
MOBILE (ANDROID) DEVELOPMENT CS 346: Application
Development

FEATURES
1. Smartphones are portable, designed for ad hoc interaction.

2. Interaction is touch-based. Keyboard input is secondary to
touch. No assumption of physical buttons.

3. Designed around a single foreground application, running
full-screen (not resizable or movable).

4. Restrictive environment:
• Low-memory available
• Slow to load resources
• Applications paused when not in the foreground

INTERACTIVE GRAPHICAL ELEMENTS
Window contents are a combination of text, images, and
interactive elements.

Mobile applications tend to have fewer controls or on-
screen widgets compared to desktop.

Interaction is typically by gestures (touch and swipe on
regions of the screen). Direct manipulation is emphasized.

Challenges?
 Screen size and
 Difficulty interacting with small elements by touch.

We use a relatively small number of gestures to interact with our phones.

TOOLKITS
In a desktop OS, we might have a widget or GUI toolkit to provide advanced
features for building applications (e.g. creating and managing application windows,
providing reusable widgets like buttons, lists, toolbars.

Android has two toolkits both provided by Google:

• Android Views/XML: the original imperative toolkit (unofficially deprecated).

• Jetpack Compose: a declarative toolkit, recommended for new projects. ⭐

Toolkits provide this required functionality in Android.

https://en.wikipedia.org/wiki/Widget_toolkit
https://en.wikipedia.org/wiki/Graphical_widget

STRUCTURE CS 346: Application
Development

ACTIVITIES
Applications consist of one or more running activities, each one corresponding to a
screen.

You can think of an activity as a visible screen with state information.

An activity can be one of the following running states:
 The activity in the foreground, typically the one that user is interacting with, i.e., running.
 An activity that has lost focus but can still be seen is visible and active.
 An activity that is completely hidden, or minimized is stopped. It retains its state (it’s
basically paused) BUT the OS may choose to terminate it to free up resources.

 The OS can choose to destroy an application to free up resources.

https://developer.android.com/reference/android/app/Activity

Key takeaway: your
application needs to support
being paused or stopped
(typically by saving data for
later).

ACTIVITY LIFECYCLE
There are three key loops that these phases attempt to capture:
 The entire lifetime of an activity happens between the first call to onCreate(Bundle) through
to a single final call to onDestroy(). Setup is done in onCreate(), and all remaining resources
are released by onDestroy().

 The visible lifetime of an activity happens between a call to onStart() until a
corresponding call to onStop(). During this time the user can see the activity on-screen, though
it may not be in the foreground.

 The foreground lifetime of an activity happens between a call to onResume() until a
corresponding call to onPause(). During this time the activity is in visible, active and
interacting with the user. An activity can frequently go between the resumed and paused
states e.g. when the device goes to sleep.

INTENTS
An intent is an asynchronous message, that represents an an operation to be
performed. This can include activating components, or activities.

The startActivity(Intent) method can be used to start a new activity. It takes a
single argument, an Intent, which describes the activity to be executed. This is the
simplest way to support multiple screens.

https://developer.android.com/reference/android/content/Intent

JETPACK COMPOSE ON ANDROID CS 346: Application
Development

CREATING A PROJECT
Android uses Gradle projects. You can create
an Android project in IntelliJ IDEA or Android
Studio.
 Make sure that you and your team use the same
IDE (and plugins).

Most project templates will create a simple
project with one activity.
 Try “Basic Views” for a simple Activity.

The project structure that is created will match
a standard Android project, with source and
res folders.

ANDROID DEVICE MANAGER

Tools > Android > Android Device Manager

MAIN ACTIVITY (ENTRY POINT)
MainActivity is a class that extends ComponentActivity. It’s the default name
given to the activity that gets launched on application startup.

The onCreate() method is the first method that is called when the MainActivity is
instantiated and serves as the entry point for your application.

class MainActivity : ComponentActivity() {
 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 setContent {
 // Compose user interface goes here
 }
 }

!// an activity is essentially a screen
class MainActivity : ComponentActivity() {
 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 setContent {
 MaterialTheme {
 Surface() {
 ButtonExample()
 }
 }
 }
 }
}

@Composable
fun ButtonExample() {
 var text = remember { mutableStateOf("Hello world!")}
 Button(onClick = { text.value = "Button clicked"}) {
 Text(text = text.value)
 }
}

ANDROID-SPECIFIC COMPOSABLES CS 346: Application
Development

COMPOSABLE: SCAFFOLD
@Composable
fun ScaffoldDemo() {
 val materialBlue700= Color(0xFF1976D2)
 val scaffoldState = rememberScaffoldState(rememberDrawerState(DrawerValue.Open))
 Scaffold(
 scaffoldState = scaffoldState,
 topBar = {

