
DESKTOP APPLICATIONS CS 346: Application
Development

FEATURES CS 346: Application
Development

2

MODERN FEATURES
1. Graphical User Interface.

Interactive graphical interfaces are a major part of a modern application. We will
spend considerable time discussing user interface toolkits that make it easy to build
these interfaces.

Your application should support:
­ Interaction using standard controls e.g., buttons, panels, images, scrollbars, and so on. We’ll
discuss how to use standard controls from a GUI toolkit.

­ Standard navigation conventions for the platform. e.g., breadcrumb navigation for mobile,
Window manipulation for desktop.

­ Rich data, animations and other design elements that add to the aesthetics and appeal of
the platform.

3

MODERN FEATURES
2. Standard interaction

For mobile applications, support standard gestures to interact with the application:
­ Tap to select elements on-screen.
­ Drag to move or interact with elements.
­ Swipe to scroll up/down.
­ Pinch to zoom in/out.

For desktop applications, support keyboard and mouse:
­ Keyboard shortcuts. Users should be able to use the keyboard for navigation & common tasks.
­ Mouse support. The mouse should be used for most selection tasks, and for manipulating data

(i.e., a right-click context menu, or dropdown menu).

In both cases, users should be able to navigate through multiple screens or sections of the
application using a breadcrumb trail, or a series of links.

4

MODERN FEATURES
3. Rich Data Manipulation

We expect to be able to manipulate data in a variety of standard ways:
­ Cut-Copy-Paste. You should be able to use these commands in both desktop and mobile
applications to manipulate text and image data.

­ Undo-Redo. You should be able to undo and redo changes to your data. This is a common
feature in desktop applications and is becoming more common in mobile applications
(usually based on the features of the application you are building).

­ Drag-Drop. When an application requires you to move data from one place to another, you
should be able to drag and drop it. e.g., dragging an image from your file system into a
dialog box.

5

MODERN FEATURES
4. Database Support

We should be able to store and retrieve data from a database. This can include a
local database (like SQLite), or a shared online database (like MySQL or
PostgreSQL). We should also be able to easily manipulate data into the correct
storage format.

5. Networking & Services

Modern applications do not exist in a silo; they are expected to interact with other
applications and online services to consume or share data. We will also discuss how to
both design and consume services in a later section.

6

COMPOSE > DESKTOP CS 346: Application
Development

7

INSTALLING COMPOSE
libs.versions.toml

[plugins]
kotlin-jvm = {id = "org.jetbrains.kotlin.jvm", version.ref = “2.0.20"}
jetbrains-compose = {id = "org.jetbrains.compose", version.ref = “1.6.11"}
compose-compiler = {id = "org.jetbrains.kotlin.plugin.compose", version.ref = “2.0.20"}

build.gradle.kts
plugins {
 alias(libs.plugins.jetbrains.compose)
 alias(libs.plugins.compose.compiler)
}

dependencies {
 implementation(compose.desktop.currentOs)
}

8

GRADLE TASKS FOR DESKTOP
Use the Gradle menu (View > Tool Windows > Gradle).

9

APPLICATION STRUCTURE
Your entry point for a desktop application is the main method. A desktop application
needs to:
­ use a main method as its entry point,
­ declare a top-level application scope,
­ declare one or more windows within that application scope.

10

WINDOW POSITION/SIZE
Create a WindowState for the Window composable, and pass in the appropriate
values.

fun main() {
application {

Window(
title = "Window State Demo",
state = WindowState(

position = WindowPosition(0.dp, 0.dp),
size = DpSize(300.dp, 200.dp)

),
onCloseRequest = ::exitApplication

) {
Text("This is a window")

}
}

}
11

ADDING MENUS
fun main() = application {

Window(onCloseRequest = ::exitApplication) {
App(this, this@application)

}
}

@Composable
fun App(

windowScope: FrameWindowScope,
applicationScope: ApplicationScope

) {
windowScope.MenuBar {

Menu("File", mnemonic = 'F') {
val nextWindowState = rememberWindowState()
Item(

"Exit",
onClick = { applicationScope.exitApplication() },
shortcut = KeyShortcut(

