Introduction

CS 346: Application
Development

What’s an “application™?

Thinking about the current software development landscape.

What is software?

A set of instructions that tell a machine what to do.

* Produced for a specific hardware system. e.g., ARM, Intel x86.
* Assembled into an executable format for the OS on that hardware.
An executable packaged for distribution

e e.g., ZIP file containing executable + supporting files

S file /bin/bash
/bin/bash: Mach-O universal binary with 2 architectures:
[x86_64:Mach-O 64-bit executable x86_64] «———— executable/lib file format
[arm64e:Mach-0O 64-bit executable arm64e]
/bin/bash (for architecture x86_64): Mach-O 64-bit executable x86_64 <«———— architecture
/bin/bash (for architecture arm64e): Mach-0 64-bit executable arm64e

What is an application?

System Software: A specific type of software that exists to provide services to other
software. e.g., operating systems, drivers, services.

Application Software: Software that exists to solve problems for users.
 Tends to be interactive software.

%j
I

* Caninclude mobile, desktop, web apps.) « @ ¢ 0O 8 77 @ M
* e.g., FaceTime, iMovie, Gmail, WhatsApp. @ E 8 @ @ ©
(& B o S

It’s not a clear-cut definition! -
* Programming languages? Kiosks? ’

‘‘‘‘‘‘‘‘‘
oooooooooo

History of software

How did software development change over time?

Von Neuman. ENIAC.

No programming languages.

Punch cards.

1960s

PL/1, Basic. Procedural.

Single programmers.

Command-Line

Q 1980s

C++.

Object-oriented.
Commercial software
Graphical interfaces

2000s

JavaScript, Python, Ruby.
Scripting.

Distributed teams.

Internet dominates

Fortran, LISP, Algol, COBOL : , Java, CH. RUST, Dart, Kotlin, Scala.
: C, Pascal. : Internet. Web, Parallel computing,
Functional programming. . Structured programming. . Large teams. Concurrency

Single programmers.

1950s

(:)19705

Abstraction. Small teams.

O 1990s

Open Source rises!

Mobile applications

2010

1960s: Terminals

In the early days of computers, mainframe
computers dominated; they were large,
expensive, and only available to large
institutions. Batch processing was
common, where users would submit their
jobs (programs), and wait for the results.

By the mid 1960s, we saw the
introduction of terminals and time-
sharing systems.

BREEagbapekieeelanng

-
it

il

i

i
3

E:!rs: |

B
--<BgeenloBonringuns |

%

L

The "Red Room" in the Math and Computing building. In 1967 it housed an
IBM 360 Model 75, the largest computer in Canada at that time.

1970s: Personal computing

By the mid 1970s, small and relatively
affordable computers were becoming
commonplace. These personal computers
were designed to be used by a small
businesses that couldn’t afford a more
expensive system.

The CTC Datapoint 2200 terminal.

The CTC Datapoint 2200 would load simple
programs into e.g., terminal protocols, but was
essentially a fancy terminal.

The Radio Shack TRS-80, introduced in
1977. Targeted at hobbyists.

10

o000 M vim book.toml

authors = ["JE‘F‘F AVEI“y"] .) jaffe — mc [jaffe@Bishop.local]:~ — mc » zsh — 110x40

language = "en" Left File Command Options Right
multilingual = false S

src = "src"

title = "CS 346 Application Development"

[preprocessor]
/.android | 544 |Dec 20 13:34)

[preprocessor.admonish]
command = "mdbook-admonish"
assets_version = "3.0.2" # do not edit: managed by “mdbook-admonish i

[preprocessor.embedify]

[preprocessor.hide]
hide = true

ﬂpreprocessor.image—sizel
command = "mdbook-image-size"

[preprocessor.mermaid]
command = "mdbook-mermaid"

[preprocessor.toc]
L[LYSe book.toml tom.. A

Hint: Completion works on all input lines in all dialogs. Just press M-Tab.

hlHe 1p pMenu EView CEdit EICopy [ZRenMov PMkdir l:Delete EPullDn ¥ljQuit

Console applications tend to be small, quick to execute and use few resources. They are still
popular, at least within specific domains e.g., system administration, software development.
All modern operating systems include shells where these applications can execute.

