
Code Structure
CS 346: Application

Development

1

Getting Started

How do you actually get started?
• You know that:

• You need layers for your user-interface, domain and model.
• You have features that are orthogonal to these layers e.g., your

recipe application will probably need to fetch data (model and
persistence), modify and repackage it into a useful structure
(domain) and display it (view).

Do you write all your views first? Do you build models first?

2

Two approaches

• Technical Partitioning
• Also called Horizontal slicing
• Idea that you build all like-minded classes first.
• i.e. create the views first, then hook them up!

• Domain partitioning
• Also called Vertical slicing
• Idea that you build complete features first.
• i.e., create View, Model, etc. for a single feature.
• Test that, then iterate on the next one.

3

Technical Partitioning

• Horizontal slicing
• Build all like-minded classes first.
• When to use it?

• This is a great approach if you need to solidify
aspects of your design early.

• Beneficial with a high-risk layer e.g., service.

• Advantages?
• You can deliver a standalone layer earlier.
• You will need to test each layer independently

(unit tests only).

4

Domain Partitioning

• Vertical slicing
• Build a complete feature first.
• When to use it?

• This approach lets you test your full
development stack with each feature!

• No rush to complete any one layer.
• Advantages?

• You get working features to demo.
• You will reduce integration challenges which

are a major source of risk in projects.
• You can write complete tests, every iteration

(i.e. unit + integration tests).
5

What does Domain partitioning look like?
Your approach will determine the
structure of your packages and code.
Domain partitioning has subfolders
for each significant feature.
• e.g. a recipe application with both a

card (detail) view and a list
(summary) view of recipe data.

You implement that feature in its
entirety!
Classes shared across features can be
stored in a shared package.

6

.
├── main
│ └── kotlin
│ ├── recipe-card
│ │ ├── domain
│ │ ├── model
│ │ └── view
│ ├── recipe-list
│ │ ├── domain
│ │ ├── model
│ │ └── view
│ └── shared
│ ├── domain
│ ├── model
│ └── view
…

