
CONCURRENCY CS 346: Application
Development

INTRODUCTION
Modern computers are multi-tasking devices.

You probably have:
 Multiple processes running,
 Multiple tasks being performed by each task.

Your computer cannot run all these simultaneously!

The operating system carefully schedules time for
each process, and alternates between them.

This can happen within a process as well. Your
application might need to “simultaneously”:
 Read data from a database,
 Draw to the screen,
 Respond to a mouse-click.

My computer, as I’m creating this slide,
with 757 running processes. I don’t know
what most of these are…

2

CONCEPTS: CONCURRENCY
Concurrency is a general term that is used to
mean that multiple tasks are being worked on
simultaneously.

This does not suggest that they are executed at
the same time, only that we can alternate
between them easily.

Parallelism means executing or performing
multiple tasks simultaneously..

Parallel computations can use multi-core
hardware effectively, often making them more
efficient.

3

DEMO: PROGRAM EXECUTION
The normal mode of execution for any program, in any programming language, is
blocking, sequential execution.
 Your program runs one instruction at a time.
 Any pauses in execution result in the entire application stalling.

Let’s consider three different execution models.
 Blocking: runs the entire computation at-once (as above).
 Concurrent: alternates between computation and display tasks.
 Parallel: runs computation and display tasks simultaneously.

Demo: what effect does the execution model have? This application calculates prime numbers
and displays them on the screen.

4

CONCURRENCY > THREADS CS 346: Application
Development

5

CONCEPT: THREADS
A typical way to achieve concurrency is via
threads. A thread is a context within which the
CPU can execute instructions.
• A program always has a main thread. By default,
this executes all instructions in order.
• A program can have additional worker threads.

Threads are managed by the operating system;
libraries provide a convenient abstraction.

As a developer, you explicitly create and
manage threads and assign work.

All instructions in a program are
processed by one or more threads.

Most programs only have one
thread.

https://www.backblaze.com/blog/whats-the-diff-programs-processes-and-threads/
6

https://www.backblaze.com/blog/whats-the-diff-programs-processes-and-threads/

THREADS FOR BACKGROUND PROCESSING
We can split computation across threads (one
primary thread, and one or more background
threads).

e.g. one thread can wait for the blocking
operation to complete, while the other threads
continue processing.

This has the potential to increase performance,
if we can split up work and have it done in
parallel!

Concurrency + Parallelism

… but be very very careful. Make sure that threads don’t compete for resources!

7

MANAGING A THREAD (JAVA)
val t = object : Thread() {
 override fun run() {
 // define the task here
 // it will run to completion on this thread
 }
}

t.start() // launch the thread, it will run to completion
t.stop() // we can also stop it manually

https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.html

8

https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.html

MANAGING A THREAD (KOTLIN)
fun thread(
 start: Boolean = true,
 isDaemon: Boolean = false,
 contextClassLoader: ClassLoader? = null,
 name: String? = null,
 priority: Int = -1,
 block: () -> Unit
): Thread

// provide arguments where you want a non-default value
thread(start = true) {
 // the thread will end when this block completes
 println("${Thread.currentThread()} has run.")
}

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.concurrent/thread.html

9

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.concurrent/thread.html

THREADS: PROS/CONS
Pro
• A worker thread can allow us to execute work in parallel.

Con
•Worker threads may not always available (in the number we require).
•We are required to explicitly control threads. It’s easy to encounter race conditions with
multiple threads in-play.
•We have limited ability to control when/how the OS runs threads.
• Shared state is difficult and error-prone to manage. You need to take great care to ensure
that two threads are not accessing the same resources at the same time - see synchronization
primitives.

10

https://en.wikipedia.org/wiki/Race_condition

CONCURRENCY > COROUTINES CS 346: Application
Development

11

INTRODUCTION
Kotlin’s approach to working with asynchronous code is to use coroutines.

A coroutine is a suspendable computation: a function that can suspend its
execution at some point, and then resume later.

Coroutines can be thought of as light-weight threads, with some advantages.
Coroutines are lightweight and avoid the overhead (memory + performance)
of creating and destroying threads.
•A coroutine is not tied to any thread. It may suspend its execution in one
thread and resume in a different one.
•Coroutines can suspend without blocking resources.

12

IMPORTING COROUTINE LIBRARIES
Kotlin provides the kotlinx.coroutines library with high-level coroutine-enabled
primitives. You will need to add the dependency to your build.gradle.kts
file, and then import the library.

