
Introduction
CS 346: Application

Development

What’s an “application”?
Thinking about the current software development landscape.

2

What is software?

A set of instructions that tell a machine what to do.
• Produced for a specific hardware system. e.g., ARM, Intel x86.
• Assembled into an executable format for the OS on that hardware.
An executable packaged for distribution
• e.g., ZIP file containing executable + supporting files

3

$ file /bin/bash
/bin/bash: Mach-O universal binary with 2 architectures:
 [x86_64:Mach-O 64-bit executable x86_64]
 [arm64e:Mach-O 64-bit executable arm64e]
/bin/bash (for architecture x86_64): Mach-O 64-bit executable x86_64
/bin/bash (for architecture arm64e): Mach-O 64-bit executable arm64e

executable/lib file format

architecture

What is an application?
System Software: A specific type of software that exists to provide services to other
software. e.g., operating systems, drivers, services.

Application Software: Software that exists to solve problems for users.
• Tends to be interactive software.
• Can include mobile, desktop, web apps.
• e.g., FaceTime, iMovie, Gmail, WhatsApp.

It’s not a clear-cut definition!
• Programming languages? Kiosks?

4

History of software
How did software development change over time?

5

6

1960s: Terminals
In the early days of computers, mainframe
computers dominated; they were large,
expensive, and only available to large
institutions. Batch processing was
common, where users would submit their
jobs (programs), and wait for the results.
By the mid 1960s, we saw the
introduction of terminals and time-
sharing systems.

7

The "Red Room" in the Math and Computing building. In 1967 it housed an
IBM 360 Model 75, the largest computer in Canada at that time.

8

1970s: Personal computing

By the mid 1970s, small and relatively
affordable computers were becoming
commonplace. These personal computers
were designed to be used by a small
businesses that couldn’t afford a more
expensive system.

9

The CTC Datapoint 2200 terminal.

10

The Radio Shack TRS-80, introduced in
1977. Targeted at hobbyists.

The CTC Datapoint 2200 would load simple
programs into e.g., terminal protocols, but was
essentially a fancy terminal.

Console applications tend to be small, quick to execute and use few resources. They are still
popular, at least within specific domains e.g., system administration, software development.
All modern operating systems include shells where these applications can execute.

11

Why does this matter?
The move towards dedicated user-based computers was significant:
• Dedicated hardware meant that we could move towards quick,

interactive software i.e. type a command, get an immediate response.
• Personal computers meant that we didn’t have to share systems! No

more scheduling jobs/tasks, but we could instead run software on-
demand.
• Performance boost of working on a local (vs remote) system.
• We were able to design better console software (running locally,

limited graphics).

12

Development Snapshot: 1970s

13

Category Examples

Programming languages Basic, Assembler, C

Programming paradigm Structured programming (i.e., loops, functions)

Application style Console programs (text and limited graphics)

Editor of choice Emacs (1976), Vi (1976)

Hardware IBM PC, terminal software, DEC PDP-10/11, VAX-11

Operating System IBM PC DOS, MS PC DOS, VMS

“Real programmers code in assembly. C is too high an abstraction; you waste cycles.”

1980s: Personal computing++
The PC movement of the 1970s exploded
in the early 1980s, with the introduction
of the IBM PC and DOS.
The software market also exploded in this
era e.g., the invention of spreadsheets
with Visicalc for the Apple II in 1979, then
followed Lotus 123 for PC in 1983.

14

15

The Apple Macintosh which introduced the first
commercially successful graphical user interface and

graphical operating system in 1984.

Desktop applications are suitable for tasks that require a lot of screen real-estate, or that need
to be used for long periods of time. They also support mouse/trackpad and other input
devices which makes them suitable for precise input as well.

16

Why does this matter?
The move towards graphical systems drove some important innovations:
1.Multitasking operating systems arose to support applications running

simultaneously.
2.Graphical user interfaces became the primary interaction mechanism for

most users. Every major interface since the 1980s has been graphical.

