
GRAPHICAL USER INTERFACES CS 346: Application
Development

WHAT DO WE MEAN BY A GUI?

2

Graphical User Interface (GUI)
 The users interacts with an application by pointing-
clicking using some pointing device (e.g., mouse,
touchpad, finger).

 Also keyboard support for entering text.
 Examples: macOS desktop, Windows desktop, iPhone.

Output can include:
 “Standard” widgets e.g., buttons, text fields, images.
 Drawing surfaces e.g., arbitrary graphics.

CONCEPT: UI AS A SCENE GRAPH
In GUI design, we use an abstraction called a scene graph, to represents graphical
content as a tree where higher level elements manage their children. Toolkits provide
components (“widgets”) which developers directly instantiate and place on-screen.

Containers contain other classes.
Nodes are leafs in the graph.

3

CONCEPT: EVENT-DRIVEN INTERACTION
Graphical user interfaces rely on events being generated and passed to interested
parts of your application.

An event is simply a message generated by the system to indicate that something has
happened.

Examples:
 MouseMoved: Indicates that the pointer has been repositioned.
 MouseClicked: The user has clicked on something.
 KeyPressed: Key interaction.

Traditionally, writing a user interface requires you to intercept and process these
messages.

4

GUI TOOLKITS
A GUI toolkit is a framework which provides the required functionality for building
graphical applications:
 Creating and managing application windows, with standard window functionality e.g.
overlapping windows, depth, min/max buttons, resizing.

 Providing reusable widgets that can be combined in a window to build applications. e.g.
buttons, lists, toolbars, images, text views.

 Adapting the interface to changes in window size or dimensions.
 Managing standard and custom events. Includes event generation and propagation.

Although it is possible to design a GUI toolkit that behaves differently, this is considered
standard design across modern toolkits.

5

https://en.wikipedia.org/wiki/Widget_toolkit
https://en.wikipedia.org/wiki/Graphical_widget

GUI TOOLKITS
There are a large number of toolkits available.
 Single-platform toolkits are optimized for a single operating system.
 e.g. WTL (Windows, C++), Cocoa (macOS, C++) and GTK (Linux, C).

 Cross-platform toolkits are designed to work across multiple platforms.

6

https://en.wikipedia.org/wiki/List_of_widget_toolkits
https://en.wikipedia.org/wiki/Windows_Template_Library
https://en.wikipedia.org/wiki/Cocoa_(API)
https://en.wikipedia.org/wiki/GTK

TOOLKIT STYLES
Most GUI frameworks are imperative:
 UI objects are just classes with properties for position (x, y), dimensions (w, h), other
visual properties. e.g. Button, Scrollbar, Panel, Slider, Image classes.

 Underlying code places elements on-screen and controls their appearance.
 Code determines how the user interface behaves based on user input.
 i.e. an imperative toolkit relies on custom code to change the user interface in response to
state changes. This is a large part of the application’s complexity.

Modern toolkits are declarative:
 A declarative paradigm explains what to display. The compiler figures out how to display it
based on the current state (e.g. is the button enabled/disabled?).
 i.e. a declarative toolkit automatically manages how the UI reacts to state changes.

7

WHAT IS COMPOSE?
Compose is a declarative, cross-platform toolkit.
 It was originally designed by Google, and released
as JetPack Compose for Android in 2017.

 JetBrains ported Jetpack Compose to desktop, and
released it in 2021 as Compose Multiplatform,
which supports macOS, Windows, Linux desktop.

 Compose iOS and Web are “on the way”.

In this course we’ll focus on Compose for Desktop
and Android, since these are the most stable.

This is the rare case where we can use the same
toolkit for more than one platform!

