
PRACTICES > GIT BRANCHING CS 346: Application
Development

VERSION CONTROL W/ GIT
Version Control Systems (VCS) are systems that track changes to your files.
 e.g., Git, Subversion (SVN), Perforce.

Git tracks changes
to sets of files over
time.

2

BENEFITS OF VERSION CONTROL
A VCS provides some major benefits:

 History: a VCS provides a long-term history of every file. This includes tracking when files
were added, or deleted, and every change that you’ve made.

 Versions: the ability to version sets of files together. Did you break something? You can
always unwind back to the “last good” change that was saved, or ever compare your current
code with the previously working version to identify an issue.

 Collaboration: a VCS provides the necessary capabilities for multiple people to work on the
same code simultaneously, while keeping changes isolated.

3

GIT BASICS CS 346: Application
Development

4

CONCEPTS
Git is designed around these core concepts:

Working Directory: A copy of your repository,
where you will make your changes before
saving them in the repository.

Staging Area: A logical collection of changes
from the working directory that you want to
collect and work on together (e.g. a feature
that resulted in changes to multiple files).

Repository: The location of the canonical
version of your source code (“Local Repo” in
this diagram).

5

LOCAL WORKFLOW
A local Git workflow looks like this:

1. Create a project directory for your source code.

2. Initialize a git repository in this directory. This
doesn’t change your source code but adds a
hidden .git directory to track it as a repository.

3. Make changes to your source code in your
favourite editor (e.g. add features, fix a bug!).

4. Add the changed files to your staging area
(git add). Commit the files in the staging area to
save to the repository (git commit). This two-step
process ensures that these files are tracked and
versioned as a single change.

5. Check that your changes have been saved by
using git status.

6

LOCAL COMMANDS
Command Description Example
git init Create a new repository in the current

directory.
$ mkdir repo; cd repo
$ git init
Initialized empty Git repository in /repo/.git/

git add Add a file to the staging area $ vim readme.md
$ git add readme.md

git commit Commit all staged files to the repo $ git commit -m “Added readme”
[master (root-commit) d3c834b] Added readme
1 file changed, 0 insertions(+), 0 deletions(-)
create mode 100644 readme.md

git status Display the status of the current
staging area.

$ git status
On branch master
nothing to commit, working tree clean

git checkout Checkout a specific commit to this
working area. Use to revert a file.

$ git checkout main.kt
Updated 1 path from index.

7

REMOTE WORKFLOW
You can use Git locally without any restrictions.

However, we often want a remote repository:
 This provides a single “source of truth” that contains

everyone’s changes (and which we can backup!)
 It helps us coordinate changes with our team (i.e. if I

make a change, it gives me a mechanism to share
that change with everyone else).

To work with a remote repository:
 We need to setup a remote repository, or use an

existing hosting site (e.g. GitLab, GitHub).
 We add a connection between local and remote

repositories.
 We continue to make changes locally, but then “push”

the changes to the remote as an additional step (git
push).

8

REMOTE WORKFLOW
The common workflow for working with a remote repository is like the local workflow:

1. Initialize a git repository in the remote directory (e.g. in GitLab create a new project).

2. Clone the remote repository to create a local project directory (git clone using the URL of
the repo that you created in the previous step).

3. Make changes to your source code in your favourite editor (e.g. add a new feature, fix a
bug!).

4. Add the changed files to your staging area (git add). Commit the files in the staging area
to save to the repository (git commit). This two-step process ensures that these files are tracked
and versioned as a single change.

5. Push the changes from your local repo to the remote repo (git push).

6. Check that your changes have been saved by using git status.

9

REMOTE COMMANDS
Command Description Example

git clone Clone the remote repository
to a local directory.

$ git clone https://git.uwaterloo.ca/j2avery/cs349-public.git repo
Cloning into 'repo'...
remote: Enumerating objects: 531, done.
remote: Counting objects: 100% (531/531), done.
remote: Compressing objects: 100% (280/280), done.
remote: Total 2702 (delta 209), reused 320 (delta 100), pack-
reused 2171
Receiving objects: 100% (2702/2702), 7.30 MiB | 13.00 MiB/s,
done.
Resolving deltas: 100% (939/939), done.

git pull Merge changes into the local
repo.

