
TESTING CS 346: Application
Development

WHY DO WE TEST?
The goal of testing is to ensure that the software that we produce meets our
objectives when deployed into the environment in which it will be used, and
when faced with real-world constraints.

Why do we test?
 Improve your confidence in the correctness of your software (we cannot
“guarantee correctness”).
 Ensure that you are handling edge cases and errors properly, which will
result in a better user experience and a more stable application.
 Produce an improved design, usually as a by-product of having written tests.
The process of writing tests forces us to structure our code more thoughtfully.
 Identify deficiencies and flaws in both software design and implementation.

2

LAYERED TESTING
We should produce a range of tests that can confirm that
our system is working as expected.

We can identify three types of tests:
1. Unit tests: tests operating at the class level (or smallest

functional unit), which are meant to check the validity of
low-level interfaces and systems.

2. Integration tests: testing across multiple classes or
functional units, to check interaction between objects. [note:
also how we break out multi-platform tests e.g. unit tests on
one platform, rerun as integration tests on all platforms.]

3. System tests: this is testing functionality from the
perspective of the user; end-to-end feature testing.
Sometimes called functional testing.

3

WHEN SHOULD WE TEST?
Traditional views suggest that testing should be done after implementation. This is
wrong and very costly. Testing is more useful when done earlier in the process.
 It gives you more opportunity to incorporate the feedback from testing.
 It’s much cheaper to “fix bugs” earlier in the process.

Different tests are suitable for different parts of the development process:
 Unit Tests: done during implementation, when you are working on a class.
 Integration Tests: done during implementation, when you want to ensure that classes work
together (on all platforms).

 System Tests: done when features are complete and merged, to ensure that the system
continues working.

4

TEST-DRIVEN DEVELOPMENT (TDD)
Promoted by Kent Beck around 2002 as an Extreme
Programming (XP) practice.

The basic idea is that you write tests before writing the
corresponding implementation code.

TDD development cycle
1. Define an interface or specification for your class or module.
2. Write a test against that interface.
3. Write the implementation code that causes the test to pass.
4. Repeat until completed.

5

ADVANTAGES OF TDD
There are some clear benefits:
 Early bug detection. You are building up a set of tests that can verify that your code works
as expected.

 Better designs. Making your code testable often means improving your interfaces, having
clean separation of concerns, and cohesive classes. Testable code is by necessity better code.

 Confidence to refactor. What is refactoring? The process is improving your code
incrementally over time. You can only do this if you can easily verify that you haven’t “broken
anything” in the process. Tests give you the confidence to refactor.

 Simplicity. Code that is built up over time this way tends to be simpler to maintain and
modify.

6

TDD IS BASED ON UNIT TESTS
Unit tests are meant to exercise the interface of a single class or module.
 Unit tests should be very quick to execute and report results.
 They should return consistent results from a specified input.
 They should be integrated into our development workflow, so that they are routinely
executed. i.e. they need to be automated.

Unit testing is behavioural testing, because we want to test interactions over objects
instead of discovering the state of them. i.e., test how they behave, based on their
interfaces.

How many unit tests should you have? As many as required to cover your critical
classes and workflows. (You will NOT get 100% code coverage, despite best

intentions).

7

TESTING > JUNIT FRAMEWORK CS 346: Application
Development

8

INSTALLING JUNIT

To manage our tests, we’re going to use JUnit 5, a popular testing
framework. We’ll let Gradle manage JUnit for us as a project
dependency: add these lines to your project build.gradle.kts file.

dependencies {

 testImplementation(kotlin("test"))

}

tasks.test {

 useJUnitPlatform()

}

9

WRITING TESTS
Tests are just source files that can be run to test other code.
 Tests should be placed under src/test/kotlin.
 It’s best practice to have one test class for each class that you
want to test. e.g., class Main has a test class MainTest.
 Unit tests are automatically executed with gradle build, or
can be executed manually with gradle test.

$ gradle build
BUILD SUCCESSFUL in 928ms
8 actionable tasks: 8 up-to-date // this includes tests

$ gradle test
BUILD SUCCESSFUL in 775ms

3 actionable tasks: 3 up-to-date

10

A SIMPLE TEST
1. Create a class to test under src/main/kotlin.

class Sample() {
fun sum(a: Int, b: Int): Int {
 return a + b
 }
}

2. Create a test class under src/test/kotlin. Add functions as tests.

import kotlin.test.Test
import kotlin.test.assertEquals

internal class SampleTest {
 @Test
 fun testSum() {
 private val testSample: Sample = Sample()
 assertEquals(42, testSample.sum(40, 2))
 }
}

11

SIDEBAR: INTELLIJ TIPS

In the test class, you can execute a particular test by
clicking the Run icon in the gutter.

Press Cmd-N to generate a new test for
a selected class.