8

https://developer.android.com/jetpack/compose
https://www.jetbrains.com/lp/compose-multiplatform/

WHAT CAN COMPOSE DO?

https://github.com/JetBrains/compose-multiplatform/
https://github.com/android/compose-samples

9

https://github.com/JetBrains/compose-multiplatform/
https://github.com/android/compose-samples

COMPOSE > COMPOSABLES CS 346: Application
Development

10

CONCEPT: COMPOSABLE FUNCTION
A key concept in Compose is the idea of a composable function (also just
called a composable). This is a small function that describes a part of your
user interface.
Think of a composable function as a special kind of function that accepts state,
and emits a user interface element.
For example, this function takes in a String and displays it on-screen by
emitting a Text element that will be displayed.

11

@Composable
fun Greeting(name: String) {

Text("Hello $name!")
}

CHARACTERISTICS OF COMPOSABLES
The function must be annotated with the @Composable annotation.
 Composable functions are fast, idempotent, and free of side effects!
 Composables do not return a value – they emit output directly into the scene graph.
 Composable functions will often accept parameters, which are used to format the
composable before displaying it.

12

@Composable
fun Greeting(name: String) {

Text("Hello $name!")
}

https://en.wikipedia.org/wiki/Idempotence

COMPOSABLE SCOPE (1/2)

Let's display a window.

fun main() = application {
Window(
title = "Hello Window",
onCloseRequest = ::exitApplication

) {
Greeting("Compose")

}
}

@Composable
fun Greeting(name: String) {
Text("Hello $name!")

}

The application function defines a Composable
Scope – think of it like a wrapper.

Composable functions must be called from a
Composable Scope, or from other Composables.

These composables describe a scene graph.

13

composable scope

COMPOSABLE SCOPE (2/2)

Here’s the resulting window.

fun main() = application {
Window(
title = "Hello Window",
onCloseRequest = ::exitApplication

) {
Greeting("Compose")

}
}

@Composable
fun Greeting(name: String) {
Text("Hello $name!")

}

The Compose toolkit handles standard functionality
e.g. min/max buttons, titlebar. You customize the

composables by passing in parameters.

14
See GL Public repo: /samples/lectures/compose-desktop

https://git.uwaterloo.ca/cs346/public/samples/-/tree/main/lectures/compose-desktop?ref_type=heads

USING COMPOSABLES
Construct user interfaces by combining composables together to form a scene
graph. These can be built-in composables, or ones that you create.

There are many built-in composables:
 Some composables act as containers and manage children composables in the scene graph.
 Other composables display data, and (some) provide interactivity for users.

Because Compose is cross-platform, most of these composables will work across all
supported platforms.
 e.g. the Text composable exists on both desktop and Android (it hasn’t been reimplemented
- it’s the same code).

 Composable Scope differs by platform e.g. application is desktop specific.
 We’ll continue to demo using Compose Multiplatform/desktop for now.

15

PROPERTIES
Each composable has its own parameters that can be supplied to affect its
appearance and behaviour.

These are exposed in the constructor as named parameters.

Examples:
 Text, textAlign, lineHeight, fontName, fontSize are common with text.
 Color is a property shared by most Composables.
 Style lets you use a particular design attribute that is included in the theme.
 Modifier is a class that contains parameters that are commonly used across elements. This
allows us to set a number of parameters within an instance of a Modifier.

16

EXAMPLE: TEXT

A Text composable displays text.

@Composable
fun SimpleText() {
Text(

text = “Widget Demo”,
color = Color.Blue,
fontSize = 30.sp,
style = MaterialTheme.typography.h2,
maxLines = 1

)
}

17

See GitLab repo: public/code/compose-desktop

EXAMPLE: IMAGE
An Image composable displays an image (by default, image is
loaded from your Resources folder).

@Composable
fun SimpleImage() {

Image(
painter = painterResource("credo.jpg"),
contentDescription = null,
contentScale = ContentScale.Fit,
modifier = Modifier

.height(150.dp)

.fillMaxWidth()

.clip(shape = RoundedCornerShape(10.dp))
)

}

18

EXAMPLE: BUTTON
There are three main Button composables:
• Button: A standard button with no caption.
• OutlinedButton: A button with an outline. Secondary.
• TextButton: A button with a caption.

fun main() {
application{

Window(onCloseRequest = ::exitApplication, title = "Button Demo")
{

Column(modifier = Modifier.fillMaxSize(),
horizontalAlignment = Alignment.CenterHorizontally)

