

GETTING STARTED

Let’s consider a simple application as our starting point.

Command-line only.
* Keyboard driven. Not intended to support mice, trackpads.

* Non-graphical. Intended to be run from a shell /terminal, with limited character graphics.
* Standard text 1/0. Read /write from the terminal, or file system.

We'll avoid advanced features.
* No graphics.

* No networking.

COMMAND-LINE EXECUTION

Typically, command-line applications should use this calling convention, or something similar:
$ program_name -option value parameter

What these mean?
program_name is the name of your program. It should describe what your program does.
options represent a value that tells your program how to operate. Options are normally

prefixed with a dash (”-”) to distinguish them from parameters and may require values.

parameter represents data that your program would act upon (e.g. the name of a file
containing data). If multiple parameters are required, separate them with whitespace.

Running a program with insufficient arguments should display information on how to
successfully execute it.

$ rename

Usage: rename [source] [dest]

7N\ 77N\ /70

FEATURES | &z

CREATING A PROJECT

File > New > Project > Kotlin >
Kotlin/JVM to create a new project.

Add the “application™ plugin to the
build.gradle.kts. This adds the
Tasks > application > run task.

Command

Tasks > build > clean

Tasks > build > build

Tasks > application >

run

Tasks > application >

installDist

Tasks > application >

distZip

What does it do?

Removes temp files (deletes the
/build directory)

Compiles your application

Executes your application (builds it
first if necessary)

Creates a distribution package

Creates a distribution package

MAIN METHOD

As you would expect from similar languages, Kotlin applications require a
main method as an entry point.

Arguments are optional. If provided, we can iterate over args or extract data
from the array directly.

fun main(args: Array<String>) {
print("${args.size} arguments passed in")
for (arg in args)
printin(arg)

https://pl.kotl.in/Y 7mTzYYW

https://pl.kotl.in/Y_7mTzYYW

ARGUMENTS

Arguments are passed in as an array to the main method.

fun main(args: Array<String>) {
if (args.size == 0) {
println("Usage: rename [old] [new]")
println(" [old] is the source filename")
println(" [new] is the target filename")
} else {
for (arg in args) {
if File.exists(arg) {
// do something useful here
}

STDIO, ERRORS

The Kotlin Standard Library includes classes and functions for interacting with the
console: kotlin-stdlib / kotlin.io

* readIn() :: reads and returns a line of input from the stdin (not including CRLF) or throws
a RuntimeException if EOF has already been reached.

* readIlnOrNull() :: Reads a line of input from the standard input stream and returns it, or
return null if EOF has already been reached

* printIn() :: directs output to stdout, with CRLF.
* prink() :: directs output to stdout without CRLF.

// read single value from stdin

val str:String ?= readLn()

if (str !'= null) A
println(str.toUpperCase())

https://kotlinlang.org/api/latest/jvm/stdlib/index.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.io/index.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/-runtime-exception/index.html

10 CLASSES

File :: class representing a file or directory in the filesystem (extends java.10.File with new methods).

File(filename) .writeText("Jeff was here”)

val lines: List<String> = File(filename).readLines()
val contents: String = File(filename).readText()
println(contents)

2020-06-06T14:35:44, 1001, 78.22, CDN
2020-06-06T14:38:18, 1002, 12.10, CDN

FileTreeWalk :: class to iterate over Files in the filesystem.
Reader or Writer :: classes to create a buffered file reader or writer... i.e. support for Java classes.

// Java approach with streams
val reader = someStream.bufferedReader()
reader.uselLines {

it.map { line -> // do something with 1line }
}

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.io/java.io.-file/
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.io/-file-tree-walk/
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.io/java.io.-reader/
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.io/java.io.-writer/

ERROR HANDLING

Kotlin uses exceptions to indicate that an operation has failed. The mechanism is
similar to other languages: if an error is detected, an exception is created and
‘thrown’, and then ‘caught’ and consumed by error handling code further up the
stack.

Exceptions mechanisms can be either checked or unchecked:

Unchecked means that exceptions are not checked at compile-time. If an exception is thrown
by some function, it is passed up the call stack and may or may not be handled by a
corresponding ‘catch’ block. e.g. C++

Checked exceptions are checked at compile-time. Exceptions are declared with each
function in the call-chain and must be handled by a corresponding ‘catch’ block.