Key.X, ctrl = false
)

)
}

}
}

12

KEYBOARD INPUT
fun main() = application {

Window(
title = "Key Events",
state = WindowState(width = 500.dp, height = 100.dp),
onCloseRequest = ::exitApplication,
onKeyEvent = {

if (it.type == KeyEventType.KeyUp) {
println("Window handler: " + it.key.toString())

}
}

) {
MaterialTheme {

Frame()
}

}
}

13

It’s just a new event type

MOUSE INPUT
Box(

modifier = Modifier
.background(Color.Magenta)
.fillMaxWidth(0.9f)
.fillMaxHeight(0.2f)
.combinedClickable(

onClick = { text = "Click! ${count++}” },
onDoubleClick = { text = "Double click! ${count++}” },
onLongClick = { text = "Long click! ${count++}” }

)
)

14

MOUSE MOVEMENT
var color by remember { mutableStateOf(Color(0, 0, 0)) }
Box(

modifier = Modifier
.wrapContentSize(Alignment.Center)
.fillMaxSize()
.background(color = color)
.onPointerEvent(PointerEventType.Move) {

val position = it.changes.first().position
color = Color(position.x.toInt() % 256, position.y.toInt() % 256, 0)

}
)

15

ARCHITECTURE & DESIGN CS 346: Application
Development

16

MONOLITHIC: LAYERED
A layered or n-tier architecture is a very
common architectural style that organizes
software into horizontal layers, where each
layer represents a logical division of
functionality.

Each layer has specific functionality that is
presents to the layer above (i.e. lower layers
provide services up the stack).

Dependencies extend down: lower-levels provide
functionality that is consumed by higher-levels.

e.g. presentation uses business logic, but business
layer doesn’t know anything about the UI.

Advantages
• Layers isolated (“separation of concerns”)
• High testability because components belong to

specific layers in the architecture, and other
layers can be mocked or stubbed.

• High ease of development.

17

USER INTERACTION
People typically interact with technology to reach a goal. They determine
what they need to do, and perform actions with the UI, which in turn provides
feedback that lets them continue with their actions. It’s an iterative cycle.

User interaction is a feedback loop. How do we model this?
18

MODEL-VIEW-CONTROLLER (MVC) PATTERN
Developed at Xerox PARC for Smalltalk-80, and widely adopted.
­ Model: manages system state and its modification
­ View: manages interface to provide feedback
­ Controller: manages interaction to request system state modification

MVC models this interaction using the Observer pattern.
19

MODEL-VIEW-CONTROLLER IMPLEMENTATION
1. User performs an action on Controller. This can include keyboard or mouse input.
2. Controller asks Model to act upon input event. The controller interprets the intent of the request.
3. Model might change state and notify one or more Views that the state change occurred.
4. View retrieves updated state from Model and visualizes it for the User.

MVC models this feedback loop.
20

We can have multiple
views, each responsible
for their own content.

Controller class
handles input.

All state is contained
in the model class.

Publishers commit to having
a consistent method of
managing lists of
subscribers (views).

A subscriber is simply any class
that wants to be notified of
changes by their publisher.

21

MVC BENEFITS?
­ Separation of business logic and input/output. Separation of concerns; ease of
testing with discrete classes/responsibilities.
­ Support for multiple types of views. e.g. simultaneously display data in both a
chart and a table.
­ The ability to handle multiple types of inputs e.g. joystick, mouse, trackpad,
voice, retina-tracking, brain-computer interface…

MVC models this feedback loop.

22

MVC CHALLENGES?
­ It doesn't account for modern, complex interfaces
­ e.g., multiple views with their own data vs. hierarchical views with shared data
­ e.g., screen navigation, where screens are unloaded and swapped.

­Modern toolkits have also moved towards using binding mechanisms, where
UI elements are automatically refreshed as application state changes.

MVC models this feedback loop.

23

MODEL-VIEW-VIEWMODEL (MVVM)
Model-View-ViewModel is an MVC variant that introduces another abstraction layer
between the primary model and each view. This allows is to localize state for
individual views/screens.

24

We can have multiple
views, each responsible
for their own content.

