
Gradle
CS 346: Application

Development

1

Deploying Applications

As a developer, your final goal isn’t just compiled code; it’s an
application that can be installed and executed by your users.
To achieve this, you will need to:

• Check versions of code, libraries.
• Setup and compile everything.
• Setup deployment and run tests.
• Build installers to distribute to users.

You don’t want to do this manually!
• Error prone
• Complex

2

Build Systems

A build system is a system that manages the tasks associated with
building software, including compilation, linking, automated testing,
packaging.

• e.g., Maven for Java; Cargo for Rust; Cmake/Scons/Bazel for C++.
Characteristics of a useful build system:

• It provides consistency in builds so that you always get the same artifacts
produced.

• The system is expressive so that you can define any necessary task.
• You can automate much of it to avoid user errors.
• It integrates with other systems so that you can report results, or delegate

responsibility (e.g. to remote test under a different OS).

3

Why we don’t use `Make`
`make` is probably not the best choice for large, complex projects.

• Build dependencies must be explicitly defined.
• Libraries must exist on the build machine, be maintained, and defined in your `makefile`.

• Make is tied to the underlying environment of the build machine.
• It’s difficult to isolate make’s runtime behaviour from the underlying environment.
• e.g., $LIB using environment variable to track library location.

• Performance is poor. Make doesn’t scale well to large projects.
• The language itself isn’t very expressive and cannot easily be extended.
• It’s very difficult to fully automate and integrate with other systems.

5

Why Gradle?
Gradle is a modern build system for Java/Kotlin.

• It's popular in the Kotlin and Java ecosystems.
• It’s the official Google-endorsed build tool for Android projects.
• It's cross-platform and programming language agnostic.
• It's open source and has a large community of users.

Three main areas of functionality:
1. Managing build tasks: Built-in support for discrete tasks that you will need to

perform. e.g., downloading libraries; compiling code; running unit tests and so on.
2. Build configuration: Define and manage how these tasks are executed.
3. Dependency management: Manage external libraries and dependencies.

6

The pillars of a build system: managing code and dependencies, tasks that define actions to
take, and configuration scripts that determine how to run these tasks.

7

Gradle > Setup
Getting started with a new project.

8

Setup Your Project
Gradle is a command-line application (like Git).
A Gradle project is a directory structure with configuration files that
define how your source code will be built. You create the Gradle
project, then add your source code (and other assets) to the project.
Project creation can be done in IntelliJ IDEA or Android Studio, or by
using the gradle command-line tool.

$ gradle init
Select type of build to generate:
 1: Application
 2: Library
 3: Gradle plugin
 4: Basic (build structure only)
Enter selection (default: Application) [1..4]

9

Creating a project in IntelliJ IDEA. Choose Kotlin as your programming
language, Gradle for your build system, and Kotlin for your DSL language.

It doesn’t matter if
you create your

project using Gradle
or IntelliJ; they

produce identical
results.

10

Project Structure

build.gradle.kts is the main config file.
empty.iml is the IntelliJ config file.
gradle: contains the gradle wrapper
config.
gradlew and gradlew.bat are wrapper
scripts.
settings.gradle.kts is a top-level
project config file.
src: contains source code

• src/main/kotlin is a source code module
• src/test/kotlin is a unit test module

11

.
├── build.gradle.kts
├── empty.iml
├── gradle
│ └── wrapper
│ ├── gradle-wrapper.jar
│ └── gradle-wrapper.properties
├── gradle.properties
├── gradlew
├── gradlew.bat
├── settings.gradle.kts
└── src
 ├── main
 │ ├── kotlin
 │ │ └── Main.kt
 │ └── resources
 └── test
 ├── kotlin
 └── resources

Gradle Wrapper
At the top-level of your project's directory structure are two scripts:
gradlew for Unix users, and gradlew.bat for Windows users
• These are Gradle wrapper scripts. You can use them to run Gradle

tasks without having to install Gradle on your machine.
• Pass them command-line arguments.
• The scripts will download Gradle for you, install it, and then run the

commands using that version of Gradle.

