
Agile Development
CS 346 Application

Development

1

How to build software

People often think that building software is like building anything else,
e.g., a car, or a refrigerator.
At first glance, this seems reasonable: software is something that you
manufacture. Your project includes determining requirements,
designing and building something. You might envision a process that
looks something like this:

2

How to build software

Planning - “What are our goals?”, “What is the budget?”, “Who is working on it?”
Requirements - “Who are our users?”, “What problem are we solving?”
Design - “What technical constraints exist?”, “What might it look like?”
Implementation - “How do we build it efficiently?”
Testing - “Does it meet specifications?”
Deployment - “How do we sell it and maintain it properly?”

3

Process models

We use the term process model to describe this structure of activities.
“A process model defines the complete set of activities that are
required to specify, design, develop, test and deploy a product, and
describes how they fit together.“

A software process model is a process model adapted to describe how
we might build software systems. We also refer to a software process
model as the Software Development Lifecycle (SDLC).

4

SDLC: Waterfall

In a 1970 paper, Winston Royce described
a process model that envisions software
production as a series of cascading steps.
He dubbed this this Waterfall Model, and
described challenges associated with it:
• Discrete steps that prescribe a specific

order, with gatekeeping between them.
• Inability to collaborate between groups

that “own” each step.
• Discouraged from “revisiting” earlier

decisions.

5

Challenges

Why did Waterfall fail in practice?
• Customer priorities can change over a project,

and requirements may need to be revisited.
• Your understanding of a problem will increase

over time; you will uncover new data during
design and implementation phases.
• Many of these activities should not be

separated! e.g., testing & development.
• Building silos discourages collaboration. Cross

functional teams are more effective.

6

New Process Models

By the mid-1990s, there was a widespread recognition that this way of
building software just didn’t work:
• Developers were frustrated by rigid processes/changing requirements.
• Business owners were frustrated by the inability to make changes to

projects once they were past the requirements phase.
• Projects were being delivered late and/or over-budget.

Alternate models included: Extreme Programming (XP), Scrum, Lean,
Rational Unified Process (RUP), Crystal Clear and many others.

7

https://agilemanifesto.org/
8

https://agilemanifesto.org/

The Agile Manifesto (2001)

Individuals and interactions (over processes and tools): Emphasis on
communication with the user and other stakeholders.
Working software (over comprehensive documentation): Deliver small
working iterations of functionality, get feedback and revise based on
feedback. You will NOT get it right the first time.
Customer collaboration (over contract negotiation): Software is a
collaboration between you and your stakeholders. Plan on meeting and
reviewing progress frequently. This allows you to be responsive and correct
your course early.
Responding to change (over following a plan): Software systems live past the
point where you think you’re finished. Customer requirements will change as
the business changes.

9

The importance of iterative development
The cost of change increases
nonlinearly as a project
progresses.
• Cost includes time, effort and

money.
• The later you recognize a

problem, or introduce a new
requirement, the costlier it will
be.
• Iterative approaches encourage

you to make required changes
earlier in the process, when the
cost of doing so is lower.

10

What does iterative development look like?

Getting feedback at every stage of development.
• Identify incorrect requirements earlier, so that you don’t waste time

designing something that isn’t needed.
• Identify poor designs earlier, before you waste time refining and polishing

and implementing the wrong design.
• Identify failing tests earlier, so that you can correct them through design

changes and not just hacking together a fix.

Focus on delivering one feature at-a-time and getting immediate feedback.
• Feedback from customer, development team, stakeholders.

11

Agile SDLC

12

This diagram represents the path for a single
feature. We iterate over each of our features
independently.
• Solid lines represent the “happy path”

where your requirements, design and
implementation all work as expected.

• Dotted lines suggest that you can loop-back
if something isn’t working or needs to
change e.g., issues with implementation
may result in requirements changes;
inability to test may force you to rethink an
earlier design decision.

What’s next?

We’ll discuss activities and
practices that are relevant to the
steps in our SDLC.

We’ll break these into two parts:
• Software Design

• Design Thinking lecture

• Software Development
• Every other lecture…

13