$ cd repo
$ git pull
Already up to date.

git remote Modify the remote
connection.

$ git remote
origin

10

TIP: GETTING STARTED WITH GITLAB?
1. Create your project in GitLab.

2. Clone the project URL from the project home page. This gives you a working copy.

3. Add your source code to that directory, commit and push it.

11

git clone

BRANCHING STRATEGIES CS 346: Application
Development

12

CONCEPT: BRANCHING
Think of a repository the central location for storing changes or commits.

The main set of commits is like a trunk of a tree, where the commits are added in sequence
(aka main). A branch is a fork in the tree, where we “split off” work and diverge from one of
the commits.

Branches diverge from a specific commit, and do not include changes that happened on the
trunk after the branch occurred.

13

FEATURE BRANCHES
A main reason to create branch is to isolate our work from other changes on the
trunk. Once we have a feature implemented and tested, we can merge our changes
back into the trunk (“integration”).

These type of branches are called feature branches and isolate untested work.

A typical workflow for adding a feature would be:
1. Create a feature branch for that feature.
2. Make changes on your branch only. Test everything.
3. (Optional) Have changes code reviewed by someone on your team (see Pull Request).
4. Switch back to master and merge from your feature branch to the master branch.

14

$ git checkout -b test // create branch
Switched to a new branch 'test'

$ vim file1.md // make some changes
$ git add file1.md
$ git commit -m "Committing changed to file1.md” // changes on test branch

$ git checkout master // switch to master
$ git merge test // merge changes from test
Updating 09e1947..ebb5838
Fast-forward
file1.md | 136 +++
1 file changed, 118 insertions(+), 18 deletions(-)

$ git branch -d test // remove branch (optional)
Deleted branch test (was ebb5838).

15

COORDINATING WORK
How do you coordinate work across branches?

There are different approaches that have been taken, but some common ideas:

1. Create feature branches for development.

2. Merge changes from feature branches to trunk; main should always build.
 Best practice: have tests on main that will automatically execute when you merge.
 Always be ready to release from main.

3. Release from main branch.

16

BRANCHING MODELS: GIT FLOW
In the Git flow model, you have two main branches:
 Develop where all development takes place.
 Main or trunk that is only used for releases.

Developers create feature branches from the Develop
branch. Pull requests are made, and changes reviewed
on feature branches. After approval, changes are
merged back to Develop.

Eventually, a collection of features are approved and
merged from Develop to Main (trunk) and released as a
product version.

Characteristics
 Long-lived feature branches, so merges are difficult.
 Careful control over integration into release branch.

https://www.toptal.com/software/
trunk-based-development-git-flow

17

https://www.toptal.com/software/trunk-based-development-git-flow
https://www.toptal.com/software/trunk-based-development-git-flow

BRANCHING MODELS: TRUNK-BASED
In the trunk-based development model, all
developers create feature branches from main,
and merge changed directly back to main (after
code reviews and tests are passing).

There is no release branch. Releases are cut
directly from main, usually with tags to track the
specific version that was released.

Characteristics
 Feature branches are short-lived.
 Development is continuous. Merges are frequent and
issues are easier to resolve.

 Integration testing becomes critical!

https://www.toptal.com/software/
trunk-based-development-git-flow

18

Do this.

https://www.toptal.com/software/trunk-based-development-git-flow
https://www.toptal.com/software/trunk-based-development-git-flow

AUTOMATING WITH GITLAB CS 346: Application
Development

19

We’re using trunk-based branching.

1. Make sure that you have an issue created.
2. Create a merge request and assign a Reviewer from your team. This will create a feature branch for

you automatically to track this issue’s work.
3. Make code changes and commit the changes to GitLab.
4. The reviewer can Approve the issue and flag it Closed. The feature branch will automatically merge

to main, and then (optionally) will be removed.

20

21