12

ASSERTIONS
We call utility functions to assert how the function should successfully perform.

Function Purpose

assertEquals Provided value matches the actual value

assertNotEquals The provided and actual values do not match

assertFalse The given block returns false

assertTrue The given block returns true

13

TEST ANNOTATIONS
The @Test annotation tells the compiler that this is a unit test function. The
kotlin.test package provides annotations to mark test functions, and denote how
they are managed:

Annotation Purpose

@AfterTest Marks a function to be invoked after each test

@BeforeTest Marks a function to be invoked before each test

@Ignore Mark a function to be ignored

@Test Marks a function as a test

14

TESTING > UNIT TESTS CS 346: Application
Development

15

UNIT TEST CHARACTERISTICS
A unit test is a test that meets the following three requirements - Khorikov (2020):
1. Verifies a single unit of behaviour,
2. Does it quickly, and
3. Does it in isolation from other tests.

Unit tests are the lowest-level tests that you can write:
 Tests should be small and quick to execute and return results.
 Each test focuses on a specific class or component, tested in isolation.
 Tests cannot have dependencies on other tests! They should be able to execute in any order.
 As an author, favour many small tests that each check a single thing over monolithic tests.

If a test exercises more than a single class, it’s not a unit test.

16

UNIT TEST COMPOSITION
Every unit test should be a separate function, with the following steps:

1. Arrange:
 Setup the conditions for your test.
 Initialize variables, load data, setup any dependencies that you might need.
 Do NOT reuse anything from a different test.

2. Act:
 Execute the functionality that you want to test and capture the results.

3. Assert:
 Check that the actual and expected results match.
 Use asserts appropriately - see next page.

17

import kotlin.test.Test

class MainTest {
 @Test
 fun saveFiles() {

 // FILE 1
 val f1 = "file1.txt" // arrange
 val file1 = File(f1)
 val status1 = file1.save() // act
 assert(status1 == FILE.OK) // assert

 // FILE 2
 val f2 = "file2.txt" // arrange
 val file2 = File(f2)
 val status2 = file2.save() // act
 assert(status2 == FILE.OK) // assert
 }

}

18

class CalcTest {
@Test
fun validPlus() {

val input = arrayOf("1", "+" , "2")
 val results = Calc().calculate(input)}
 assertEquals(3, results)

}

@Test
fun invalidPlus() {

val input = arrayOf("1", "+", "2")
 val results = Calc().calculate(input)
 assertNotEquals(5, results)

}

@Test
fun insufficientArguments() {

 try {
val input = arrayOf("1", "+")
Calc().calculate(input)

 } catch (e:Exception) {
assertTrue(true)

}
}

Test valid input conditions.
Create a unit test like this for each
operation or function.

Test invalid input conditions.
Create a unit test like this for each
operation or function to ensure that you
handle input errors correctly. Choose
representative values (or important
outliers)

Special-purpose unit test to
check a specific error condition.

19

TESTING > INTEGRATION TESTS CS 346: Application
Development

20

INTEGRATION TESTS
"Unit tests are great at verifying business logic, but it’s not enough to check that logic
in a vacuum. You have to validate how different parts of it integrate with each other

and external systems: the database, the message bus, and so on." — Khorikov (2020).

A unit test is a test that verifies a single unit of failure, in isolation.

An integration test is a test with a broader scope.
 It checks multiple potential units of failure.
 Tests components that have dependencies between them.
 Seeks to understand the interaction between components.

21

AREA OF RESPONSIBILITY
Unit tests primarily test the domain model, or business logic classes.

Integration tests focus on the point where these business logic classes interact with
external systems or dependencies.

Code that we shouldn't bother testing:
 Trivial code is low complexity, and typically has no dependencies or external impact so it
doesn't require extensive testing.

 Overcomplicated code likely has so many dependencies that it's nearly impossible to test.

22

INTEGRATION TEST COVERAGE
Your unit tests should cover as many business scenarios as
possible. You should have fewer integration tests than unit tests.

To determine what to test, identify a “happy path”: an
execution path that will be your first (aka main) integration
test.
 It should reflect the most used execution path. Ensure that common
functionality works before testing more obscure functions.

 This main integration test should exercise all external dependencies
i.e. libraries, interfaces, database.

The primary purpose of integration tests is to exercise
dependencies (on libraries, other classes).

23

WHAT IS A DEPENDENCY?
When you are examining a software component, we say that your component may be
dependent on one or more other software entities to be able to run successfully. e.g.
a library, or a different class, or a database. Each of these represents code that
affects how the code being tested will execute.

We often call the external software component or class a dependency. That word
describes the relationship (classes dependent on one another), and the type of
component (a dependency with respect to the original class).

A key strategy when testing is to figure out how to control these dependencies, so that
you're exercising your class independently of the influence of other components.