{
Button(onClick = { println("Button clicked") }) { Text("Caption") }
OutlinedButton(onClick = { println("OutlinedButton clicked") }) { Text("Caption") }
TextButton(onClick = { println("TextButton clicked") }) { Text("Caption") }

}
}

}
}

19

https://developer.android.com/reference/kotlin/androidx/compose/material/package-summary
https://developer.android.com/reference/kotlin/androidx/compose/material/package-summary
https://developer.android.com/reference/kotlin/androidx/compose/material/package-summary

EXAMPLE: CHECKBOX
A checkbox is a toggleable control that presents a true/false state.
• The OnCheckedChange function is called when the user interacts with

it (and in this case, the state represented by it is being stored in a
MutableState variable named isChecked).

@Composable
fun SimpleCheckbox() {

val isChecked = remember { mutableStateOf(false) }

Checkbox(
checked = isChecked.value ,
enabled = true,
onCheckedChange = { isChecked.value = it }

)
}

20

EXAMPLE: SLIDER
A slider lets the user make a selection from a continuous range of
values. It's useful for things like adjusting volume or brightness or
choosing from a range of values.

@Composable
fun SliderMinimalExample() {

var sliderPosition by remember
{ mutableFloatStateOf(0f) }

Column {
Slider(

value = sliderPosition,
onValueChange = { sliderPosition = it }

)
Text(text = sliderPosition.toString())

}
}

21

DEMO

See GL Public:
/samples/lectures/compose-desktop

Run the Composables.kt main

22

https://git.uwaterloo.ca/cs346/public/samples/-/tree/main/lectures/compose-desktop?ref_type=heads

COMPOSE > LAYOUT CS 346: Application
Development

23

LAYOUT COMPOSABLES
Compose includes Layout Composables, whose purpose is to act as a container to
other composables. There are three main layout composables:
 Column, used to arrange widget elements vertically
 Row, used to arrange widget elements horizontally
 Box, used to arrange objects in layers

https://developer.android.com/reference/kotlin/androidx/compose/foundation/layout/package-summary
24

https://developer.android.com/reference/kotlin/androidx/compose/foundation/layout/package-summary

COLUMN COMPOSABLE
fun main() = application {

Window(
title = "CS 346 Compose Layout Demo",
onCloseRequest = ::exitApplication

) {
SimpleColumn()

}
}

@Composable
fun SimpleColumn() {

Column(
modifier = Modifier.fillMaxSize(),
verticalArrangement = Arrangement.Center,
horizontalAlignment = Alignment.CenterHorizontally

) {
Text("One")
Text("Two")
Text("Three")

}
}

25

ROW COMPOSABLE
fun main() = application {

Window(
title = "CS 346 Compose Layout Demo",
onCloseRequest = ::exitApplication

) {
SimpleRow()

}
}

@Composable
fun SimpleRow() {

Row(
modifier = Modifier.fillMaxSize(),
horizontalArrangement = Arrangement.SpaceEvenly,
verticalAlignment = Alignment.CenterVertically

) {
Text("One")
Text("Two")
Text("Three")

}
}

26

BOX COMPOSABLE
fun main() = application {
Window(

title = "Custom Theme",
onCloseRequest = ::exitApplication,
state = WindowState(

width = 300.dp, height = 250.dp,
position = WindowPosition(50.dp, 50.dp)

)
){

SimpleBox()
}

}

@Composable
fun SimpleBox() {
Box(Modifier.fillMaxSize().padding(15.dp)) {

Text("Drawn first", modifier = Modifier.align(Alignment.TopCenter))
Text("Drawn second", modifier = Modifier.align(Alignment.CenterStart))
Text("Drawn third", modifier = Modifier.align(Alignment.CenterEnd))
FloatingActionButton(

modifier = Modifier.align(Alignment.BottomEnd),
onClick = {println("+ pressed")}

) {
Text("+")

}
}

} 27

NESTING LAYOUTS
This example contains a Column as the top-level composable, and a Row at the
bottom that contains Text and Button composables (which is how we have the layout
flowing both top-bottom and left-right).

