COMPOSITION (FLEXIBILITY)
Favour Composition over Inheritance

Inheritance is a useful tool for reusing code. In principle, it sounds great - derive from a base
class, and you get behaviour for free! However, there can be negative side effects to
inheritance.
 A subclass cannot reduce the interface of the base class. You have to implement all abstract

methods, even if you don't need them.
 When overriding methods, you need to make sure that your new behaviour is compatible with the

old behaviour. In other words, the derived class needs to act like the base class.
 Inheritance breaks encapsulation, because the details of the parent class are potentially

exposed to the derived class.
 Subclasses are tightly coupled to superclasses. A change in the superclass can break subclasses.
 Reusing code through inheritance can lead to parallel inheritance hierarchies, and explosion of

classes.

24

A useful alternative to inheritance is composition. Where inheritance represents an is-a relationship (a car is a
vehicle), composition represents a has-a relationship (a car has an engine).
Imagine a catalog application for cars and trucks.

25

FAVOR IMMUTABILITY (ROBUSTNESS)
Avoid side effects (aka unintended consequences).

Prefer a functional style as much as possible.
 Write functions that return modified data (and do not modify data that is passed in).
 Avoid using global variables (except as constants that do not change).

Reuse known-working code
 This doesn’t just mean code that you write….
 Use tested libraries when possible.

26

AVOID “HAPPY PATH” PROGRAMMING
Bake error handling into your design.

You should anticipate errors and design mechanisms that allow your application to continue
processing, even when these errors occur.

Have a strategy for handling errors:
 Favour immutable functions, with no side effects. This reduces the chance of runtime errors.
 Check function return values to ensure that results are valid. Use Kotlin’s NULL handling

correctly.
 Never throw an exception without understanding where it will be handled, otherwise this will

just percolate up the call stack to the user (and crash).
 Perform validation on user inputs to avoid users entering invalid information that could cause

issues.
 Determine what recovery action is appropriate for the type of error! e.g. retry in the case of a

network error, or abort the operation in the case of an invalid file operation

27

SOLID PRINCIPLES CS 346: Application
Development

28

SOLID
SOLID was introduced by Robert (“Uncle Bob”) Martin around 2002.

The SOLID Principles tell us how to arrange our functions and data structures into
classes, and how those classes should be arranged (“class” meaning “a grouping of
functions and data”)

The goal of the principles is the creation of mid-level software structures that:
 Tolerate change (flexibility, extensibility),
 Are easy to understand (readability), and
 Are the basis of components that can be used in many software systems (reusability).

There are five SOLID principles, and we’ll walk through them.
 Diagrams are taken from Ugonna Thelma: The S.O.L.I.D. Principles in Pictures.

29

https://medium.com/backticks-tildes/the-s-o-l-i-d-principles-in-pictures-b34ce2f1e898

1. SINGLE RESPONSIBILITY
The Single Responsibility Principle
(SRP) states that we want classes
to do a single thing.

This ensures that classes are
focused, but also reduces pressure
to change that class.
 A class has responsibility over a
single block of functionality.

 There is only one reason for a class
to change.

 Applies to components, and other
“units” of code, not just classes.

30

2. OPEN-CLOSED PRINCIPLE
“A software artifact should be open for
extension but closed for modification. In
other words, the behaviour of a software
artifact ought to be extendible, without
having to modify that artifact. “

– Bertrand Meyers (1988)

Subclassing is the primary form of code
reuse.

A particular module (or class) should be
reusable without needing to change its
implementation.

31

3. LISKOV-SUBSTITUTION PRINCIPLE
“If for each object o1 of type S there is an
object o2 of type T such that for all programs
P defined in terms of T, the behaviour of P is
unchanged when o1 is substituted for o2, then
S is a subtype of T”.

– Barbara Liskov (1988)

It should be possible to substitute a derived
class for a base class, since the derived class
should retain the base class behaviour.

In other words, a child should always be able
to substitute for its parent.

32

4. INTERFACE SUBSTITUTION
It should be possible to change
classes independently from the
classes on which they depend.

Also described as “program to an
interface, not an implementation”.
This means focusing your design on
what the code is doing, not how it
does it.

If you code to an interface, it allows
flexibility, and the ability to
substitute other valid
implementations.

33

5. DEPENDENCY INVERSION
The most flexible systems are those in
which source code dependencies refer
to abstractions (interfaces) rather than
concretions (implementations). This
reduces the dependency between these
two classes.
 High-level modules should not import
anything from low-level modules. Both
should depend on abstractions (e.g.
interfaces).

 Abstractions should not depend on details.
Details (concrete implementations) should
depend on abstractions.

34

DESIGN PATTERNS CS 346: Application
Development

35

RECALL: DESIGN PATTERNS
A design pattern is a generalizable software solution to a
common problem.

Design patterns gained popularity with Design Patterns:
Elements of Reusable Object-Oriented Software [Gamma et
al 1994].

 They represent a pattern that is (was) known to work well for a
particular problem and context.

 They can result in a more extensible, flexible solution.
 They are not comprehensive, and do not reflect all styles of
software or all problems encountered.