In many ways, we’ve spent the last 40 years improving the performance of
this interaction model. Everything has become “faster”, which for most
people, translates into more applications running (and more Chrome tabs).

17

Development Snapshot: 1980s

18

Category Examples

Programming languages C, C++, Pascal, Objective C

Programming paradigm Structured & Object-Oriented Programming

Editor of choice IBM Personal Editor (1982), Borland Turbo C++ IDE
(1990)

Hardware IBM PC, Apple Macintosh

Operating System MS PC DOS, MS Windows, Apple Mac OS

“Real programmers code in C. C++ is too high an abstraction; you waste cycles.”

1990s: The Internet

Prior to the mid-1990s, computers were silos.
Businesses might have their own internal networks,
but there was very limited ability to connect to any
external computers. Modems were used to connect
home systems to some limited public networks.
The rise of the Internet in the 1990s changed this.
Suddenly, it was possible to connect to any
computer in the world, and to share information
with anyone, anywhere.

19

Development Snapshot: 1990s

Category Examples

Programming languages C++, Objective-C, Perl, Python, JS

Programming paradigm Object-Oriented Programming

Editor of choice Vim, Emacs, Visual Studio

Hardware IBM PC, Apple Mac

Operating System Windows, OS/2, Mac OS, (IE, Netscape), Linux

20

2000s: Smartphones

The iPhone was launched in 2007, and
introduced the idea of a phone as a
personal computing device. Society
quickly adopted them as must-have
devices.
 Today, there are more smartphone users
than desktop users. Most Internet traffic
comes from mobile devices (99.9%, split
between iPhones and Android phones).

21

Mobile applications are usually designed for casual, on-the-go use. They also tend to favor content
consumption vs. creation, where touch-input isn’t a significant restriction. Otherwise, they are
functionally very similar to desktop applications.

22

Development Snapshot: 2000s

Category Examples

Programming languages Objective-C, Swift, C++, Python, JS, Java, Kotlin

Programming paradigm Object-oriented & functional programming

Editor of choice Emacs, Vi, Visual Studio

Hardware IBM PC (and comparables), iPhone, Android phone

Operating System Windows, Mac OS, iOS, Android, (Chrome, Safari, Firefox)

23

Modern Applications
What do modern applications look like? Where do they need to run?

24

Application styles

All application styles that we explored are still used!

1.Console application: Applications that are launched from a
command-line, in a shell.

2.Desktop application: Graphical applications, launched within a
graphical desktop operating system (Windows, macOS, Linux).

3.Mobile application: Graphical applications, hosted on a mobile
operating system (iOS, Android). Interactions optimized for small
form-factor, leveraging multi-touch input.

4.Web applications. Launched from within a web browser. Optimized
for reading short-medium block text, but capable of running apps.

25

Which is the most popular?

26

Command-line applications account
for < 1% of commercial software, and
aren’t included here.

What styles should we care about?

Realistically:

• #1 Mobile applications: Graphical applications running on a
smartphone operating system (iOS, Android)
• #2 Desktop applications: Graphical applications, launched within a

graphical desktop operating system (Windows, macOS, Linux).
• #3. Everything else: Kiosks, In-car “infotainment”, Watch etc. based

on your specific application.

27

28

Things 4 running on iOS and Desktop. A popular decision of “which platform to support” is ”all of them!”.

Technology stack
What technologies are suitable for building applications?

29

What is a technology stack?

Technology stack == all the technologies that work together to deliver
the functionality that you need as a software developer.

Typically includes:
• Operating system + system libraries
• Programming languages + other tools
• Any other libraries that provide specialized services

30

• The operating system sits between the hardware and the application.
• OS system libraries expose complex functionality to your application.
• Other frameworks e.g., graphics can be included at the library level.
• Compilers need to be able to access and import libraries.