 TopAppBar(title = {Text(“TopAppBar")}, backgroundColor = materialBlue700)
 },
 floatingActionButtonPosition = FabPosition.End,
 floatingActionButton = { FloatingActionButton(onClick = {}){Text(“X”)} },
 drawerContent = { Text(text = "drawerContent") },
 content = { Text("BodyContent") },
 bottomBar = {

 BottomAppBar(backgroundColor = materialBlue700) {Text(“BottomAppBar”)}
 }
)

}

COMPOSABLE: IMAGE
@Composable
fun ImageResourceDemo() {
 val image: Painter = painterResource(id = R.drawable.composelogo)
 Image(painter = image,contentDescription = "")

}

COMPOSABLE: FLOATING ACTION BUTTONS

@Composable
fun ExtendedFloatingActionButtonDemo() {
 ExtendedFloatingActionButton(
 icon = { Icon(Icons.Filled.Favorite,"") },
 text = { Text("FloatingActionButton") },
 onClick = { !/*do something!*/ },
 elevation = FloatingActionButtonDefaults.elevation(8.dp)
)
}

@Composable
fun FloatingActionButtonDemo() {
 FloatingActionButton(onClick = { !/*do something!*/}) {
 Text("FloatingActionButton")
 }
}

COMPOSABLE: CARD
@Composable
fun CardDemo() {
 Card(
 modifier = Modifier.fillMaxWidth().padding(15.dp).clickable{ },
 elevation = 10.dp
) {
 Column(modifier = Modifier.padding(15.dp)) {
 Text("Jetpack Compose Playground")
 Text("Now you are in the Card section")
 }

 }
}

FINDING MORE COMPOSABLES

All of the other composables work as well! The amazing thing about
Compose is that you can copy/paste composables between platforms.

List of Composables
https://developer.android.com/reference/kotlin/androidx/compos
e/material/package-summary

Sample Code
https://foso.github.io/Jetpack-Compose-Playground/
https://developer.android.com/jetpack/compose/components

21

https://developer.android.com/reference/kotlin/androidx/compose/material/package-summary
https://developer.android.com/reference/kotlin/androidx/compose/material/package-summary
https://foso.github.io/Jetpack-Compose-Playground/
https://developer.android.com/jetpack/compose/components

NAVIGATION CS 346: Application
Development

WHAT IS NAVIGATION?
Navigation refers to switching
screens.

Intents allow you to switch
between Activities. What if you
want to switch composables?
 Navigation components support
Compose.

 Limited to Android only.

Alternatives
 Voyager – works on Android,
iOS, desktop.

 Simpler to setup and use.

class HomeScreen : Screen {

 @Composable
 override fun Content() {
 val screenModel = rememberScreenModel ()
 !// !!...
 }
}

class SingleActivity : ComponentActivity() {

 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)

 setContent {
 Navigator(HomeScreen())
 }
 }
}

Voyager code to load a composable screen.

https://developer.android.com/develop/ui/compose/navigation
https://github.com/adrielcafe/voyager

INTERACTIVITY CS 346: Application
Development

INTERACTION STYLES
What types of interaction do we need to support on a mobile device?

1. Multi-touch for primary input.
• Tapping on widgets to activate e.g. touch a text widget to enter text;

touch a button to activate it.
• Dragging and other gestures.

2. Keyboard input as secondary.
• Soft-keyboard (on-screen).

MULTI-TOUCH WIDGETS
This is exactly the same as desktop. You override the handler functions for the
widgets, providing it with a lambda function.

 FloatingActionButton(onClick = { !/* something !*/ }) {

 Text("FloatingActionButton")

 }

TOUCH GESTURES

You can apply gesture modifiers to make the composable listen to gestures.

var log by remember { mutableStateOf("") }
Column {

Box(
Modifier

.size(100.dp)

.background(Color.Red)

.pointerInput(Unit) {
detectTapGestures { log = "Tap!" }
detectDragGestures { _, _ -> log = "Dragging" }

}
)

}

27

https://developer.android.com/jetpack/compose/touch-input/pointer-input/understand-gestures

KEY GESTURES
@Composable
fun SimpleFilledTextFieldSample() {

var text by remember { mutableStateOf("Hello") }

TextField(
value = text,
onValueChange = { text = it },
label = { Text("Label") }

)
}

@Composable
fun SimpleOutlinedTextFieldSample() {

var text by remember { mutableStateOf("") }

OutlinedTextField(
value = text,
onValueChange = { text = it },
label = { Text("Label") }

)
}

28