Like C++, Kotlin supports unchecked exceptions.

DEMO: MM APPLICATION

TODO Application

The “simplest thing” | could think
of, which still demonstrates key
functionality.

@ nmmv 79 main v

Project

C3v1[mm] ~/Source/mm/v1
> [.kotlin
> [Dgradle
v Osrc
v [3main
v D kotlin
[X Commands.kt
[< Main.kt
[< Note.kt
[Zresources
> [ptest
&2 build.gradle.kts
3 gradle.properties
() gradlew
= gradlew.bat
M:readme.md
&2 settings.gradle.kts
b External Libraries
=° Scratches and Consoles

[X Main.kt

/*%

* mm: main memory

v1[run] v

b &

* Note-taking application that lets you

add/delete/view notes from the command-line

Y1 A v

* Data is saved to a file in the user's home directory

* (c) 2024 Jeff Avery

* Usage:

* mm add|/del|list/[help

*/

private val HOMEDIR = System.getProperty("user.home")

private val FILENAME = "${HOMEDIR}/mm.json"

[> fun main(args: Array<String>) {
val list = mutableListOf<Note>()

20

ovl > src > Omain > kotlin > [X Main.kt

list.load(FILENAME)

Jeff Avery *

list.process(CommandFactory.createFromArgs(args))

list.save(FILENAME)

201 @

LF UTF-8 4 spaces

g QO

EXAMPLE: SEQUENTIAL PROCESSING

Sk

* mm: main memory

* Note-taking application that lets you add/delete/view notes
* Data 1s saved to a file in the user's home directory

* (c) 2024 Jeff Avery
*
*
*

Usage:
mm add/del/list/help
*/

private val HOMEDIR = System.getProperty("user.home")
private val FILENAME = "${HOMEDIR}/mm.7json"

fun main(args: Array<String>) {
val list = mutablelListOf<Note>()
1list.load(FILENAME)
list.process(CommandFactory.createFromArgs(args))
list.save(FILENAME)

Pipes-and-filter

EXAMPLE: SEPARATION OF CONCERNS

Vizs
* Note.kt

*/ﬂUP primary data class, used for storing and displaying notes.
*

@Serializable
data class Note(
val id: String = UUID.randomUUID().toString(),
var index: Int = 0,
val title: String? = null,
val content: String? = null

)

// save to a file
fun MutablelList<Note>.save(filename: String) { Data is completely managed by a
val output = Json.encodeToString(this)

File(filename).writeText(output) single data class.

DESIGN PATTERN: COMMAND

Problem: Imagine that you are writing a user interface, and you want to
support a common action like Save. You might invoke Save from the

menu, or a toolbar, or a button. Where do you put the code, without
duplicating it?

The command pattern is a behavioural design pattern that turns a
request into a stand-alone object that contains all information about the
request (a command could also be thought of as an action to perform).

SaveButton SaveMenultem SaveShortcut

’ ’ ’,)

: ;o P }

»» [BCde =~ 5. [RCde =~ 5. [RCode =,
’ / ’
7’ ’ . ’

~
-
——————————————————————

EXAMPLE: ARGS VIA COMMAND-PATTERN

// Factory pattern
// generate a command based on the arguments passed in
object CommandFactory {
fun createFromArgs(args: Array<String>): Command = if (args.isfmpty()) 1
HelpCommand(args)
} else 1
when (args[0]) {
"add" -> AddCommand(args)
"del" -> DelCommand(args)
"list" -> ListCommand(args)
else -> HelpCommand(args)

// Command pattern

// represents all valid commands that can be issuved by the user

// any functionality for a given command should be contained in that class
interface Command {

fun execute(items: MutablelList<Note>)
}.

class AddCommand(val args: Array<String>) : Command {
override fun execute(items: MutablelList<Note>) {

items.add(Note(index = items.size, title = args[1], content = args[2]))
}.
}.

class DelCommand(val args: Array<String>) : Command {
override fun execute(items: MutablelList<Note>) {
items.removeIf { it.id == args[1] }
}.

}.

class ListCommand(val args: Array<String>) : Command {
override fun execute(items: MutablelList<Note>) {
items. forfach { printin("[${it.index}] ${it.title} ${it.content}") }
}.

