
Design Principles
CS 346: Application 

Development

1



SOLID Principles
Revisiting principles from CS 246.

2



SOLID

SOLID was introduced by Robert (“Uncle Bob”) Martin around 2002.
The SOLID Principles tell us how to arrange our functions and data 
structures into classes, and how those classes should be arranged 
(“class” meaning “a grouping of functions and data”)
Their goal is the creation of mid-level software structures that:

• Tolerate change (flexibility, extensibility),
• Are easy to understand (readability), and
• Are the basis of components that can be used in many software systems 

(reusability).

There are five SOLID principles, and we’ll walk through them. 
• Diagrams are taken from Ugonna Thelma: The S.O.L.I.D. Principles in Pictures.

3

https://medium.com/backticks-tildes/the-s-o-l-i-d-principles-in-pictures-b34ce2f1e898


1. Single Responsibility

The Single Responsibility 
Principle (SRP): we want 
classes to do a single thing.
This ensures that classes are 
focused but also reduces 
pressure to change that class.
• A class has responsibility 

over a single block of 
functionality.

• There is only one reason for 
a class to change.

• Applies to components, and 
other “units” of code, not 
just classes.

4



2. Open-Closed Principle

“A software artifact should be 
open for extension but closed for 
modification. In other words, the 
behaviour of a software artifact 
ought to be extendible, without 
having to modify that artifact. “

• – Bertrand Meyers (1988)

• Subclassing is the primary form 
of code reuse.

• A particular module (or class) 
should be reusable without 
needing to change its 
implementation.

5



3. Liskov-Substitution Principle

“If for each object o1 of type S there is an 
object o2 of type T such that for all 
programs P defined in terms of T, the 
behaviour of P is unchanged when o1 is 
substituted for o2, then S is a subtype of T”.

– Barbara Liskov (1988)
It should be possible to substitute a derived 
class for a base class, since the derived class 
should retain the base class behaviour.
In other words, a child should always be 
able to substitute for its parent.

6



4. Interface Substitution

It should be possible to change 
classes independently from the 
classes on which they depend.
• Also described as “program to 

an interface, not an 
implementation”. This means 
focusing your design on what 
the code is doing, not how it 
does it.

• If you code to an interface, it 
allows flexibility, and the 
ability to substitute other valid 
implementations.

7



5. Dependency Inversion

The most flexible systems are those in 
which source code dependencies refer 
to abstractions (interfaces) rather 
than concretions (implementations). 
This reduces the dependency between 
these two classes.
• High-level modules should not 

import anything from low-level 
modules. Both should depend on 
abstractions (e.g. interfaces).

• Abstractions should not depend on 
details. Details (concrete 
implementations) should depend on 
abstractions.

8



Additional Design Principles
Can we generalize these?

9



Program to an Interface (Extensibility)
Base dependencies between classes on 
common behavior defined in interfaces; 
don’t assume implementation classes. 
• This allows for maximum flexibility.
• When classes rely on one another, you 

want to minimize the dependency - we 
want loose coupling. To achieve this, 
extract an abstract interface and use 
that to describe the desired behaviour 
between the classes.

• e.g. our cat on the left can only eat 
sausage. The cat on the right can eat 
anything that provides nutrition, 
including sausage.

12



Favor Composition (Flexibility)
Inheritance is a useful tool for reusing code. In principle, it sounds great - derive 
from a base class, and you get behaviour for free! However, there can be negative 
side effects to inheritance.
• A subclass cannot reduce the interface of the base class. You have to 

implement all abstract methods, even if you don't need them.
• When overriding methods, you need to make sure that your new behaviour is 

compatible with the old behaviour. In other words, the derived class needs to 
act like the base class.

• Inheritance breaks encapsulation, because the details of the parent class are 
potentially exposed to the derived class.

• Subclasses are tightly coupled to superclasses. A change in the superclass can 
break subclasses.

• Reusing code through inheritance can lead to parallel inheritance hierarchies, 
and explosion of classes.

13



A useful alternative to inheritance is composition. Where inheritance represents an 
is-a relationship (a car is a vehicle), composition represents a has-a relationship (a 
car has an engine). Imagine a catalog application for cars and trucks.

14



Favor immutability (Robustness)
Avoid side effects (aka unintended consequences).

Prefer a functional style as much as possible.
• Write functions that return modified data (and do not modify data that is 

passed in).
• Avoid using global variables (except as constants that do not change).

15



Avoid “Happy Path” Programming

Bake error handling into your design.
You should anticipate errors and design mechanisms that allow your application to 
continue processing, even when these errors occur.
Have a strategy for handling errors:

• Favour immutable functions, with no side effects. This reduces the chance of runtime errors.
• Check function return values to ensure that results are valid. Use Kotlin’s NULL handling 

correctly.
• Never throw an exception without understanding where it will be handled, otherwise this 

will just percolate up the call stack to the user (and crash).
• Perform validation on user inputs to avoid users entering invalid information that could 

cause issues.
• Determine what recovery action is appropriate for the type of error! e.g. retry in the case of 

a network error, or abort the operation in the case of an invalid file operation

16



Design patterns
Useful patterns in Kotlin.