 They trade increased complexity now for the promise of
flexibility later (YAGNI?)

36

https://en.wikipedia.org/wiki/Design_pattern
https://en.wikipedia.org/wiki/Design_Patterns
https://en.wikipedia.org/wiki/Design_Patterns

TYPES OF PATTERNS
The original set of patterns were subdivided based on the types of problems they
addressed.
 Creational Patterns : dynamic creation of objects.
 Structural Patterns : organizing classes to form new structures.
 Behavioural Patterns : identifying communication patterns between objects.

The expectation is that you might need a small number of these in any application.
Some problems are commonly encountered (e.g. decoupling using Observer) and
others are rarely used (e.g. Abstract Factory).

We’ll review a few that are particularly helpful for building applications.

37

https://en.wikipedia.org/wiki/Creational_pattern
https://en.wikipedia.org/wiki/Structural_pattern
https://en.wikipedia.org/wiki/Behavioral_pattern

BUILDER PATTERN (CREATIONAL)
Problem: how do you build complex objects with
multiple (optional) initialization steps?

Builder lets you construct complex objects step by
step. The pattern allows you to produce different
types and representations of an object using the
same construction code.

A builder class generates the initial object, and
subsequent methods can be called to customize it.
 After calling the constructor, call methods to invoke the
steps in the correct order.

 You only call the steps that you require, which are
relevant to what you are building.

38

BUILDER EXAMPLE

val dialog = AlertDialog.Builder(this)
.setTitle(“File Save Error”)
.setText(“Error encountered. Continue?”)
.setIcon(ERROR_ICON)
.setType(YES_NO_BUTTONS)
.show()

class AlertDialog(
var title= File Save Error”,
var text = “Error. Continue?”,
var icon = ERROR_ICON,
var type = YES_NO_BUTTONS

)
val dialog = AlertDialog(title = “Error”)
dialog.show()

Java requires the Builder pattern because it
doesn’t support default arguments. You need
to be able to call setters first, in order, and
then indicate when you are “done”.

This is much simpler in Kotlin, since we can
define defaults for every parameter. When
you construct your dialog, just override the
properties that need to change.

No builder required!

39

SINGLETON PATTERN (CREATIONAL)
Problem: You want to control access to a shared or restricted resource.

A singleton is a creational design pattern that lets you ensure that a class has only one
instance, while providing a global access point to this instance.

Why is this pattern useful?

1. Ensures that a class has just a single instance. The most common reason for this is to
control access to some shared resource—for example, a database or a file.

2. Provides a global access point to that instance. Just like a global variable, the Sin-
gleton pattern lets you access some object from anywhere in the program. However,
it also protects that instance from being overwritten by other code.

40

SINGLETON EXAMPLE
All implementations of the Singleton
have these two steps in common:

1. Make the default constructor private,
to prevent other objects from creating
an instance directly.

2. Create a static method that acts as a
constructor. This method ensures that
the object is only instantiated once.

3. As needed, use the static method to
return a static reference to the object.

public class Singleton {

private Singleton() { }
private static instance: Singleton = null

public static getInstance(): Singleton {
if (instance == null) {
instance = Singleton()

}
return instance

}
}

var s = Singleton.getInstance()

Java singleton implementation

41

SINGLETON EXAMPLE
In Kotlin, implementation is much
easier.

The ‘object’ keyword in Kotlin defines
a static instance of a class.
Effectively, an object is a singleton
and we can just call its methods
statically.
 Like any other class, you can add
properties and methods if you wish.

 You do not need initialize it — it’s lazy
initialized as needed.

 You cannot instantiate it (compile error).

object Singleton {
init {

println("Singleton class invoked.")
}
fun print(){

println("Print method called")
}

}

fun main(args: Array<String>) {
Singleton.print() // Print method called

}

Kotlin singleton implementation

42

FACTORY METHOD (CREATIONAL)
Problem: You don’t know which subclass to create (i.e. need to defer to runtime).

The Factory Method defines a way to decide which subclasses to instantiate by
defining method whose role is to examine conditions and make that decision for the
caller. i.e. instantiation is deferred to a Factory Method.

How to use it?

1. Create a class hierarchy for the classes that you need to instantiate, including a
base class (or interface) and all subclasses.

2. Create a Factory class that instantiates and returns the correct subclass.

43

FACTORY METHOD EXAMPLE

44

sealed class Piece(val position: String) // base class
class Pawn(position: String) : Piece(position) // derived classes
class Queen(position: String) : Piece(position)

fun generatePieces(notation: List<String>): List<Piece> { // factory method
 return notation.map { piece ->
 val pieceType = piece.get(0)
 val position = piece.drop(1)
 when(pieceType) {
 'p' -> Pawn(position)
 'q' -> Queen(position)
 else -> error("Unknown piece")
 }
 }

}

val notation = listOf("pa3", “qc5") // method returns list of pieces
val list = generatePieces(notation)

DECORATOR (STRUCTURAL)
Problem: You want to describe combinations of
parameters or classes, without the complexity
of having a subclass for each combination.

A decorator allows you to chain together the
classes that you want to process a request.
 e.g. You are building a message notifier, which
allows your application to send out messages.

