
PACKAGING & DOCKER CS 346: Application
Development

DEPLOYMENT CHALLENGES
Our goal is stable, consistent software that we can deliver to our customers. Every
version of the OS that we support, every different platform, every conceivable
configuration should work as expected.

However, if our development / testing / deployment environments don’t match
exactly, our software might not run properly!

2

• You might be missing files e.g., a config file that you
created manually on your development machine but
forgot to include in the package.

• You may have incorrect versions of libraries e.g.,
different versions of DirectX installed.

• You may have a different version of the OS on your
development and deployment systems.

HOW CAN WE ACCOMPLISH THIS?
Multiple environments, that you keep in sync.
 Development: the machine that you use for builds.
 Testing: configurations representing each environment
that you need to support (e.g. all supported versions of
macOS, Windows and so on).

 Deployment: a system where you might deploy the
software (live, running!)

How do you guarantee that each environment has the
correct versions of every piece of software that your
application uses or requires?

How do you handle this when you cannot control the
deployment environment? e.g., an end-user’s home
computer?

3

https://dzone.com/refcardz/deployment-
automation-patterns

http://www.apple.com/
http://www.apple.com/

INSTALLERS CS 346 Application
Development

4

SOLUTION 1: INSTALLERS
One approach is to carefully control what is released to customers: create installers
that handle the tasks for you.

An installer is a software application that is designed to install other software.
 You are probably familiar with these already! e.g., Setup installers on Windows.

What do they do?
 Create a folder where your application will exist e.g., c:\Program Files\MyApp
 Copy your executable program to that location, set permissions, register with the OS.
 Install system libraries, register with the OS if needed e.g., c:\Windows\System32
 Setup initial preferences including application icons.

 These are very OS specific! Mac, Windows, Linux have different constraints.

5

GRADLE PACKAGING
Gradle will create installers for you.

1. Console applications
 Tasks > Build > distZip
 Creates a JAR file, and scripts to execute it (all in a ZIP file).

2. Desktop/JVM applications
 Tasks > Compose Desktop > packageDistribution
 Creates a Windows MSI, macOS DMG or Linux DEB.

3. Services are more complex…

6

WHERE INSTALLERS FAIL
It's not uncommon for software to be deployed from an installer, and then have it fail.
Often this happens because your operating conditions are different from the
conditions under which you developed and tested.

Examples:
 You may have tested on a different version of the operating system than the user has, so
your software may work differently on their system.

 Your application might rely on other software to be installed e.g., `sed` or a particular
version of the bash shell that your installer cannot install.

 The runtime environment might need to be configured in a specific way for your application
to run correctly e.g., environment variables holding private keys, like
AWS_SECRET='KASDJFTG_&JGJMHGF_!@GHHY@', or specific network configurations.

How do we fix this? We specify and control the deployment environment.
7

VIRTUALIZATION CS 346 Application
Development

8

SOLUTION 2: VIRTUALIZATION
Virtualization uses software to create an
abstraction layer over computer
hardware, enabling the division of a single
computer's hardware components—such as
processors, memory and storage—into
multiple virtual machines (VMs).

Each VM runs its own operating system
(OS) and behaves like an independent
computer, even though it is running on just
a portion of the actual underlying
computer hardware. – IBM (2024)

9

Diagram from TechTarget (2024)

https://www.ibm.com/topics/virtualization
https://www.techtarget.com/whatis/definition/virtualization-architecture

VIRTUALIZATION
Benefits?
 Resource efficiency: Physical hardware
can be shared across multiple
operating environments.

 Easier management: Virtual
“Machines” can be started up as
needed (backed up, moved).

 Control: We can use this to specify the
runtime environment!

Downsides?
 Fairly heavyweight. We’re hosting an
OS specifically for our application.

10

Diagram from TechTarget (2024)

https://www.techtarget.com/whatis/definition/virtualization-architecture

CONTAINERIZATION

11

One OS that hosts everything Dedicated virtual machines Lightweight containers?

Standalone: Software is installed directly into the host operating system.
• The OS must allocate and manage resources for each application.
• Security concerns with a shared environment.

Virtualization: Multiple virtual machines, each one is an abstraction of a physical machine.
• Each virtual machine is running a complete OS, and allocated its own memory, CPU cycles etc.
• Can dictate how physical resources are shared across VMs e.g., 128 GB of RAM can be split.
• Provides isolation of each application into its own OS instance for improved security.

Container: An isolated environment for running an application.
• Containers run on the same underlying host OS; lightweight compared to virtual machines.
• The host OS schedules CPU, resources to the containers not VMs. Containers are just processes.
• Smaller, easy to start/stop; can be deployed on any physical and virtual machines, or even to the cloud.

CONTAINERIZATION

12

DOCKER CS 346 Application
Development

13

SOLUTION 3: CONTAINERIZATION (DOCKER)
Docker is an open platform for developing, shipping, and running applications.