// build.gradle.kts

implementation(“org.jetbrains.kotlinx:kotlinx-coroutines-core:1.6.0”)

// code

import kotlinx.coroutines.*

https://kotlinlang.org/docs/coroutines-guide.html

13

https://github.com/Kotlin/kotlinx.coroutines
https://kotlinlang.org/docs/coroutines-guide.html

SUSPENDING FUNCTIONS (1/2)

In this example, the login and loadUserData are blocking functions.
We have to run them in order (and halt while waiting).

fun login(credentials: Credentials): UserID // blocking function
fun loadUserData(userID: UserID): UserData // blocking function
fun showData(data: UserData) // #1

fun showUserInfo(credentials: Credentials) {
 val userID = login(credentials) // blocking call
 val userData = loadUserData(userID) // blocking call
 showData(userData)
}

Each function waits for data to
return before proceeding.

14

SUSPENDING FUNCTIONS (2/2)

Suspending functions can suspend themselves while waiting!

suspend fun login(credentials: Credentials): UserID
suspend fun loadUserData(userID: UserID): UserData
fun showData(data: UserData)

suspend fun showUserInfo(credentials: Credentials) {
 val userID = login(credentials)
 val userData = loadUserData(userID)
 showData(userData)
}

The thread is then free to
do other work while
functions are suspended.
e.g. no UI freezes.

IMPORTANT:
Suspending functions
can only be called from
other suspending
functions or a
coroutine.

15

COROUTINE BUILDERS (1/2)
fun main() = runBlocking {
 launch {
 doWorld()
 }
 println("Hello")
}

suspend fun doWorld() {
 delay(1000L)
 println("World!")
}

// Hello
// World

A coroutine is an instance of a suspendable
computation.
 A coroutine is a unit of execution that can be run
concurrently or in parallel - much like a thread.

They manage suspending functions that
they contain. Think of them as providing
context to a suspending function.

To create a coroutine, you use a coroutine
builder: runBlocking, launch or async.

16

COROUTINE BUILDERS (2/2)
runBlocking is a coroutine builder that bridges
the non-coroutine world of a regular fun
main() and the code with coroutines inside { }.

launch is also a coroutine builder. It launches a
new coroutine concurrently with the rest of the
code, which continues to work independently.

async is a coroutine builder, which returns a
deferred object: a lightweight non-blocking
future that represents a promise to provide a
result later.

fun main() = runBlocking {
 launch {
 doWorld()
 }
 println("Hello")
}

suspend fun doWorld() {
 delay(1000L)
 println("World!")
}

// Hello
// World

17

https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/run-blocking.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/launch.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/async.html

LAUNCH
fun main() {
 log(“The program launches")
 GlobalScope.launch {
 log("The first coroutine starts and is ready to be suspended")
 delay(500.milliseconds)
 log("The first coroutine is resumed")
 }
 GlobalScope.launch {
 log("The second coroutine starts and is ready to be suspended")
 delay(500.milliseconds)
 log("The second coroutine is resumed")
 }
 log(“The program completes")
}

// 0 [main] The program launches
// 43 [main] The program completes

Where is the output from the
second and third coroutines?

18

https://pl.kotl.in/SE0hz4S4h

https://pl.kotl.in/SE0hz4S4h

fun main() {
 log("The program launches")
 runBlocking {
 log("runBlocking launches")
 launch {
 log("The first coroutine starts and is ready to be suspended")
 delay(500.milliseconds)
 log("The first coroutine is resumed")
 }
 launch {
 log("The second coroutine starts and is ready to be suspended")
 delay(500.milliseconds)
 log("The second coroutine is resumed")
 }
 log("runBlocking pauses")
 }
 log("The program completes")

}

// 0 [main] The program launches
// 48 [main @coroutine#1] runBlocking launches
// 50 [main @coroutine#1] runBlocking pauses
// 51 [main @coroutine#2] The first coroutine starts and is ready to be suspended
// 58 [main @coroutine#3] The second coroutine starts and is ready to be suspended
// 562 [main @coroutine#2] The first coroutine is resumed
// 562 [main @coroutine#3] The second coroutine is resumed
// 562 [main] The program completes

runBlocking wraps everything in a parent
coroutine, which will pause and wait for its

children to complete before proceeding.