It’s easy to see how to create a specialized
notifier, but what if you want to have a
message that is sent to multiple notifiers at the
same time?

45

DECORATOR EXAMPLE

46

fun main() {
 val logger = Logger()
 val cache = Cache()
 val request = Request("http://example.com")
 val response = processRequest(request, logger, cache)
 println("Results: ${response}")
}

// what if I don’t want all of these processors to run?
fun processRequest(request: Request, logger: Logger, cache: Cache): Response {
 logger.log(request.toString())
 val cached = cache.get(request) ?: run {
 val response = Response("You called ${request.endpoint}")
 cache.put(request, response)
 response
 }
 return cached
}

47

fun main() {
 val request = Request("http://example.com")
val processor: Processor = LoggingProcessor(Logger, RequestProcessor()))
 println("Results: ${processor.process(request)}")

}

interface Processor { fun process(request: Request): Response }

class LoggingProcessor(val logger: Logger, val processor: Processor) : Processor {
 override fun process(request: Request): Response {
 logger.log(request.toString()) // do appropriate work
 return processor.process(request) // pass to next Processor
 }
}

class RequestProcessor(): Processor {
 override fun process(request: Request): Response {
 return Response("You called ${request.endpoint}”) // do appropriate work
 }
}

STRATEGY PATTERN (BEHAVIORAL)
Problem: You have behavior that isn’t specified until runtime. How to you abstract this
so that you can set it dynamically?

The strategy pattern is a way to swap algorithms at runtime. It’s often modelled as a
set of interchangeable classes.

Why is this pattern useful?
 It allows you to add new algorithms or modify existing ones without modifying existing code.
 Provides extensibility and flexibility to your solution.

How does it work?
 Extract algorithms into separate classes called strategies.
 The original class, called context, must have a field for storing a reference to one of the
strategies. The context delegates the work to a linked strategy object.

48

STRATEGY EXAMPLE

https://refactoring.guru/design-patterns/strategy

49

https://refactoring.guru/design-patterns/strategy

interface FormField {
val name: String
val value: String
fun isValid(): Boolean

}

class EmailField(override val value: String) : FormField {
override val name = "email"
override fun isValid(): Boolean {

return value.contains("@") && value.contains(".")
}

}

class UsernameField(override val value: String) : FormField {
override val name = "username"
override fun isValid(): Boolean {

return value.isNotEmpty()
}

}

class PasswordField(override val value: String) : FormField {
override val name = "password"
override fun isValid(): Boolean {

return value.length >= 8
}

}

fun main() {
val emailForm = EmailField("nobody@email.com")
val usernameForm = UsernameField("none")
val passwordForm = PasswordField("*")

}

Kotlin
- “Standard” approach

using classes
- Rigid and hard to

extend e.g. add
optional password
field?

50

fun interface Validator {
fun isValid(value: String): Boolean

}

val emailValidator = Validator { it.contains("@") && it.contains(".") }
val usernameValidator = Validator { it.isNotEmpty() }
val passwordValidator = Validator { it.length >= 8 }

class FormField(val name: String, val value: String, private val validator: Validator) {
fun isValid(): Boolean {

return validator.isValid(value)
}

}

fun main() {
val emailForm = FormField("email", "nobody@email.com", emailValidator)
val usernameForm = FormField("username", "empty", usernameValidator)
val passwordForm = FormField("email", "***", passwordValidator)

}

Idiomatic Kotlin
- Extract what changes
- Replace classes with
functions/interfaces

51

OBSERVER (BEHAVIOURAL)
Observer is a behavioural design pattern that lets
you define a subscription mechanism to notify multi-
ple objects about any events that happen to the
object they’re observing. This is also called publish-
subscribe.

The object that has some interesting state is often
called subject (or publisher). Objects that want to
track changes to the publisher’s state are called
observers (subscribers) of the state of the publisher.

Subscribers register their interest in the subject, who
adds them to an internal subscriber list.

52

OBSERVER (BEHAVIOURAL)
When something interest happens, the
publisher notifies the subscribers through a
provided interface. The subscribers can then
react to the changes.

A modified version of Observer is the
Model-View-Controller (MVC) pattern,
which puts a third intermediate layer
between the Publisher and Subscriber to
process user input (not shown here).

53

54

interface IObservable {
 val observers: ArrayList<ISubscriber>

 fun add(observer: IObserver) {
 observers.add(observer)
 }

 fun remove(observer: IObserver) {
 observers.remove(observer)
 }

 fun sendUpdateEvent() {
 observers.forEach { it.update() }
 }
}

class Newsletter : IObservable {
 override val observers
 = ArrayList< ISubscriber>()
 var article = ""
 set(value) {
 field = value
 sendUpdateEvent()
 }
}

interface ISubscriber {
 fun update()
}

class Subject(target: IPublisher)
 : ISubscriber
{
 init {
 target.add(this)
 }

 override run update() {
 println(“Updated”)
 }
}

https://www.baeldung.com/kotlin/observer-pattern

https://www.baeldung.com/kotlin/observer-pattern