Why does this matter?

The move towards dedicated user-based computers was significant:

* Dedicated hardware meant that we could move towards quick,
interactive software i.e. type a command, get an immediate response.

* Personal computers meant that we didn’t have to share systems! No
more scheduling jobs/tasks, but we could instead run software on-
demand.

* Performance boost of working on a local (vs remote) system.

* We were able to design better console software (running locally,
limited graphics).

Development Snapshot: 1970s

Category Examples
Programming languages Basic, Assembler, C

Programming paradigm Structured programming (i.e., loops, functions)

Application style Console programs (text and limited graphics)
Editor of choice Emacs (1976), Vi (1976)

Hardware IBM PC, terminal software, DEC PDP-10/11, VAX-11
Operating System IBM PC DOS, MS PC DOS, VMS

“Real programmers code in assembly. C is too high an abstraction; you waste cycles.”

1980s: Personal computing++

The PC movement of the 1970s exploded
in the early 1980s, with the introduction
of the IBM PC and DOS.

The software market also exploded in this
era e.g., the invention of spreadsheets
with Visicalc for the Apple Il in 1979, then
followed Lotus 123 for PCin 1983.

/

IBM
=

_ e
-
’
s

I

-

14

Microsoft Word - SUGGSYLL.DOC

System Folder

Edit View Special

= File Edit Insert Format Utilities Hacro Window Help 22 173K in folder 201K availa This is & Note Pad test.
. Butiing
Font: [Tns Rn [° |4 Bk YLD E
Style:|annotatio| Ppage aE]E] System Imagewriter Clipboard File
IP I, Ii] I3 i in | s I 4|6 =0 Control Panel
v R1bbo
v Ruler
v Status Bar TREY
foptastes RESEARCH
v Annotations E
Trev Memo v Field Codes
¥ Preferences...
Ta: Rose Bk '_49“:'5 ach, Heather Cross anel Print Manager Cliard DOS Prompt
From: Carcl 0'Shaughnessy
Date: September §, 1989
Subject: BSyllabus a Accessories
-0 ‘T
We've been asked to provide an Introduction to Electronic PJ @) g
Madl clace Iove drafted a nreliminary cchedinle with . k h—
|{ N Y Wiite Paintbrush Terminal Notepad Recordel
page age:
'"1[RK1 172 i
3] T;lse;dgélday classes have been rescheduled for |gg| a = Reversi
C(Voo Game Skill Help
{page “# Page: '# rdfile Calendar Calculator]
""}[REZ] I think it would sound hetter if we changed the
word 3
Toggles the ribbon on/off - -
CAWINDOWS
g|acy
EQSETUP
Ex WINDOWS
« 1
Selected 1 file(s] (0 bytes) out of 76

15

20 Al Themes Choose a Theme Wide (16:9) ¢
315 New N
New [J ® Fender American Ultra Stratocaster SSS in Arctic Pearl AaiES =S] &} @ ¥, -~ M
@ Recents
Basic ipti -
Elie=s! ayv Des‘_:”p“on .) v Adjust Filters ® ® O O « @
& yramic American Ultra is our most advanced series of guitars and basses
* precision, performance and tone. The American Ultra Stratocaster] ¥ ADJUST
() Minimal e inmat Uthru rolled‘flngerbourd edges for hours of pluylng comfor(, and th
) highest register. A speedy 10"-14" compound-radius fingerboard
< Bold accurate soloing, while the Ultra Noiseless™ Vintage pickups and g
& Editorial Recents possibilities - without hum. The sculpted rear body contours are a
adds the neck pickup in to any switch position. This versatile, statd
) Portfolio playing to new heights.
= My Presentati
st Other features include sealed locking tuning machines, chrome haj
7 Textured = hardshell case.