31

The role of the operating system

Programming languages
Your choice of programming
language needs to align with the
software that you are developing.
We can (simplistically) divide
programming languages into two
categories: low-level and high-
level languages.
Early assumptions in programming
languages is that we were move
away from low-level languages,
and this has sort-of happened…

32

Low-level languages are suitable when you are concerned with the
performance of your software, and when you need to control resources.
• They are often used for systems programming i.e., delivering code that

runs as fast as possible and uses as little memory as possible.
• Examples of systems languages include C, C++, and Rust.
• Appropriate domains include device drivers, and game engines.

High-level languages are suitable when you are concerned with the speed of
development, extensibility, and the robustness of your solution.
• Applications programming leans heavily on high-level languages, trading

some performance for desirable programming language features.
• Examples of application languages include Swift, Kotlin, Go, and Dart.
• Appropriate domains include web, mobile/desktop applications.

33

What does a high-level language provide?
Automatic memory management

Automatic memory
allocation/deallocation (via ref-
counting, or GC). This eliminates the
risk of accessing uninitialized memory.

Type inference
Type inference across the type system.

NULL safety
A type system that prevents NULL
errors.

Concurrency
More control over how async code
executes.

Broader programming models
Mix of functional, object-oriented
paradigms.

34

Features Low-level High-level

Memory
management manual garbage collection

Type system static static or dynamic

Runtime fast medium

Executables small, fast large, slow

Portability low high

These features contribute to our goal of building
robust, extensible, reusable software.

Libraries
You could, in theory, access a lot of your operating system functionality
through system calls, but this would be highly platform-specific code, and
your app would not be portable across operating systems. We often use
libraries, which tend to abstract away small OS and hardware differences.

35

Library origin

Programming language stdlib, stdio Libraries included in the programming language; guaranteed
to exist everywhere

OS vendor Win32, Cocoa Libraries/Frameworks provided by the vendor to support
syscalls/low-level access. Includes common functionality like
graphics, networking.

Third-party OpenGL,
OpenCV

Libaries provided by other parties to allow additional
support beyond what the OS vendors provide. e.g., database
access, computer vision.

OS + Language + Libraries
Here’s the set of common technology stacks that are used, based on
platform and style of application. Note that this is not complete but reflects
common technologies.

36

Platform OS Programming Languages Libraries?

Desktop Windows (Microsoft) C# .NET, UWP (Maui)

macOS (Apple) Swift, Objective-C Cocoa, UIKit, SwiftUI

Linux (Many) C, C++ GTK

Mobile Android (Google) Kotlin Android SDK, Compose

iOS (Apple) Swift, Objective-C UIKit, SwiftUI

^ Languages & Libraries are often vendor-specific !

Why not build web applications?

It’s possible to build practically anything as a web application.
There are many fantastic applications written for the web e.g.,
Gmail, Netflix, D&D Beyond.
Why not build web apps? Native applications are more capable!
• Native applications tend to be faster.
• Native applications can do more. We aren’t restricted by a

browser’s security model.
• Native applications can work offline/handle network issues.
• We can customize interaction. e.g., multiple windows open;

keyboard shortcuts.

37

Examples of native/web applications
Native technologies
• IntelliJ IDEA IDEA, Kotlin, C++ compilers, Python interpreter.
• MS PowerPoint, MS Word, MS Excel.
• Apple Notes, Reminders.
• Forklift file browser.

Web technologies
• Banking application
• Healthcare portal
• VS Code, Discord, Slack (”disguised” as native apps)

38

What are we doing?

• We’re going to build native applications using the Kotlin toolchain:
• Native support for Android. If you want to build a mobile application, this is

the main (native) language for the most popular mobile OS. Win win.
• Cross-platform support for Desktop. You can also build reasonably good

desktop applications for Windows, Linux and macOS with Kotlin/JVM.
Libraries aren’t as well developed as Kotlin/Android but certainly “good
enough” for this course and for most applications you will build.

• Kotlin is one of many “modern” application languages (along with Swift, Go,
Dart), with features that make it extremely useful for building applications.

• We’ll discuss Kotlin in detail and introduce supporting libraries to extend its
functionality i.e., graphics, user interfaces, databases and so on.

39

