
Building GUIs with
Compose

CS 346: Application
Development

1

What do we mean by a GUI?
Graphical User Interface (GUI)
• The users interacts with an application by

pointing-clicking using some pointing
device (e.g., mouse, touchpad, finger).

• Also keyboard support for entering text.
• Examples: macOS desktop, Windows

desktop, iPhone.

Output can include:
• “Standard” widgets e.g., buttons, text

fields, images.
• Drawing surfaces e.g., arbitrary graphics.

2

CONCEPT: UI as a Scene Graph
In GUI design, we use an abstraction called a scene graph, to
represents graphical content as a tree, where higher level elements
manage their children. Toolkits provide components (“widgets”) which
developers directly instantiate and place on-screen.

3

Containers contain other classes.
Nodes are leafs in the graph.

CONCEPT: Event-Driven Interaction
Graphical user interfaces rely on events being generated and passed to
interested parts of your application.
• An event is simply a message generated by the system to indicate that

something has happened.
• Examples:

• MouseMoved: Indicates that the pointer has been repositioned.
• MouseClicked: The user has clicked on something.
• KeyPressed: Key interaction.

• Traditionally, writing a user interface requires you to intercept and
process these messages.

4

GUI Toolkits
A GUI toolkit is a framework which provides the required functionality
for building graphical applications:
• Creating and managing application windows, with standard

functionality e.g. overlapping windows, depth, min/max, resizing.
• Providing reusable widgets that can be combined in a window to

build applications. e.g. buttons, lists, toolbars, images, text views.
• Adapting the interface to changes in window size or dimensions.
• Managing standard and custom events.

Although it is possible to design a GUI toolkit that behaves differently, this is
standard design for modern toolkits.

5

https://en.wikipedia.org/wiki/Widget_toolkit
https://en.wikipedia.org/wiki/Graphical_widget

GUI Toolkits
There are a large number of toolkits available.
• Single-platform toolkits are optimized for a single operating system.

• e.g. WTL (Windows, C++), Cocoa (macOS, C++) and GTK (Linux, C).
• Cross-platform toolkits are designed to work across multiple platforms.

• e.g., see below.

6

https://en.wikipedia.org/wiki/List_of_widget_toolkits
https://en.wikipedia.org/wiki/Windows_Template_Library
https://en.wikipedia.org/wiki/Cocoa_(API)
https://en.wikipedia.org/wiki/GTK

Toolkit Styles
Historically, most GUI frameworks have been imperative:
• UI objects are just classes with properties for position (x, y), dimensions (w, h),

other visual properties. e.g. Button, Scrollbar, Panel, Slider, Image classes.
• Underlying code places elements on-screen and controls their appearance.
• Code determines how the user interface behaves based on user input.

• i.e. an imperative toolkit relies on custom code to change the user interface in response to
state changes. This is a large part of the application’s complexity.

Modern toolkits are declarative:
• A declarative paradigm explains what to display. The compiler figures out how to

display it based on the current state (e.g. is the button enabled/disabled?).
• i.e. a declarative toolkit automatically manages how the UI reacts to state changes.

7

What is compose?
Compose is a declarative, cross-platform
toolkit.
• It was designed by Google, and released

as JetPack Compose for Android in 2017.
• JetBrains ported Jetpack Compose to

desktop, and released it in 2021
as Compose Multiplatform, which
supports macOS, Windows, Linux desktop.

• Compose iOS and Web are “on the way”.
In this course we’ll focus on Compose for
Desktop and Android.
This is the rare case where we can use the
same toolkit for more than one platform!

8

https://developer.android.com/jetpack/compose
https://www.jetbrains.com/lp/compose-multiplatform/

What can Compose do?

9

https://github.com/JetBrains/compose-multiplatform/
https://github.com/android/compose-samples

https://github.com/JetBrains/compose-multiplatform/
https://github.com/android/compose-samples

Creating a Compose project?

Desktop:
• IntelliJ > New Project > Compose Multiplatform

Android:
• Android Studio > New Project > Phone and Tablet > (Empty Activity)

10

Compose > Composables
CS 346: Application Development

11

Concept: Composable Function
• A key concept in Compose is the idea of a composable function (also just

called a composable). This is a small function that describes a part of your
user interface.

• Think of a composable function as a special kind of function that accepts
state and emits a user interface element.

• e.g., this function takes in a String and displays it on-screen by emitting a
Text element that will be displayed.

12

@Composable
fun Greeting(name: String) {

Text("Hello $name!")
}

Characteristics of Composables
The function must be annotated with the @Composable annotation.
• Composable functions are fast, idempotent, and free of side effects!
• Composables do not return a value – they emit output directly into the

scene graph.
• Composable functions will often accept parameters, which are used to

format the composable before displaying it.

13

@Composable
fun Greeting(name: String) {

Text("Hello $name!")
}

https://en.wikipedia.org/wiki/Idempotence

Composable Scope (1/2)

14

Let's display a window.

fun main() = application {
Window(
title = "Hello Window",
onCloseRequest = ::exitApplication

) {
Greeting("Compose")

}
}

@Composable
fun Greeting(name: String) {
Text("Hello $name!")

}

The application function defines a Composable
Scope – think of it like a wrapper.

Composable functions must be called from a
Composable Scope, or from other Composables.