$./gradlew build

Is this a good idea? Why not just install Gradle manually?

12

Gradle Wrapper Config
• The Gradle project configuration (gradle/gradle-wrapper.properties) lists

the version of Gradle to be used for your project. It’s a text file, with
contents (something like) this:

distributionBase=GRADLE_USER_HOME
distributionPath=wrapper/dists
distributionUrl=https\://services.gradle.org/distributions/gradle-8.0.2-bin.zip
zipStoreBase=GRADLE_USER_HOME
zipStorePath=wrapper/dists

• To specify the version of Gradle being used in your project, change
the distributionURL line to the correct version e.g., Gradle 8.0.2.

13

Gradle > Build Tasks
How to execute Gradle tasks.

14

What are build tasks?

Projects often have complex build requirements that include a series of
steps that need to be performed. For example, you might need to:

1. Compile your source code,
2. Run tests to make sure it built and works properly,
3. Build a distributable package.

You might have additional steps. e.g., generate docs; deploy to a server.
Any build system needs to support a wide range of steps like this, and it
should allow you to define how they will be performed.
We call these `build tasks`. Your application probably has many these
that need to be run, in the correct order.

16

Running Tasks
• Gradle uses the

term task to describe a set
of functions that can be
applied to a particular
type of project.

• To run Gradle tasks from
the command line, use the
Gradle wrapper with the
appropriate the task
name.

• Run ./gradlew tasks to
see a list of tasks that are
supported in a project.

• Execute using the wrapper.
e.g., ./gradlew clean.

17

$./gradlew tasks

> Task :tasks

--
Tasks runnable from root project 'gradle'
--

Application tasks

run - Runs this project as a JVM application

Build tasks

assemble - Assembles the outputs of this project.
build - Assembles and tests this project.
buildDependents - Assembles and tests this project and all projects that depend on it.
buildNeeded - Assembles and tests this project and all projects it depends on.
classes - Assembles main classes.
clean - Deletes the build directory.
jar - Assembles a jar archive containing the classes of the 'main' feature.
testClasses - Assembles test classes.

IntelliJ Support
• Before you get overwhelmed….

• IntelliJ IDEA supports Gradle.
• Gradle tool window shows all tasks

that are available, grouped by type.
• Commonly used tasks include:

• gradlew help
• gradlew tasks
• gradlew clean
• gradlew build
• gradlew run

18

View > Tool Windows > Gradle will open the
Gradle window, listing the supported tasks
for your project.

Plugins
• Gradle comes with a small number of predefined tasks. You will

usually need to add additional tasks specific to your type of project.
We do this via plugins.
• A plugin is a collection of related tasks that have been bundled

together. e.g., java plugin adds tasks for compiling Java code.

• Core plugins: These are the plugins that are included with Gradle by default.
They provide functionality that is required by many projects. e.g.,
• `java` plugin (adds language support) and
• `application` plugin (adds support for running a console app).

• Community Plugins: These are plugins that are created by the community and
are not included with Gradle by default. See the Gradle Plugin Portal.

You specify plugins in your build.gradle.kts file (see next section).
19

https://plugins.gradle.org/

20

plugins {
 application
 kotlin("jvm") version "2.0.10"
}

application {
 mainClass = "ca.uwaterloo.cs346.MainKt"
}

group = "ca.uwaterloo.cs346"
version = "1.0.0"

build.gradle.kts

Application plugin adds the run task.

Configuration details for that plugin
i.e., package.name of the class that
contains the main method; what we
run when the run task executes.Used for

packaging (later)

Gradle > Build Configuration
How to manage your build configuration.

21

What is build config?
Once you have tasks defined, you need some way to configure and control
how they are executed.
• It's certainly possible to write custom scripts e.g., bash shell scripts to

execute these tasks, but they are challenging to maintain and need to be
written for each project.
• Instead, Gradle provides a way to define tasks in build configuration files,

and then run them with a single command. This makes it easy to build
complex projects and ensures that the build process is consistent.
• Unlike other configuration-based build systems, Gradle uses a Domain Specific

Language (DSL) to define build scripts. You can write scripts in Groovy or Kotlin.
• We’ll use Kotlin DSL to write our build scripts (so that both our code and our config

files are Kotlin syntax – less to learn!)