28

LAZY LAYOUTS
Columns and rows work fine for a small amount of data that fits on the screen. What
do you do if you have large lists that might be longer or wider than the space that
you have available?

Ideally, we would like that content to be scrollable. For performance reasons, we also
want large amounts of data to be lazy loaded: only the data that is being displayed
needs to be in-memory and other data is loaded only when it needs to be displayed.

Compose has a series of lazy components that work like this:
 LazyColumn
 LazyRow
 LazyVerticalGrid
 LazyHorizontalGrid

https://developer.android.com/jetpack/compose/lists

29

https://developer.android.com/jetpack/compose/lists

LAZYROW COMPOSABLE
fun main() = application {

Window(
title = "LazyColumn",
state = WindowState(width = 500.dp, height = 100.dp),
onCloseRequest = ::exitApplication

) {
LazyRowDemo()

}
}

@Composable
fun LazyRowDemo(modifier: Modifier = Modifier) {

LazyRow(
modifier = modifier.padding(4.dp).fillMaxSize(),
verticalAlignment = Alignment.CenterVertically

) {
items(45) {

Button(
onClick = { },
modifier = Modifier

.size(100.dp, 50.dp)

.padding(4.dp)
) {

Text(it.toString())
}

}
}

} 30

LAZYGRID COMPOSABLE

@Composable
fun AndroidLazyGrid(modifier: Modifier = Modifier) {

LazyVerticalGrid(modifier = modifier, columns = GridCells.Fixed(5)) {
val colors = listOf<Color>(Color.Blue, Color.Red, Color.Green)
items(45) {

AndroidAlien(color = colors.get(Random.nextInt(0,3)))
}

}
}

31

COMPOSE > STATE CS 346: Application
Development

32

ADDING INTERACTIVITY (1/4)
Let’s revisit our Window demo and add an interactive Button.

fun main() = application {
Window(

title = "Hello Window",
onCloseRequest = ::exitApplication

) {
Greeting("Unpressed")

}
}

@Composable
fun Greeting(name: String) {

Button(onClick = { println("Button pressed") }) {
Text("Hello $name")

}
}

Console Output
> Task :run
Button pressed
Button pressed
Button pressed

33

onCloseRequest and onClick are
event handlers; we’re assigning

functions to be called when those
events occur.

ADDING INTERACTIVITY (2/4)
Let’s have it try and update the emitted UI.

fun main() = application {
Window(

title = "Hello Window",
onCloseRequest = ::exitApplication

) {
Greeting("Unpressed")

}
}

@Composable
fun Greeting(caption: String) {

var currentCaption = name
Button(onClick = { currentCaption = "Pressed" }) {

Text("Hello $currentCaption")
}

}

It doesn’t work. The UI never updates.
Why?

34

CONCEPT: RECOMPOSITION
The declarative design of Compose means that it draws the screen when the
application launches, and then only redraws elements when their state changes.

Compose is effectively doing this:
 Drawing the initial user interface.
 Monitoring your state (aka variables) directly.
 When a change is detected in state, the portion of the UI that relies on that state is updated.

Compose redraws affected components by calling their Composable functions. This
process (detecting a change, and then redrawing the UI) is called recomposition and
is the main design principle behind Compose.

35

ADDING INTERACTIVITY (3/4)
Let’s revisit our demo. Why doesn’t the Button update?

fun main() = application {
Window(

title = "Hello Window",
onCloseRequest = ::exitApplication

) {
Greeting("Unpressed")

}
}

@Composable
fun Greeting(caption: String) {

var currentCaption = caption
Button(onClick = {currentCaption = "Pressed" }) {

Text("Hello $currentCaption")
}

}

This doesn’t work.
The onClick handler attempts to change
the text property of the Button.
This triggers Compose to call the Window
composable, which calls the Button
composable, which initializes text to its
initial value...