Controller class
handles input.

Publishers commit to having
a consistent method of
managing lists of
subscribers (views).

All state is contained
in the model class.

View state is stored in a
ViewModel. Each View has its

own ViewModel class!

The ViewModel subscribes (instead of the
View). The View is notified of VM
changed through a binding mechanism.

25

fun main() = application {
val userModel = UserModel()
val userViewModel = UserViewModel(userModel)
val userController = UserController(userModel)

Window(
title = "MVC Demo",
state = WindowState(

position = WindowPosition(Alignment.Center),
size = DpSize(275.dp, 200.dp)

),
resizable = false,
onCloseRequest = ::exitApplication

) {
UserView(userViewModel, userController)

}
}

26

CLEAN ARCHITECTURE CS 346: Application
Development

27

CLEAN ARCHITECTURE
Clean architecture is an architectural style that is
commonly used with modern mobile and desktop
applications.

It was introduced by Robert C. Martin (“the SOLID guy”)
in 2012, and refined over the subsequent years (see his
original blog post and the Clean Architecture book).

Clean architecture
­ Generalized version of a Layered Architecture.
­ Can handle multiple generalized services.
­ Designed to solve cohesion and coupling issues.

- Robert C. Martin. 2017. Clean Architecture.
28

https://blog.cleancoder.com/uncle-bob/2012/08/13/the-clean-architecture.html
https://www.amazon.ca/Clean-Architecture-Craftsmans-Software-Structure/dp/0134494164

WHAT ARE THE BENEFITS?
Layering our architecture really helps to address our earlier goals (reducing coupling,
setting the right level of abstraction). Additionally, it provides these other specific
benefits:
• Independent of frameworks. The architecture does not depend on a particular set of
libraries for its functionality. This allows you to use such frameworks as tools, rather than
forcing you to cram your system into their limited constraints.
• Testable. The business rules can be tested without the UI, database, web server, or any other
external element.
• Independent of the UI. The UI can change easily, without changing the rest of the system. A
web UI could be replaced with a console UI, for example, without changing the business
rules.
• Independent of the database. You can swap out Oracle or SQL Server for Mongo, BigTable,
CouchDB, or something else. Your business rules are not bound to the database.

29

- Robert C. Martin. 2017. Clean Architecture.
30

LAYERS

Use Cases (Application)

These are application-specific classes that build on the core
entities. They facilitate data flow to and from the entities. This
is also where you would implement core application logic.

Controllers (Infrastructure)

These are interface adapters that map data from the entities
or use cases, to a format that is required by the external
layers.

Interfaces (Frameworks)

These are frameworks to access external services.

Entities (Domain Models)
These are data classes that reflect your problem domain, e.g. classes like Customer, Invoice, Note. These
are the core classes of your application. They don’t have any external dependencies!

31

DEPENDENCY RULE
The dependency rule describes relationship between layers: nothing in the inner circle can
know about the outer circles. Dependencies are only allowed to go from the outside to the
inside; outside classes can only refer to the same or a more inner layer.

• This means that the innermost classes (entities)
don't use any external frameworks, since that
would introduce dependencies.

• External frameworks and libraries are pushed to
the outside of the architecture.

32

DEPENDENCY INVERSION
The diagram above shows flow-of-control: which classes call into which other classes. In this
case, outside classes call into inner classes. This also represents the source code
dependencies. We handle source code dependencies with dependency inversion.

• High-level modules should not import anything
from low-level modules. Both should depend on
abstractions (e.g., interfaces).

• Abstractions should not depend on details. Details
(concrete implementations) should depend on
abstractions.

33

https://en.wikipedia.org/wiki/Dependency_inversion_principle

SOURCE CODE: MODULARITY
How do we accomplish this in code?
­ We set up packages to separate classes into modules.
­ We use interfaces to describe the relationship between classes.

For example, we would set up a source code structure like this, where each subdirectory is a
package.

project
├── application
├── database
├── entities
├── presentation
└── service

We’ll use this
as a starting

point!

34

MVVM can be used to model our Clean Architecture as well.
The Model contains application state, which it can propagate to individual ViewModels.

35