Color Gradient

Pictures - (D Black & White & @®
D —
AR AR A AN e

Basic

Retouch

Red-Eye
Basic White Basic Blac P White Balance
< 2
s 3) : = ——— < @ curves
1 . S - @ Levels
, N 28t S 2 z . > Al Definition
@ Selective Color
> [E) Noise Reduction
A Sharpen

Vignette

.
D H I

Desktop applications are suitable for tasks that require a lot of screen real-estate, or that need
to be used for long periods of time. They also support mouse/trackpad and other input
devices which makes them suitable for precise input as well.

16

Why does this matter?

The move towards graphical systems drove some important innovations:

1.Multitasking operating systems arose to support applications running
simultaneously.

2.Graphical user interfaces became the primary interaction mechanism for
most users. Every major interface since the 1980s has been graphical.

In many ways, we’ve spent the last 40 years improving the performance of
this interaction model. Everything has become “faster”, which for most
people, translates into more applications running (and more Chrome tabs).

Development Snapshot: 1980s

Category Examples
Programming languages C, C++, Pascal, Objective C
Programming paradigm Structured & Object-Oriented Programming

. . IBM Personal Editor (1982), Borland Turbo C++ IDE
Editor of choice

(1990)

Hardware IBM PC, Apple Macintosh
Operating System MS PC DOS, MS Windows, Apple Mac OS

“Real programmers code in C. C++ is too high an abstraction; you waste cycles.”

1990s: The Internet

Prior to the mid-1990s, computers were silos.
Businesses might have their own internal networks,
but there was very limited ability to connect to any
external computers. Modems were used to connect
home systems to some limited public networks.

The rise of the Internet in the 1990s changed this.

Suddenly, it was possible to connect to any
computer in the world, and to share information

with anyone, anywhere.

19

Development Snapshot: 1990s

Category

Programming languages
Programming paradigm
Editor of choice

Hardware

Operating System

Examples

C++, Objective-C, Perl, Python, JS
Object-Oriented Programming
Vim, Emacs, Visual Studio

IBM PC, Apple Mac
Windows, 0S/2, Mac OS, (IE, Netscape), Linux

2000s: Smartphones

The iPhone was launched in 2007, and
introduced the idea of a phone as a
personal computing device. Society
quickly adopted them as must-have
devices.

Today, there are more smartphone users
than desktop users. Most Internet traffic
comes from mobile devices (99.9%, split
between iPhones and Android phones).

21

9:30 . o4l 9:30 . o4l
= Wood & House's Products ¥ €3 Maria Diaz ¢ Recent files =
246 Results = Sort = Filter Sortby name v = oo
[0 Music / [Grouseling / [Blameless
&
’ Aura
l I I
Blameless
" It was such a good trip! How
Small Plant Sill for desk Agent Mug P
are the kids?
Beautiful made from wood ~ Handcrafted porcelain mug BodiCihefesi
and fits up to 3 plants! "
£89.99 £19.00 Sounds good
Botany
*kok okt * ok ok kot
© They are all doing super well,
Benjamin just had his birthday in January! Mix part 1 o
00:35:07 01:05:23
Do you have any pictures!? Mix part 2
| remember when mine were 7 and 9 Lostless MP3 2833 kB DeCOde ®© © <
N the crazy things they did!
Hardwood Stool Ceramic Plate Set @ Thriller starring Emily Miller and Lydia Franci,
Classic design, timless Hand made in our personal Focatoy paints in a future where we've figured out
material. kiln, with a textured glaze.)) S
sustainability, yet the question is what to do now
Type message B ® B oY h N
£99.00 £59.99 on your left with all the abundance. How will we in earth
* kK kot * % % & #r 84 reviews remain in harmony and how will it inspire to help
@ Q 2] Q = o) Q @ Q (] al 2 &
J

Mobile applications are usually designed for casual, on-the-go use. They also tend to favor content
consumption vs. creation, where touch-input isn’t a significant restriction. Otherwise, they are
functionally very similar to desktop applications.

