
WORKING WITH DATABASES CS 346: Application
Development

WHAT IS A DATABASE?
A database is a system for storing data (often
represented as records).

Advantages over just storing data in files?
 It’s designed for working with large numbers of records.
 Databases support efficient and complex operations on
your records.

 Facilitates data sharing across large numbers of
concurrent users/systems.

There are many kinds of databases:
 Relational, Graph Databases, Document Databases…

We’ll focus on Relational and NoSQL/Document
databases as two popular idioms.

2

LOCAL VS. REMOTE DATA
Databases can be stored locally (on the same system where your application resides), or
remotely (a separate system available over a network).

Local
 Often done when you don’t need to share data between applications or users.
 e.g., I have an application that stores my clipboard history. For practical reasons (security,
performance) I don’t need this shared with anyone else. The data is stored in a local database.

Remote
 Done when you need to share data with other users or applications.
 e.g., messaging systems like Slack need to share data between users.

We’ll mostly ignore this distinction for now (and revisit when discussing services/cloud).

3

RELATIONAL DATABASES CS 346: Application
Development

4

INTRODUCTION
Relational databases are based on the relational model proposed by Dr. E.F. Codd.

A relational database structures data into tables representing logical entities e.g.
Customer and Transaction tables. Records are stored as rows in each table.

Relational databases are exceptional at storing and processing structured data
(where each logical record in a set has the same fields). They are also hugely
popular e.g., Oracle, SQL Server, PostgreSQL, MySQL, Supabase.

What are the benefits of relational databases?

1. Relational databases allow for very efficient data storage (i.e. little redundancy).

2. Relational databases support operations on sets of records. e.g.
 Fetch a list of all purchases greater than $100.
 Display all customers that live in ”Ottawa”.

5

https://www.oracle.com/ca-en/database/technologies/
https://www.microsoft.com/en-ca/sql-server/sql-server-2022
https://www.postgresql.org/
https://www.mysql.com/
https://supabase.com/

TABLE
A table is the foundational concept. It collects related fields into records.

Roughly analogous to a class, with each row a record/instance.

e.g. Customer table contains customer information
One record (row) per customer
One field (column) for each property of that customer.

6

JSON -> TABLES

7

PRIMARY KEY
A key is a column that helps us identify a row or set of rows in a table.
A primary key is a column in a database with a value that uniquely
identifies that row. A table cannot have more than one primary key.
 cust_id is a unique identifier for each row in the customer table.
Using “cust_id=1002” to filter any operation will force that operation
to only affect the “Marie Curie” record.

8

FOREIGN KEYS
A foreign key is a key used to
refer to data being held in a
different table.

A primary key in one table is the
foreign key in a different table.

Customer table
 Primary key: cust_id

Transactions table
 Primary key: tx_id
 Foreign key: cust_id Each transaction can be uniquely identified by the

primary key tx_id. It is linked to a unique customer
through cust_id.

9

JOINS
A well-designed database avoids data duplication. This means that we want to split
unique entities into their own tables.
 e.g., a Customer record like “101, Jeff Avery, Waterloo, ON” would be split apart:

- cust_id: Integer
+ name: String
+ city_id: Integer
+ prov_id: Integer

Customer - city_id: Integer
+ name: String

City

- prov_id: Integer
+ name: String

Province

101,
Jeff Avery,
233,
5

231, Wallaceburg
232, Washago
233, Waterloo
…

3. Saskatchewan
4. Manitoba
5. Ontario
…

10

JOINS
A join describes how to relate data across tables using keys.

11

TRANSACTIONS
How does a database handle multiple users accessing the same data?
 What happens when two or more users are updating the same data at the same time? How
do we ensure consistency?

We treat multiple actions that are being performed as a single unit of work called a
transaction.
 All changes are performed together (atomic).
 If there is any error in performing any of those actions, we undo all of these actions. We
commit everything, or rollback everything.

12

ACID
In computer science, ACID (atomicity, consistency, isolation, durability) is a set
of properties intended to guarantee data validity despite errors, power
failures, and other mishaps. Transactions ensure ACID properties.
Atomicity prevents updates to the database from occurring only partially.
Consistency guarantees that transaction can move database from one valid
state to the next. This ensures these all adhere to all defined database rules.
Also preventing corruption by illegal transaction.
 Isolation determines how a particular action is shown to other concurrent
system users.
Durability is the property that guarantees that transactions that have been
committed will survive permanently.

13

SQL
SQL (pronounced ”Ess-que-ell”) is a Domain-Specific Language (DSL) for describing
your queries. Using SQL, you write statements describing the operation to perform,
against which tables, and the database performs the operations for you.

SQL is a standard1, so SQL commands work the same way across different relational
databases. You can use it to:
 Create new records
 Retrieve sets of existing records
 Update the fields in one or more records
 Delete one or more records

———

1. SQL was adopted by ANSI in 1986 as SQL-86, and by ISO in 1987.

14

SYNTAX
SQL has a particular syntax for managing sets of records:

 <operation> (FROM) [table] [WHERE [condition]]

 operations: SELECT, UPDATE, INSERT, DELETE, ...
 conditions: [col] <operator> <value>

You issue English-like sentences describing what you intend to do.