24

UNMANAGED VS. MANAGED DEPENDENCIES
Managed vs. Unmanaged dependencies. There is a difference between those that we
control directly (managed), vs. those that may be shared with other software (unmanaged). A
managed dependency suggests that we control the state of that system.
 e.g., A database could be single-file and used only for your application (managed) or shared

among different applications (unmanaged).

Internal vs. External dependencies. Running in the context of our process (internal) or out-of-
process (external). External dependencies tend to be unmanaged.
 e.g., A library is internal. A database, as a separate process is always external.

An unmanaged dependency means that we do not control its state and we may not be able to
test that specific component or dependency. The best we could do it test our interface against
it, since we may not be able to trust the results of any actions that we take against it.

We cannot test unmanaged dependencies. We also tend to be limited in our ability to test
external systems, since we do not manage their state.

25

TEST DOUBLES (AKA MOCKS)
If you cannot test an unmanaged dependency, then you need to test “around it”. We
can do this with test doubles (mocks).

A mock is a fake object that holds the expected behaviour of a real object but
without any genuine implementation. For example, we can have a mock File System
that would report a file as saved but would not actually modify the underlying file
system.

The value in a mock is to remove dependencies and allow controlled testing.

We have 2 strategies that we can exercise to make mocking work well:

1. Extract interfaces

2. Introduce dependency injection

26

STRATEGY: EXTRACT INTERFACES
One important recommendation is that you introduce interfaces for out-of-class
dependencies. For instance, you will often see code like this:

public interface IUserRepository

public class UserRepository : IUserRepository

This is common when testing, even in cases when that class may represent the only
realization of an interface. This allows you to easily write mocks against the
interface, where it's relatively easy to determine what expected behaviour should be.

Replacing concretions with interfaces is one of our SOLID principles.

27

STRATEGY: DEPENDENCY INJECTION
Dependency injection is the practice of supplying dependencies to an object in its
argument list instead of allowing the object to create them itself.
Example: Here’s a class that manages the underlying database connection. How do you
test the saveUserProfile() method separately from the database?
class Persistence {

 val repo = UserRepository() // Persistence creates the required repo instance

fun saveUserProfile(val user: User) {

 repo.save(user)

 }

}

val persist = Persistence()

persist.saveUserProfile(user) // save using the real database

28

https://en.wikipedia.org/wiki/Dependency_injection

EXAMPLE: MOCK DB
To reduce coupling, we could instead change our Persistence class so that we pass in the
dependency. This allows us to control how it is created, and even replace the
UserRepository() with a mock.

class Persistence(val repo: IUserRepository) { // pass in the repo instance
 fun saveUserProfile(val user: User) {
 repo.save(user)
 }

}

class MockRepo : IUserRepository {
 // body with functions that mirror how the repo would work
 // but no real implementation

}
val mock = MockRepo()
val persist = Persistance(mock)
persist.saveUserProfile(user) // save using the mock database

29

TIP: INTEGRATION TESTS
1. Keep your code simply and reduce abstractions when
you can.
 Many abstraction layers will make it very difficult to write

integration tests for your code. e.g., Java libraries and
“class bloat”.

 Try and keep the overall number of architectural layers
relatively small:
 UI, controller, persistence.
 Domain model, application services, infrastructure.

2. Make domain boundaries explicit
 You should be testing end-user functionality. Design classes

to emphasize different problem domains.
 e.g., user-creation/editing tests; note-creation and note-

deletion.

https://martinfowler.com/bliki/BoundedContext.html

30

https://martinfowler.com/bliki/BoundedContext.html

TESTING > TEST COVERAGE CS 346: Application
Development

31

HOW MANY TESTS DO I NEED?
“Tests shouldn’t verify units of code. Rather, they should verify units of

behaviour: something that is meaningful for the problem domain and, ideally,
something that a business-person can recognize as useful. The number of

classes it takes to implement such a unit of behaviour is irrelevant. ”

— Khorikov (2020)

TDD suggests that you should have 100% test coverage.

This is impractical and not that valuable a goal. You should focus instead on
covering key functionality. e.g. domain objects, critical paths of your source
code. i.e., what is important to test.

32

CODE COVERAGE
Code coverage is a metric comparing the number of lines of code with the number of
lines of code that have unit tests. In other words, what “percentage” of your code is
tested?

Code coverage tools in IntelliJ will tell you how your code is being executed, as well
as what parts of your code are covered by unit tests.

Use this to determine which parts of the code should be tested more completely.
 https://www.jetbrains.com/help/idea/code-coverage.html
 https://www.jetbrains.com/help/idea/running-test-with-coverage.html

33

https://www.jetbrains.com/help/idea/code-coverage.html
https://www.jetbrains.com/help/idea/running-test-with-coverage.html