19https://pl.kotl.in/w_99PwHPE

https://pl.kotl.in/w_99PwHPE

ASYNC (1/2)

Conceptually, async is just like launch. It starts a separate coroutine
which is a light-weight thread that works concurrently with all the
other coroutines. The differences:
• launch returns a Job and does not carry any resulting value
•async returns a Deferred — a lightweight non-blocking future that represents
a promise to provide a result later. You can use .await() on a deferred value
to get its eventual result, but Deferred is also a Job, so you can cancel it if
needed.

async is useful when you want to run multiple independent tasks
and have then return when they are ready.

20

https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/async.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/launch.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-job/index.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-deferred/index.html

ASYNC (2/2)
suspend fun doSomethingUsefulOne(): Int {
 delay(1000L) // pretend we are doing something useful here
 return 13

}

suspend fun doSomethingUsefulTwo(): Int {
 delay(1000L) // pretend we are doing something useful here, too
 return 29

}

val time = measureTimeMillis {
 val one = async { doSomethingUsefulOne() }
 val two = async { doSomethingUsefulTwo() }
 println("The answer is ${one.await() + two.await()}")

}
println("Completed in $time ms")

// The answer is 42
// Completed in 1017 ms https://pl.kotl.in/OXdh6hEup

21

https://pl.kotl.in/OXdh6hEup

CONCURRENCY > STRUCTURED
CONCURRENCY

CS 346: Application
Development

22

STRUCTURED CONCURRENCY
Coroutines follow a principle of structured concurrency which means
that new coroutines can be only launched in a specific CoroutineScope.
•e.g., runBlocking establishes the corresponding scope and that is why the
previous example waits until everything completes before exiting the
program.

In a real application, you will be launching a lot of coroutines.
Structured concurrency ensures that coroutines are not lost and do not
leak.
•An outer scope cannot complete until all its children coroutines complete.
•A child coroutine throwing an exception will cause other coroutines in the
same scope to stop executing as well.

23

https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-coroutine-scope/index.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/run-blocking.html

COROUTINE BUILDERS
In addition to the coroutine scope provided by different builders, it
is possible to declare your own scope using the coroutineScope
builder. It creates a coroutine scope and does not complete until all
launched children complete.
runBlocking and coroutineScope builders may look similar because
they both wait for their body and all its children to complete. The
main difference is that
• runBlocking method blocks the current thread for waiting,
• coroutineScope suspends, releasing the underlying thread for
other usages.

24

https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/coroutine-scope.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/run-blocking.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/coroutine-scope.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/run-blocking.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/coroutine-scope.html

SCOPE BUILDER
// Executes doWorld followed by "Done"
fun main() = runBlocking {
 doWorld()
 println("Done")
}

// Concurrently executes both sections
suspend fun doWorld() = coroutineScope { // this: CoroutineScope
 launch { // coroutine 1
 delay(2000L)
 println("World 2")
 }
 launch { // coroutine 2
 delay(1000L)
 println("World 1")
 }
 println("Hello")
}

// output
Hello
World 1
World 2
Done

A coroutine scope builder
can be used inside of any
suspending function. Here
we use it to launch 2
concurrent coroutines.

https://pl.kotl.in/PIZRdoh02
25

https://pl.kotl.in/PIZRdoh02

JOBS (1/2)

A launch coroutine builder returns a Job object that is a handle to the launched
coroutine and can be used to explicitly wait for its completion. For example, you
can wait for completion of the child coroutine and then print "Done" string:

val job = launch { // launch a new coroutine and keep a reference
 delay(1000L)
 println("World!")

}
println("Hello")
job.join() // wait until child coroutine completes
println("Done")

https://pl.kotl.in/t3nXouzWf
26

https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/launch.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-job/index.html
https://pl.kotl.in/t3nXouzWf

JOBS – CANCELLING (2/2)
coroutineScope {
val job = launch {
 repeat(1000) { i ->
 println("job: I'm sleeping $i ...")
 delay(500L)
 }

}
delay(1300L) // delay a bit
println("main: I'm tired of waiting!")
job.cancel() // cancels the job
job.join() // waits for job's completion
println("main: Now I can quit.”)
}

// output
job: I'm sleeping 0 ...
job: I'm sleeping 1 ...
job: I'm sleeping 2 ...
main: I'm tired of waiting!
main: Now I can quit.

https://pl.kotl.in/aCPfkC5Hm

27

https://pl.kotl.in/aCPfkC5Hm