17



Recap: Design patterns
A design pattern is a generalizable software solution to a common problem. Design 
patterns gained popularity with Design Patterns: Elements of Reusable Object-
Oriented Software [Gamma et al 1994].

18

Why use design patterns?
• They represent a pattern that is (was) known to work 

well for a particular problem and context.
• They can result in a more extensible, flexible solution.

Criticisms:
• They are not comprehensive, and do not reflect all 

styles of software or all problems encountered.
• They trade increased complexity now for the promise 

of flexibility later (YAGNI?)

https://en.wikipedia.org/wiki/Design_pattern
https://en.wikipedia.org/wiki/Design_Patterns
https://en.wikipedia.org/wiki/Design_Patterns


Types of patterns

The original set of patterns were subdivided based on the types of problems 
they addressed.
• Creational Patterns: dynamic creation of objects.
• Structural Patterns: organizing classes to form new structures.
• Behavioral Patterns : identifying communication patterns between objects.

The expectation is that you might encounter a small number of these in any 
given application. 
Some problems are commonly encountered (e.g. decoupling using Observer) 
and others are rarely used (e.g. Abstract Factory).

19

https://en.wikipedia.org/wiki/Creational_pattern
https://en.wikipedia.org/wiki/Structural_pattern
https://en.wikipedia.org/wiki/Behavioral_pattern


Creational Patterns
Creational Patterns control the dynamic creation of objects.

20

Abstract Factory Provide an interface for creating families of related or dependent objects without 
specifying their concrete classes.

Builder Separate the construction of a complex object from its representation, allowing 
the same construction process to create various representations.

Factory Method Define an interface for creating an object, but let subclasses decide which class 
to instantiate. Factory Method lets a class defer instantiation to subclasses.

Prototype Specify the kinds of objects to create using a prototypical instance and create 
new objects from the ‘skeleton’ of an existing object.

Singleton Ensure a class has only one instance and provide a global point of access to it.

https://en.wikipedia.org/wiki/Creational_pattern
https://en.wikipedia.org/wiki/Abstract_factory_pattern
https://en.wikipedia.org/wiki/Builder_pattern
https://en.wikipedia.org/wiki/Factory_method_pattern
https://en.wikipedia.org/wiki/Prototype_pattern
https://en.wikipedia.org/wiki/Singleton_pattern


Builder Pattern
How do you build complex objects with 
multiple (optional) initialization steps?
Builder lets you construct complex objects 
step by step. Produce different types and rep-
resentations of an object using the same con-
struction code.
A builder class generates the initial object, and 
subsequent methods can be called to 
customize it.
• After calling the constructor, call methods to 

invoke the steps in the correct order. 
• You only call the steps that you require, 

which are relevant to what you are building.

21



Builder Pattern Example (Java)

How do you implement it in other languages? e.g., Java

val dialog = AlertDialog.Builder(this)
 .setTitle(“File Save Error”)
 .setText(“Error encountered. Continue?”)
 .setIcon(ERROR_ICON)
 .setType(YES_NO_BUTTONS)
 .show()

22



Builder Pattern Example (Kotlin)

Kotlin supports named and default arguments, simplifying this.

val dialog = AlertDialog(
 title = “File Save Error”,
 error = Error encountered. Continue?”,
 icon = ERROR_ICON, 
 type = YES_NO_BUTTONS
)

23



Singleton Pattern

You want to control access to a shared or restricted resource.
A singleton is a creational design pattern that lets you ensure that a class has 
only one instance, while providing a global access point to this instance.
Why is this pattern useful? 
• Ensures that a class has just a single instance. The most common reason for 

this is to control access to some shared resource—for example, a database 
or a file.
• Provides a global access point to that instance. Just like a global variable, 

the Singleton pattern lets you access some object from anywhere in the 
program. However, it also protects that instance from being overwritten by 
other code.

24



Singleton Example (Java)

Here’s an implementation:
1. Make the default constructor 
private, to prevent other objects 
from creating an instance directly.
2. Create a static method that to 
instantiate the class. This method 
ensures that the object is only 
instantiated once.
As needed, use the static method 
to return a static reference to the 
object. 

25

public class Singleton {
 private Singleton() {}
 private static instance: Singleton = null 

 public static getInstance(): Singleton {
  if (instance == null) {
   instance = Singleton()
  }
  return instance
 }
}
// get a reference to it
Singleton s = Singleton.getInstance()



Singleton Example (Kotlin)

In Kotlin, implementation is easier.

The ‘object’ keyword in Kotlin 
defines a static  instance of a class. 
Effectively, an object is a Singleton 
and we can just call its methods 
statically.

Like any other class, you can add 
properties and methods if you wish.

You do not need initialize it — it’s 
lazy initialized as needed.

26

object Singleton {  
  init {
    println("Singleton class invoked.")
  }
  fun print(){
    println("Print method called")
  }

}

fun main(args: Array<String>) {   
  Singleton.print()

    // echos “Singleton class invoked.”
  // echos "Print method called"

}



Behavioral Patterns
Behavioural Patterns are about identifying common communication patterns 
between objects.