36

ADDING INTERACTIVITY (4/4)
To make state observable, use a MutableState class.

fun main() = application {
Window(

title = "Hello Window",
onCloseRequest = ::exitApplication

) {
Greeting("Unpressed")

}
}

@Composable
fun Greeting(caption: String) {

var currentCaption = remember { mutableStateOf(caption) }
Button(onClick = {currentCaption.value = "Pressed" }) {

Text("Hello ${currentCaption.value}")
}

}

This works!
mutableStateOf(name) is an observable
String (via type inference).
Remember tells it the @Composable
function to NOT re-initialize this state when
Recomposition happens.

37

REMEMBERING STATE
There are multiple classes to handle different types of State. Here's a partial list:

fun main() = application {
Window(

title = "Hello Window",
onCloseRequest = ::exitApplication,
state = WindowState(width=300.dp, height=200.dp, position = WindowPosition(50.dp, 50.dp))

) {
val caption = remember { mutableStateOf("Press me") }
Button(onClick = {caption.value = "Pressed!"}) {

Text(caption.value)
}

}
} 38

STATE HOISTING (1/2)
A composable that uses remember is storing the internal state within that composable,
making it stateful (e.g. our Greeting composable function above).

However, storing state in a function can make it difficult to test and reuse. It's
sometimes helpful to pull state out of a function into a higher-level, calling function.
This process is called state hoisting.

39

STATE HOISTING (2/2)
fun main() = application {
Window(title = "Hello Window", onCloseRequest = ::exitApplication) {

HelloScreen()
}

}

@Composable
fun HelloScreen() {
var name by remember { mutableStateOf("") }
HelloContent(name = name, onNameChange = { name = it })

}

@Composable
fun HelloContent(name: String, onNameChange: (String) -> Unit) {
Column(modifier = Modifier.padding(16.dp)) {

Text(
text = "Hello, $name",
modifier = Modifier.padding(bottom = 8.dp),
style = MaterialTheme.typography.body1

)
OutlinedTextField(value = name, onValueChange = onNameChange, label = { Text("Name") })

}
}

Our state is the name that the user is entering in
the OutlinedTextField.

Instead of storing that in our HelloContent
composable, we keep our state variable in the
calling class HelloScreen and pass in the callback
function that will set that value.

40

COMPOSE > THEMES CS 346: Application
Development

41

MATERIAL 3 THEME
A theme is a common look-and-feel that is
used when building software.

Google includes their Material Design
theme in Compose, and by default,
composables will be drawn using the Material
look-and-feel. This includes colors, opacity,
shadowing and other visual elements.

https://m3.material.io/

This is fantastic as an Android developer: it’s
very well specified and complete. It also may
not be what you want on desktop, or iOS.

42

https://m3.material.io/
https://m3.material.io/
https://m3.material.io/

To customize the default theme, we can just extend it and change its properties, and then set our
application to use the modified theme.

@Composable
fun CustomTheme(

content: @Composable () -> Unit
) {

MaterialTheme(
colors = MaterialTheme.colors.copy(primary = Color.Red, secondary = Color.Magenta),
shapes = MaterialTheme.shapes.copy(

small = AbsoluteCutCornerShape(0.dp),
medium = AbsoluteCutCornerShape(0.dp),
large = AbsoluteCutCornerShape(0.dp)

)
) { content() }

}

fun main() = application {
Window(

title = "Hello Window",
onCloseRequest = ::exitApplication,
state = WindowState(width=300.dp, height=250.dp, position = WindowPosition(50.dp, 50.dp))

) {
CustomTheme { … }

43

THIRD-PARTY THEMES
There are third-party themes that you can include to replace the Material theme
completely:
 Aurora library allows you to style Compose applications using the Ephemeral design theme.
 JetBrains Jewel changes the look-and-feel to match IntelliJ applications. e.g. IntelliJ IDEA.
 MacOS theme mimics the standard macOS look-and-feel.

44

https://github.com/kirill-grouchnikov/aurora
https://github.com/JetBrains/jewel
https://github.com/Chozzle/compose-macos-theme