SQL is declarative: you describe what you want done, but don’t need to tell the
database how to do it.

There’s also a relatively small number of operations to support.

15

CREATE: ADD NEW RECORDS
INSERT adds new records to your database.

INSERT INTO Customer(cust_id, name, city)
VALUES (1005, “Molly Malone", "Kitchener")

INSERT INTO Customer(cust_id, name, city)
VALUES (1005, “April Ludgate", "Kitchener") // problem?

16

RETRIEVE: DISPLAY EXISTING RECORDS
SELECT returns data from a table, or a set of tables. Asterix (*) is a wildcard meaning “all”.

SELECT * FROM Customers
--> returns ALL data

SELECT * FROM Customers WHERE city = "Ottawa"

-- > {"cust_id"1003, "name":"Billy Bishop", "city":"Ottawa")

SELECT name FROM Customers WHERE custid = 1001
--> "Jeff Avery"

17

UPDATE: MODIFY EXISTING RECORDS
UPDATE modifies one or more fields based in every row that matches
the criteria that you provide.
If you want to operate on a single row, you need to use a WHERE clause
to give it some criteria that makes that row unique.

UPDATE Customer SET city = "Kitchener" WHERE cust_id = 1001
—> updates one matching record since cust_id is unique for
each row

UPDATE Customer SET city = "Kitchener" // uh oh
 —> no “where” clause, so we update everything to Kitchener.

18

DELETE: REMOVE RECORDS
DELETE removes every record from a table that matches the criteria
that you provide.
If you want to operate on a single row, you need to use a WHERE clause
to give it some criteria that makes that row unique.

DELETE FROM Customer WHERE cust_id = 1001
—> deletes one matching record since cust_id is unique for each row

DELETE FROM Customer// uh oh
 —> deletes everything from this table

19

FILTERING WITH A “WHERE” CLAUSE
A where clause allows us to filter a set of records.

UPDATE Customer SET city = "Kitchener" WHERE cust_id = 1001
—> updates one matching record since cust_id is unique for
each row

It also allows us to define relations between tables.

This means that we can start to run more complex queries across multiple
tables.

20

$ SELECT c.customer_id, c.first_name + “ “ + c.last_name, t.date, p.name, p.cost
FROM Customer c, Transactions t, Products p
WHERE c.customer_id = t.customer_id
AND t.product_id = p.product_id

$ 1001, Jeff Avery, 12-Aug-2020, T-shirt, 29.95

21

TYPES OF JOINS (SYNTAX)

22

ACCESSING SQL DATABASES IN KOTLIN
Kotlin leverages the Java JDBC API (”Java DataBase Connectivity”). This
provides a standard mechanism for connecting to databases, issuing queries,
and managing the results. To create a database project in IntelliJ:
1. Create a Gradle/Kotlin project.

2. Modify the build.gradle.kts to include a dependency on a suitable JDBC for
your specific database (e.g. MySQL, PostgreSQL, Sqlite).

implementation(“org.xerial:sqlite-jdbc:3.39.3.0”) // example of SQLite

3. Use the Java SQL package classes to connect and fetch data.

java.sql.Connection
java.sql.DriverManager
java.sql.SQLException

23

CREATING A CONNECTION
This example uses a sample database from the SQLite tutorial.
We first create a connection to the database. The URL designates both the type of
database, and location of the local database file.

fun connect(): Connection? {
 var conn: Connection? = null
 try {
 val url = "jdbc:sqlite:chinook.db” // format varies by driver
 conn = DriverManager.getConnection(url)
 println("Connection to SQLite has been established.")
 } catch (e: SQLException) {
 println(e.message)
 }
 return conn
}

24

RUNNING A QUERY
fun query(conn:Connection?) {
 try {
 if (conn != null) {
 val sql = "select albumid, title, artistid from albums where albumid < 5"
 val query = conn.createStatement()
 val results = query.executeQuery(sql)
 println("Fetched data:");
 while (results.next()) {
 val albumId = results.getInt("albumid")
 val title = results.getString("title")
 val artistId = results.getInt("artistid")
 println(albumId.toString() + "\t" + title + "\t" + artistId)
 }
 }
 } catch (ex: SQLException) {
 println(ex.message)
 }

}

Connection to SQLite has been established.
Fetched data:
1 For Those About To Rock We Salute You. 1
2 Balls to the Wall 2
3 Restless and Wild 2
4 Let There Be Rock 1
Connection closed. 25

DB ABSTRACTION
JDBC is a useful mechanism for connecting to remote databases, but making raw
SQL calls is error-prone: there's no type checking, or other safety mechanisms in-
place. It also requires us to explicitly convert between string data and class objects
that are holding our data.