27

Command Encapsulate a request as an object, supporting the queuing or logging of requests. It also allows for 
the support of undoable operations.

Iterator Provide a way to access the elements of an aggregate object sequentially.

Memento Without violating encapsulation, capture and externalize an object’s internal state allowing the object 
to be restored to this state later.

Observer Define a one-to-many dependency between objects where a state change in one object results in all 
its dependents being notified and updated automatically.

State State allows an object to change its behaviour when state changes.

Strategy Define a family of algorithms, encapsulate each one, and make them interchangeable. Strategy lets 
the algorithm vary independently from clients that use it.

Visitor Represent an operation to be performed on the elements of an object structure. Visitor lets a new 
operation be defined without changing the classes of the elements on which it operates.

https://en.wikipedia.org/wiki/Behavioral_pattern
https://en.wikipedia.org/wiki/Command_pattern
https://en.wikipedia.org/wiki/Iterator_pattern
https://en.wikipedia.org/wiki/Aggregate_pattern
https://en.wikipedia.org/wiki/Memento_pattern
https://en.wikipedia.org/wiki/Observer_pattern
https://en.wikipedia.org/wiki/State_pattern
https://en.wikipedia.org/wiki/Strategy_pattern
https://en.wikipedia.org/wiki/Visitor_pattern


Command Pattern

Imagine that you are writing a user interface, and you want to support a common 
action like Save. You might invoke Save from the menu, or a toolbar, or a button. 
Where do you put the code, without duplicating it?
The command pattern is a behavioral design pattern that turns a request into a 
stand-alone object that contains all information about the request (a command 
could also be thought of as an action to perform).

28



Command Pattern Example (Kotlin)

29

// Entry point
fun main(args: Array<String>) {
  val command = CommandFactory.createFromArgs(args)
  command.execute()

}

// Factory Method
object CommandFactory {
  fun createFromArgs(args: Array<String>): Command =
    if (args.isEmpty()) {
      when (args[0]) {
        "add" -> AddCommand(args)
        "del" -> DelCommand(args)
        "show" -> ShowCommand(args)
        else -> HelpCommand(args)
      }
    }

}



Command Pattern Example (Kotlin)

30

interface Command {
  fun execute()

}

class AddCommand(val args: Array<String>) : Command {
  override fun execute() {
    assert(args.size == 2)
    println("Add: ${args[1]}")
  }

}

class DelCommand(val args: Array<String>) : Command {
  override fun execute() {
    assert(args.size == 2)
    println("Delete: ${args[1]}")
  }

}



31

Memento Pattern

Memento captures an objects state so you can save/restore it later.
This is helpful for object versioning (e.g., tracking changes over time).
It’s commonly used when reverting the state of a system with undo-redo.
How does it work?

• Before making changes to an object’s state, tell it to save itself. 
• If needed later, ask it to revert to the previous saved version.



Memento Example (Kotlin)

32

class Book(var title: String, var author: String, var year: Int) {
  private data class Memento(val title: String, val author: String, val year: Int)

  private object UndoManager {
    private val mementos = mutableListOf<Memento>()
    fun save(title: String, author: String, year: Int) {
      mementos.add(Memento(title = title, author = author, year = year))
    }
    fun restore() = mementos.last()
  }

  fun save() {
    UndoManager.save(title = this.title, author = this.author, year = this.year)
  }

  fun restore() {
    val memento = UndoManager.restore()
    this.title = memento.title
    this.author = memento.author
    this.year = memento.year
  }



Observer

Observer is a behavioural design pattern that lets you define a subscrip-
tion mechanism to notify multiple objects about any events that happen to 
the object they’re observing. This is also called publish-subscribe.

• The object that has some interesting state is often called subject (or 
publisher). Objects that want to track changes to the publisher’s state are 
called observers (subscribers) of the state of the publisher.

• Subscribers register their interest in the subject, who adds them to an 
internal subscriber list.

33



Observer

When something interest happens, 
the publisher notifies the 
subscribers through a provided 
interface. The subscribers can then 
react to the changes.

A modified version of Observer is 
the Model-View-Controller (MVC) 
pattern, which puts a third 
intermediate layer between the 
Publisher and Subscriber to process 
user input (not shown here).

34



Observer Examples (Kotlin)

35

interface IPublisher {
  val list: ArrayList<ISubscriber>

  fun add(sub: ISubscriber) = list.add(sub)
  fun remove(sub: ISubscriber) = list.remove(sub)

  fun sendUpdateEvent() {
    list.forEach { it.update() }
  }

}

class Newsletter: IPublisher {
  override val list = ArrayList<ISubscriber>()
  var article = ""
    set(value) {
      field = value
      sendUpdateEvent()
    }

}

interface ISubscriber {
  fun update()

}

class View(target: IPublisher) : ISubscriber {
  init {
    target.add(this)
  }

  override fun update() {
    println(“Updated”)
  }

}

fun main() {
 val publisher = Newsletter()
 val screen = View(publisher)
 publisher.article = “New article” // Updated
}