Development Snapshot: 2000s

Category

Programming languages

Programming paradigm
Editor of choice

Hardware

Operating System

Examples

Objective-C, Swift, C++, Python, JS, Java, Kotlin

Object-oriented & functional programming
Emacs, Vi, Visual Studio

IBM PC (and comparables), iPhone, Android phone

Windows, Mac OS, iOS, Android, (Chrome, Safari, Firefox)

Modern Applications

What do modern applications look like? Where do they need to run?

24

Application styles

All application styles that we explored are still used!

1.Console application: Applications that are launched from a
command-line, in a shell.

2.Desktop application: Graphical applications, launched within a
graphical desktop operating system (Windows, macQOS, Linux).

3.Mobile application: Graphical applications, hosted on a mobile
operating system (iOS, Android). Interactions optimized for small
form-factor, leveraging multi-touch input.

4.Web applications. Launched from within a web browser. Optimized
for reading short-medium block text, but capable of running apps.

Which is the most popular?

Market Share

Android Windows

Unknown Linux

4594% 2575% 18.45% 543% 1.95% 1.43%

Operating System Market Share Worldwide - November 2024

40.0%
30.0%
20.0%

10.0% . s
Command-line applications account

for < 1% of commercial software, and
aren’t included here.

Mobile Desktop Tablet

0.0%

26

What styles should we care about?

Realistically:

* #1 Mobile applications: Graphical applications running on a
smartphone operating system (iOS, Android)

* #2 Desktop applications: Graphical applications, launched within a
graphical desktop operating system (Windows, macQOS, Linux).

* #3. Everything else: Kiosks, In-car “infotainment”, Watch etc. based
on your specific application.

3 Inbox 2

Today ©: (Prepare Presentation
O Upcoming Keep the talk and slides simple: what are the three things about this
= Anytime that everyone should remember?
Someday
B Logbook mportant Diane
Family
% Vacation in Rome Slides and notes

Buy a New Car Sk 3
Revise introduction

Throw Party for Eve

Borrow Sarah's travel guide Simplify slide layouts
Finish expense report ™ today Work Review quarterly data with Olivia
Review quarterly data with Olivia B Prepare Presentation Nov 13 Print handouts for attendees
¥ Onboard James
Organize catering * Attend Conference
Get car inspected % Order Team T-Shirts Preparation Ll
Hobbies Email John for presentation tips
(. This Evening 3 Learn Basic Italian Check out book recommendations
“ Run a Marathon Time a full rehearsal

Book a hotel room

Do a practice run with Eric
Read article about nutrition

Confirm presentation time

a Facilities wee

+ New List = + ® Q

Buy party decorations

Things 4 running on iOS and Desktop. A popular decision of “which platform to support” is “all of them!”.

28

Technology stack

What technologies are suitable for building applications?

29

What is a technology stack?

Technology stack == all the technologies that work together to deliver
the functionality that you need as a software developer.

Typically includes:

* Operating system + system libraries

* Programming languages + other tools

* Any other libraries that provide specialized services

The role of the operating system

User [(]

Interface Users
) |

Library Applications
Interface (editors, games, etc.)
User Mode
System Call System Libraries
Interface (— (open, close, read, write, fork, etc) .
n
Operating _System Kernel Mode
(processes, memory, filesystem, 1/O, etc)

Hardware
(CPU, memory, disks, devices, etc.)

* The operating system sits between the hardware and the application.
* OS system libraries expose complex functionality to your application.
* Other frameworks e.g., graphics can be included at the library level.
* Compilers need to be able to access and import libraries.

Programming languages

Your choice of programming
language needs to align with the PROBLEMS Mgl
software that you are developing.