23

Config files
Your project has two main config scripts:
build.gradle.kts is a module specific build
config script.

• It is possible to have multiple modules (e.g.,
app/, service/). Each of these would have its
own build.gradle.kts file specific to that
type of module.

• This example has a single module, at the
root.

settings.gradle.kts is a project config file.
• It contains settings that apply to all

modules.

24

.
├── build.gradle.kts
├── empty.iml
├── gradle
│ └── wrapper
│ ├── gradle-wrapper.jar
│ └── gradle-wrapper.properties
├── gradle.properties
├── gradlew
├── gradlew.bat
├── settings.gradle.kts
└── src
 ├── main
 │ ├── kotlin
 │ │ └── Main.kt
 │ └── resources
 └── test
 ├── kotlin
 └── resources

settings.gradle.kts

This is the top-level configuration file. You don't need to modify
this for single-target projects.

25

// list any plugins that you want to use across all modules
plugins {
 id("org.gradle.toolchains.foojay-resolver-convention") version "0.5.0"
}

// top-level descriptive name
rootProject.name = "project-name"

settings.gradle.kts

build.gradle.kts

This is the detailed build
configuration. You might need to
modify this file to:

• Add a new dependency (i.e. library)
• Add a new plugin (i.e. custom tasks)
• Update the version number of a

product release.
• Don’t expect to create the

perfect config file right-away.
• Start with the one generated by

IntelliJ IDEA (or gradle init)
• Modify as you add dependencies or

make changes.

26

// needed for desktop
plugins {
 kotlin("jvm") version ”2.0.10"
}

// product release info
group = "org.example"
version = "1.0.0"

// location to find libraries
repositories {
 mavenCentral()
}

// add libraries here
dependencies {
 testImplementation(`org.jetbrains.kotlin:kotlin-test`)
}

tasks.test {
 useJUnitPlatform()
}

// java version
kotlin {
 jvmToolchain(21)
}

build.gradle.kts

Gradle > Dependencies
How to manage project dependencies.

27

What are dependencies?
When we write software, we often rely on external libraries to provide
functionality that we don't want to write ourselves. e.g., networking, user
interfaces. These libraries are dependencies of our application.
• A large challenge of any build system is managing these dependencies

properly. i.e.,
• Make sure that you have the correct version of a library,
• Include dependencies that library might need (called transitive dependencies).
• Make sure that the library is compatible with the rest of your software, and that it

doesn't introduce any security vulnerabilities.

• In Gradle, you specify your dependencies in your build scripts.
• Gradle will download them from an online repository as part of your build process.

29

Where do we find these dependencies?
A repository is a location where libraries are stored and made
available; these can be private (e.g. hosted in your company) or
public (e.g. hosted and made available to everyone).
• Typically, a repository will offer a large collection of libraries

across many years of releases, so that a package manager is able
to request a specific version of a library and all its dependencies.
• The most popular Java/Kotlin repository is mavenCentral, and

we'll use it with Gradle to import any external dependencies
that we might require.

30

http://maven.org/

Finding dependencies
• You can search Maven Central

or use a package manager like
this one.
• This is just a nicer front-end to

the actual repositories e.g.,
Maven Central.
• Each package information page

will include the details of how
to import the package into
your Gradle project.

31

JetBrains Package Search lists all libraries.

Library details include information that you need to use it.

JetBrains%20Package%20Search

Adding Dependencies
You add a specific module or dependency by adding it into the dependencies
section of the build.gradle.kts file. Dependencies need to be specified
using this syntax:

group-name: module-name: version-number

e.g., we can often copy and paste the dependency line from the package
information page directly into our build.gradle.kts

dependencies {
 implementation("io.coil-kt.coil3:coil-jvm:3.0.0-alpha06")
}

32

Multi-Project Builds
Optional – useful for complex projects!