There are several libraries that abstract the complexities JDBC and provide a cleaner
database interface. Popular ones include:
 Exposed is a JetBrains Kotlin library for working with JDBC databases. It works great with

desktop applications (local or remote).
 Room is an Android library for working with SQLite databases (usually locally).

26

https://github.com/JetBrains/Exposed
https://developer.android.com/training/data-storage/room

NO-SQL DATABASES CS 346: Application
Development

27

INTRODUCTION
No-SQL is a very broad category, which can either mean "Not Only SQL" or "No
SQL". These databases are designed to handle data that doesn't fit well into the
traditional relational model (typically non-structured data, where records may have
different structures)

Types of No-SQL databases include:
 Document databases (e.g. MongoDB, Google Cloud Firestore)
 Key-value stores (e.g. Redis)
 Graph databases (e.g. Neo4j)
 Time-series databases (e.g. InfluxDB)

NoSQL databases are popular in large-data scenario, where you may need to process
extremely large amounts of data and/or your data will grow significantly over time.

28

29

SQL databases are often scaled-up as data needs increase (more
memory, processing on the same system). NoSQL databases can be

scaled out (distributed across more systems).

https://www.mongodb.com

https://www.mongodb.com/resources/basics/databases/nosql-explained/nosql-vs-sql

DOCUMENT DATABASES
We’ll focus on Document Databases as an alternative to SQL databases.

A document database is a type of NoSQL database that can be used to store and
query data as JSON-like documents.

Why is this a useful paradigm?
 Easy to develop! Objects (code) map to JSON (data format), which you can then easily store
directly in the database.

 Flexible schema. You can add fields to a document at any time.
 Scales out very well if needed for large, distributed systems.

We’ll use MongoDB as an example. See MongoDB Community Edition.
 Firestore is also popular for Android development. See Firebase Documentation.

30

https://www.mongodb.com/products/self-managed/community-edition
https://firebase.google.com/docs/firestore/quickstart

MONGO DB
Can be installed locally, but more often used in the
cloud (where they host it for you).

Exclusively a document database

 NO table structure

 JSON documents instead, with flexible structure.

How do you query it?

 No SQL!

 Mongo has a proprietary API that you can use, with a

custom driver.

See Getting Started with
the MongoDB Kotlin Driver.

31

https://www.mongodb.com/developer/products/mongodb/getting-started-kotlin-driver/
https://www.mongodb.com/developer/products/mongodb/getting-started-kotlin-driver/

ADDING MONGO DEPENDENCY

Add the drivers to your build.gradle.kts file.

dependencies {
 // Kotlin coroutine dependency
 implementation("org.jetbrains.kotlinx:kotlinx-coroutines-core:1.6.4")

 // MongoDB Kotlin driver dependency
 implementation("org.mongodb:mongodb-driver-kotlin-coroutine:4.10.1")
}

32

WORKING WITH DATA
To use the hosted solution, you need to:

1. Setup an account and an online cluster that you can use (free is fine!)

2. Use the connection details to connect to the database from your code.

val connectionString = "mongodb+srv://<username>:<enter your
password>@cluster0.sq3aiau.mongodb.net/?retryWrites=true&w=majority"

val client = MongoClient.create(connectionString = connectString)

See Getting Started with the Kotlin Driver for examples of working with this DB.

33

https://www.mongodb.com/developer/products/mongodb/getting-started-kotlin-driver/

34

suspend fun setupConnection(
 databaseName: String = "sample_restaurants",
 connectionEnvVariable: String = "MONGODB_URI"
): MongoDatabase? {
 val connectString = "mongodb+srv://<usename>:<password>@cluster0.sq3aiau.mongodb.net"
 }

 val client = MongoClient.create(connectionString = connectString)
 val database = client.getDatabase(databaseName = databaseName)
 return try {
 // Send a ping to confirm a successful connection
 val command = Document("ping", BsonInt64(1))
 database.runCommand(command)
 println("Pinged your deployment. You successfully connected to MongoDB!")
 database
 } catch (me: MongoException) {
 System.err.println(me)
 null
 }
}

https://www.mongodb.com/developer/products/mongodb/getting-started-kotlin-driver/

https://www.mongodb.com/developer/products/mongodb/getting-started-kotlin-driver/

CHOOSING A DATABASE SYSTEM CS 346: Application
Development

35

WHAT SHOULD YOU CHOOSE?
Your choice of database depends on a few factors:
 Pick SQL or No-SQL based on your data needs
 SQL is much better for structured data (i.e., you can query it, sort it).

 Pick local or hosted (cloud).
 If you pick local, you will need to distribute it with your application.
 If you pick cloud, you need to be concerned with security and connectivity.

SQL Databases Local Cloud

Android SQLite Supabase

Desktop SQLite Supabase

NoSQL Databases Local Cloud

Android (ScyllaDB, Cassandra) Firebase

Desktop (ScyllaDB, Cassandra) MongoDB
36