Application
Languages

We can (simplistically) divide
programming languages into two thgioges

categories: low-level and high-
level languages.
Early assumptions in programming

away from low-level languages,
and this has sort-of happened...

Low Level
Languages

32

Low-level languages are suitable when you are concerned with the
performance of your software, and when you need to control resources.

* They are often used for systems programming i.e., delivering code that
runs as fast as possible and uses as little memory as possible.

* Examples of systems languages include C, C++, and Rust.
* Appropriate domains include device drivers, and game engines.

High-level languages are suitable when you are concerned with the speed of
development, extensibility, and the robustness of your solution.

* Applications programming leans heavily on high-level languages, trading
some performance for desirable programming language features.

» Examples of application languages include Swift, Kotlin, Go, and Dart.
» Appropriate domains include web, mobile/desktop applications.

What does a high-level language provide?

Automatic memory management

Automatic memory
allocation/deallocation (via ref-
counting, or GC). This eliminates the

risk of accessing uninitialized memory.

Type inference

Type inference across the type system.

NULL safety

A type system that prevents NULL
errors.

Concurrency

More control over how async code
executes.

Broader programming models

Mix of functional, object-oriented
paradigms.

These features contribute to our goal of building
robust, extensible, reusable software.

34

Libraries

You could, in theory, access a lot of your operating system functionality
through system calls, but this would be highly platform-specific code, and
your app would not be portable across operating systems. We often use
libraries, which tend to abstract away small OS and hardware differences.

Programming language stdlib, stdio Libraries included in the programming language; guaranteed
to exist everywhere

OS vendor Win32, Cocoa Libraries/Frameworks provided by the vendor to support
syscalls/low-level access. Includes common functionality like
graphics, networking.

Third-party OpenGL, Libaries provided by other parties to allow additional
OpenCV support beyond what the OS vendors provide. e.g., database
access, computer vision.

35

OS + Language + Libraries

Here’s the set of common technology stacks that are used, based on
platform and style of application. Note that this is not complete but reflects

common technologies.

m_ Programming Languages

Desktop Windows (Microsoft) .NET, UWP (Maui)
macOS (Apple) Swift, Objective-C Cocoa, UIKit, SwiftUl
Linux (Many) C, C++ GTK

Mobile Android (Google) Kotlin Android SDK, Compose
iOS (Apple) Swift, Objective-C UIKit, SwiftUl

A Languages & Libraries are often vendor-specific !

36

Why not build web applications?

It's possible to build practically anything as a web application.

There are man\t/)fantastic applications written for the web e.g.,
Gmail, Netflix, D&D Beyond.

Why not build web apps? Native applications are more capable!
* Native applications tend to be faster.

* Native applications can do more. We aren’t restricted by a
browser’s security model.

* Native applications can work offline/handle network issues.

« We can customize interaction. e.g., multiple windows open;
keyboard shortcuts.

37

Examples of native/web applications

Native technologies

* Intelli) IDEA IDEA, Kotlin, C++ compilers, Python interpreter.
« MS PowerPoint, MS Word, MS Excel.

« Apple Notes, Reminders.

* Forklift file browser.

Web technologies

« Banking application

« Healthcare portal

* VS Code, Discord, Slack ("disguised” as native apps)

38

What are we doing?

* We’re going to build native applications using the Kotlin toolchain:

* Native support for Android. If you want to build a mobile application, this is
the main (native) language for the most popular mobile OS. Win win.

* Cross-platform support for Desktop. You can also build reasonably good
desktop applications for Windows, Linux and macOS with Kotlin/JVM.
Libraries aren’t as well developed as Kotlin/Android but certainly “good
enough” for this course and for most applications you will build.

 Kotlin is one of many “modern” application languages (along with Swift, Go,
Dart), with features that make it extremely useful for building applications.

* We’ll discuss Kotlin in detail and introduce supporting libraries to extend its
functionality i.e., graphics, user interfaces, databases and so on.