33

Multi-Project? (Optional!)
In a large application, you may design multiple components that are
dependent on one another. For example, we could have client and
backend that together provide functionality for our users.

34

• Client, using Kotlin and Compose. Your application could be a
desktop or mobile application that uses the server.
• Server, using Kotlin and Ktor. Your server could be installed on a

web server (as a JAR file) to provide services to applications.
• Libraries contain shared code used in both components.

You want these related modules to be stored in the same
project, to avoid copy-pasting source code (e.g. monorepo).

This avoids code duplication!

Reminder: Single Project Structure
Let’s see how Gradle handles this. Here’s the standard single-project structure.

36

$ tree -L 5
.
├── build.gradle.kts
├── src
│ ├── main
│ │ ├── kotlin
│ │ └── resources
│ └── test
│ ├── kotlin
│ └── resources
├── gradle
│ └── wrapper
│ ├── gradle-wrapper.jar
│ └── gradle-wrapper.properties
├── gradlew
├── gradlew.bat
└── settings.gradle.kts

gradle/ — gradle wrapper
gradlew - wrapper scripts
gradlew.bat

build.gradle.kts - config for this module
settings.gradle.kts - project settings

src/ - source and unit tests

Multi-Project Structure
Place each module/subproject in a subfolder with its
own build.gradle.kts file
• e.g. android, application, models, server
Use the top-level settings.gradle.kts file to
specify which modules to include.

Each module will have its own rules for building!
• An application builds and runs, and you can build

an installer (and executable) from it.
• A library just exports to a jar file which can be

used in other projects.
• A server exports a jar file which needs to be

hosted on a web server, or some container.
37

$ tree -L 2
├── android
│ ├── build.gradle.kts
│ └── src
├── application
│ ├── build.gradle.kts
│ └── src
├── gradle
│ └── wrapper
├── gradle.properties
├── gradlew
├── gradlew.bat
├── local.properties
├── models
│ ├── build.gradle.kts
│ └── src
├── server
│ ├── build.gradle.kts
│ └── src
└── settings.gradle.kts

Creating this structure?
Just make the changes manually!

1. Create a regular Gradle project in IntelliJ IDEA.
2. Create your first subdirectory and move the src/ folder and

build.gradle.kts into the subdirectory.
3. Modify the settings.gradle.kts to point to the subdirectory.
4. Repeat steps 1-2 for every project type that you want to add.

38

For complex project structures (e.g., Android) I often “cheat”; I’ll create a separate empty
project, and then just copy the folder structure into my multi-project folder.

When creating simpler projects (e.g., Desktop, models) the above method works fine.

https://docs.gradle.org/current/userguide/intro_multi_project_builds.html

https://docs.gradle.org/current/userguide/intro_multi_project_builds.html

Version Catalogs
• One challenge to using a lot of dependencies is keeping track of the

versions of libraries that you are using.
• Gradle has a feature called version catalogs, which is a centralized file

that contains a list of libraries and their versions.
• Gradle will automatically keep versions up-to-date using this file.
• In Gradle 7.x or later, the version catalog is contained in a

file libs.versions.toml in your gradle/ project directory.

• You use the dependencies defined in the version catalog in your build
config files.

39

https://docs.gradle.org/current/userguide/version_catalogs.html

https://docs.gradle.org/current/userguide/version_catalogs.html

[versions]
guava = "32.1.3-jre"
junit-jupiter = "5.10.1"

[libraries]
guava = { module = "com.google.guava:guava", version.ref = "guava" }
junit-jupiter = { module = "org.junit.jupiter:junit-jupiter", version.ref = "junit-jupiter" }

gradle/libs.versions.toml

dependencies {
 // Use JUnit Jupiter for testing.
 testImplementation(libs.junit.jupiter)
 testRuntimeOnly("org.junit.platform:junit-platform-launcher")

 // This dependency is used by the application.
 implementation(libs.guava)
}

build.gradle.kts

40