Docker enables you to separate your applications from your infrastructure so you can
deliver software quickly. With Docker, you can manage your infrastructure in the same

ways you manage your applications.

https://docs.docker.com/get-started

14

Docker is a containerization platform.
• Create images that bundle your application and its environment together.
• Provides an online hub where you can distribute these images to other people.
• Provides the runtime engine to execute images.

Docker is NOT meant for end-users!
• It’s for people like us that need an efficient and consistent way to install servers/services.

https://docs.docker.com/get-started

INSTALLATION

Installation is simple. You can install Docker from installers on their website or your
favorite package manager.
 e.g., `brew install docker` on macOS.

15

https://docs.docker.com/get-started/get-docker/

https://docs.docker.com/get-started/get-docker/

16

$ docker version

Client: Docker Engine - Community
 Version: 27.3.1
 API version: 1.47
 Go version: go1.23.1
 Git commit: ce1223035a
 Built: Fri Sep 20 11:01:47 2024
 OS/Arch: darwin/arm64
 Context: desktop-linux

Server: Docker Desktop 4.34.3 (170107)
Engine:
 Version: 27.2.0
 API version: 1.47 (minimum version 1.24)
 Go version: go1.21.13
 Git commit: 3ab5c7d
 Built: Tue Aug 27 14:15:41 2024
 OS/Arch: linux/arm64
 Experimental: false
containerd:
 Version: 1.7.20
 GitCommit: 8fc6bcff51318944179630522a095cc9dbf9f353
runc:
 Version: 1.1.13
 GitCommit: v1.1.13-0-g58aa920
docker-init:
 Version: 0.19.0
 GitCommit: de40ad0

ARCHITECTURE

 The Client is the system on which you are running Docker commands i.e., host.
 The Docker Host is a background process that manages Docker runtime behavior.
 An Image is a snapshop of your environment + application at a point in time.

 A Container is a running instance of your Image.
 The Registry is an online repository where you can store images for others to use.

17

https://www.geeksforgeeks.org

https://www.geeksforgeeks.org/introduction-to-docker-for-system-design/

WORKFLOW
Step 1: Write a program
 Create a program that can be executed. For us, this will typically be a JAR file that we can
run using `java –jar filename.jar`.

Step 2: Write a Dockerfile
 Create a configuration file that describes your environment.

Step 3: Create a Docker Image
 Create an image which contains your environment (including dependencies) and executable
at a point-in-time.

Step 4: Run your Docker Image

18

STEP 1: PROGRAM

19

fun main() {
 println(“Hello Docker!”)

}

Compile it to a JAR file, and copy the JAR file to a new/empty directory.

Write a complex and useful application (Hello.kt in this example).

$ kotlinc Hello.kt -include-runtime -d Hello.jar
$ java -jar Hello.jar
Hello Docker!

$ mkdir docker
$ cp Hello.jar docker/

STEP 2: DOCKERFILE

20

Create a file named `Dockerfile` in the same directory as your JAR file.

start with this image, it includes a Linux kernel and Java JDK 17
FROM openjdk:17

import your Hello.jar file, and host in the app subdir.
at runtime, your filesystem will expose under /app subdir
COPY Hello.jar /app

set /app as your working directory and `cd` to it
WORKDIR /app

run the application
CMD java -jar Hello.jar

STEP 3: CREATE AN IMAGE

21

Build an image in this directory (which uses the Dockerfile)

$ cd docker
$ docker build -t hello-docker .

• -t tells Docker to tag it with a version (defaults to latest).
• hello-docker is the name that will be assigned to our image.
• . indicates that it should include the current directory's contents in the image.

STEP 4: RUN IT

22

Check that it was created

$ docker images
$ REPOSITORY TAG IMAGE ID CREATED SIZE
 hello-docker latest a615e715b56d 7 second ago 455MB

Run it!

$ docker run hello-docker
Hello Docker!

STEP 5: PUBLISH IT (OPTIONAL)

23

1. Create an account on Docker Hub if you haven't already. Login.
2. Create a repository to hold your images.
3. Tag your local image with your username/repository.
4. Push your local image to that repository.

$ docker image ls
REPOSITORY TAG IMAGE ID CREATED SIZE
hello-docker latest f81c65fd07d3 3 minutes ago 455MB

$ docker tag f81c65fd07d3 jfavery/cs346

$ docker push jfavery/cs346:latest

https://hub.docker.com/

WHEN TO USE THIS?
Docker containers are extremely common when publishing web services to the cloud!
Publish a container and have AWS/Firebase/some service host and run the container.

One major consideration when doing this is that you need to map a port number
(since you want network traffic directed to the host machine to be redirected to the
running container. e.g., below.

24

Dockerfile
FROM openjdk:17
VOLUME /tmp
EXPOSE 8080
ARG JAR_FILE=target/service-docker.jar
ADD ${JAR_FILE} app.jar
ENTRYPOINT ["java","-jar","/app.jar"]

