
BUILDING AN APPLICATION CS 346: Application
Development

GETTING STARTED
Let’s consider a simple application as our starting point.

Command-line only.
 Keyboard driven. Not intended to support mice, trackpads.
 Non-graphical. Intended to be run from a shell/terminal, with limited character graphics.
 Standard text I/O. Read/write from the terminal, or file system.

We’ll avoid advanced features.
 No graphics.
 No networking.

2

COMMAND-LINE EXECUTION
Typically, command-line applications should use this calling convention, or something similar:
$ program_name –option value parameter

What these mean?
•program_name is the name of your program. It should describe what your program does.
•options represent a value that tells your program how to operate. Options are normally
prefixed with a dash (”-”) to distinguish them from parameters and may require values.
•parameter represents data that your program would act upon (e.g. the name of a file
containing data). If multiple parameters are required, separate them with whitespace.

Running a program with insufficient arguments should display information on how to
successfully execute it.
$ rename
 Usage: rename [source] [dest]

3

FEATURES CS 346: Application
Development

4

CREATING A PROJECT
File > New > Project > Kotlin >
Kotlin/JVM to create a new project.

Add the `application` plugin to the
build.gradle.kts. This adds the
Tasks > application > run task.

5

MAIN METHOD
As you would expect from similar languages, Kotlin applications require a
main method as an entry point.

Arguments are optional. If provided, we can iterate over args or extract data
from the array directly.
fun main(args: Array<String>) {
 print("${args.size} arguments passed in")
 for (arg in args) {
 println(arg)
 }
}

6

https://pl.kotl.in/Y_7mTzYYW

https://pl.kotl.in/Y_7mTzYYW

ARGUMENTS

7

Arguments are passed in as an array to the main method.

fun main(args: Array<String>) {
 if (args.size == 0) {
 println("Usage: rename [old] [new]")
 println(" [old] is the source filename")
 println(" [new] is the target filename")
 } else {
 for (arg in args) {
 if File.exists(arg) {
 // do something useful here
 }
 }
 }

}

STDIO, ERRORS
The Kotlin Standard Library includes classes and functions for interacting with the
console: kotlin-stdlib / kotlin.io
• readIn() :: reads and returns a line of input from the stdin (not including CRLF) or throws
a RuntimeException if EOF has already been reached.
• readInOrNull() :: Reads a line of input from the standard input stream and returns it, or
return null if EOF has already been reached
•println() :: directs output to stdout, with CRLF.
•print() :: directs output to stdout without CRLF.

// read single value from stdin
val str:String ?= readLn()
if (str != null) {
 println(str.toUpperCase())

}

8

https://kotlinlang.org/api/latest/jvm/stdlib/index.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.io/index.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/-runtime-exception/index.html

IO CLASSES

9

File :: class representing a file or directory in the filesystem (extends java.io.File with new methods).

File(filename).writeText("Jeff was here”)

val lines: List<String> = File(filename).readLines()
val contents: String = File(filename).readText()
println(contents)

2020-06-06T14:35:44, 1001, 78.22, CDN
2020-06-06T14:38:18, 1002, 12.10, CDN

FileTreeWalk :: class to iterate over Files in the filesystem.
Reader or Writer :: classes to create a buffered file reader or writer… i.e. support for Java classes.

// Java approach with streams
val reader = someStream.bufferedReader()
reader.useLines {
 it.map { line -> // do something with line }
}

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.io/java.io.-file/
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.io/-file-tree-walk/
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.io/java.io.-reader/
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.io/java.io.-writer/

ERROR HANDLING
Kotlin uses exceptions to indicate that an operation has failed. The mechanism is
similar to other languages: if an error is detected, an exception is created and
‘thrown‘, and then ‘caught‘ and consumed by error handling code further up the
stack.

Exceptions mechanisms can be either checked or unchecked:
•Unchecked means that exceptions are not checked at compile-time. If an exception is thrown
by some function, it is passed up the call stack and may or may not be handled by a
corresponding ‘catch‘ block. e.g. C++
• Checked exceptions are checked at compile-time. Exceptions are declared with each
function in the call-chain and must be handled by a corresponding ‘catch‘ block.

Like C++, Kotlin supports unchecked exceptions.

10

DEMO: MM APPLICATION
TODO Application

The “simplest thing” I could think
of, which still demonstrates key
functionality.

12

EXAMPLE: SEQUENTIAL PROCESSING
/**
 * mm: main memory
 * Note-taking application that lets you add/delete/view notes
 * Data is saved to a file in the user's home directory
 * (c) 2024 Jeff Avery
 *
 * Usage:
 * mm add|del|list|help
 */

private val HOMEDIR = System.getProperty("user.home")
private val FILENAME = "${HOMEDIR}/mm.json"

fun main(args: Array<String>) {
 val list = mutableListOf<Note>()
 list.load(FILENAME)
 list.process(CommandFactory.createFromArgs(args))
 list.save(FILENAME)
}

13

Pipes-and-filter

EXAMPLE: SEPARATION OF CONCERNS
/**
 * Note.kt
 * Our primary data class, used for storing and displaying notes.
 */

@Serializable
data class Note(
 val id: String = UUID.randomUUID().toString(),
 var index: Int = 0,
 val title: String? = null,
 val content: String? = null
)

// save to a file
fun MutableList<Note>.save(filename: String) {
 val output = Json.encodeToString(this)
 File(filename).writeText(output)
}

14

Data is completely managed by a
single data class.

DESIGN PATTERN: COMMAND
Problem: Imagine that you are writing a user interface, and you want to
support a common action like Save. You might invoke Save from the
menu, or a toolbar, or a button. Where do you put the code, without
duplicating it?
The command pattern is a behavioural design pattern that turns a
request into a stand-alone object that contains all information about the
request (a command could also be thought of as an action to perform).

15

EXAMPLE: ARGS VIA COMMAND-PATTERN

16

// Factory pattern
// generate a command based on the arguments passed in
object CommandFactory {
 fun createFromArgs(args: Array<String>): Command = if (args.isEmpty()) {
 HelpCommand(args)
 } else {
 when (args[0]) {
 "add" -> AddCommand(args)
 "del" -> DelCommand(args)
 "list" -> ListCommand(args)
 else -> HelpCommand(args)
 }
 }
}

17

// Command pattern
// represents all valid commands that can be issued by the user
// any functionality for a given command should be contained in that class
interface Command {
 fun execute(items: MutableList<Note>)
}

class AddCommand(val args: Array<String>) : Command {
 override fun execute(items: MutableList<Note>) {
 items.add(Note(index = items.size, title = args[1], content = args[2]))
 }
}

class DelCommand(val args: Array<String>) : Command {
 override fun execute(items: MutableList<Note>) {
 items.removeIf { it.id == args[1] }
 }
}

class ListCommand(val args: Array<String>) : Command {
 override fun execute(items: MutableList<Note>) {
 items.forEach { println("[${it.index}] ${it.title} ${it.content}") }
 }
}