These composables describe a scene graph.

composable scope

Composable Scope (2/2)

15

Here’s the resulting window.

fun main() = application {
Window(
title = "Hello Window",
onCloseRequest = ::exitApplication

) {
Greeting("Compose")

}
}

@Composable
fun Greeting(name: String) {
Text("Hello $name!")

}

The Compose toolkit handles standard
functionality e.g. min/max buttons, titlebar. You

customize the composables by passing in
parameters.

See GL Public repo: /samples/desktop/compose-demo

https://git.uwaterloo.ca/cs346/public/-/tree/main/samples/desktop/compose-demo?ref_type=heads

Using Composables
• With compose, you construct user interfaces by combining composables

together to form a scene graph.
• These can be built-in composables, or ones that you create.
• There are many built-in composables:

• Some composables act as containers and manage children composables.
• Other composables display data, and (some) provide interactivity for users.

• Because Compose is cross-platform, most of these composables will work
across all supported platforms.
• e.g. the Text composable exists on both desktop and Android (it hasn’t been

reimplemented - it’s the same code).
• Composable Scope differs by platform e.g. application is desktop specific.
• We’ll continue to demo using Compose Multiplatform/desktop for now.

16

Properties
• Each composable has its own parameters that can be supplied to

affect its appearance and behaviour.
• These are exposed in the constructor as named parameters.
• Examples:

• Text, textAlign, lineHeight, fontName, fontSize are common with text.
• Color is a property shared by most Composables.
• Style lets you use a particular design attribute that is included in the theme.
• Modifier is a class that contains parameters that are commonly used across

elements. This allows us to set a number of parameters within an instance of
a Modifier.

17

Example: Text

18

A Text composable displays text.

@Composable
fun SimpleText() {
Text(

text = “Widget Demo”,
color = Color.Blue,
fontSize = 30.sp,
style = MaterialTheme.typography.h2,
maxLines = 1

)
}

See GitLab repo: samples/desktop/compose-demo

https://git.uwaterloo.ca/cs346/public/-/tree/main/samples/desktop/compose-demo?ref_type=heads

Example: Image

19

An Image composable displays an image (by default, image is
loaded from your Resources folder).

@Composable
fun SimpleImage() {

Image(
painter = painterResource("credo.jpg"),
contentDescription = null,
contentScale = ContentScale.Fit,
modifier = Modifier

.height(150.dp)

.fillMaxWidth()

.clip(shape = RoundedCornerShape(10.dp))
)

}

Example: Button

20

There are three main Button composables:
• Button: A standard button with no caption.
• OutlinedButton: A button with an outline. Secondary.
• TextButton: A button with a caption.

fun main() {
application{

Window(onCloseRequest = ::exitApplication, title = "Button Demo")
{

Column(modifier = Modifier.fillMaxSize(),
horizontalAlignment = Alignment.CenterHorizontally)

{
Button(onClick = { println("Button clicked") }) { Text("Caption") }
OutlinedButton(onClick = { println("OutlinedButton clicked") }) { Text("Caption") }
TextButton(onClick = { println("TextButton clicked") }) { Text("Caption") }

}
}

}
}

https://developer.android.com/reference/kotlin/androidx/compose/material/package-summary
https://developer.android.com/reference/kotlin/androidx/compose/material/package-summary
https://developer.android.com/reference/kotlin/androidx/compose/material/package-summary

Example: Checkbox

21

A checkbox is a toggleable control that presents a true/false state.
• The OnCheckedChange function is called when the user interacts

with it (and in this case, the state represented by it is being stored
in a MutableState variable named isChecked).

@Composable
fun SimpleCheckbox() {

val isChecked = remember { mutableStateOf(false) }

Checkbox(
checked = isChecked.value ,
enabled = true,
onCheckedChange = { isChecked.value = it }

)
}

Example: Slider

22

A slider lets the user make a selection from a continuous range of
values. It's useful for things like adjusting volume or brightness or
choosing from a range of values.

@Composable
fun SliderMinimalExample() {

var sliderPosition by remember
{ mutableFloatStateOf(0f) }

Column {
Slider(

value = sliderPosition,
onValueChange = { sliderPosition = it }

)
Text(text = sliderPosition.toString())

}
}

Demo

• See GL Public:
/samples/desktop/compose-demo
• Run the Composables.kt main

23

https://git.uwaterloo.ca/cs346/public/-/tree/main/samples/desktop/compose-demo?ref_type=heads

Compose > Layout
CS 346: Application Development

24

Layout Composables
• Compose includes Layout Composables, whose purpose is to act as a

container to other composables. The three main layouts:
• Column, used to arrange widget elements vertically
• Row, used to arrange widget elements horizontally
• Box, used to arrange objects in layers

25
https://developer.android.com/reference/kotlin/androidx/compose/foundation/layout/package-summary

https://developer.android.com/reference/kotlin/androidx/compose/foundation/layout/package-summary

Column Composable

26

fun main() = application {
Window(

title = "CS 346 Compose Layout Demo",
onCloseRequest = ::exitApplication

) {
SimpleColumn()

}
}

@Composable
fun SimpleColumn() {

Column(
modifier = Modifier.fillMaxSize(),
verticalArrangement = Arrangement.Center,
horizontalAlignment = Alignment.CenterHorizontally

) {
Text("One")
Text("Two")
Text("Three")

}
}

Row Composable

27

fun main() = application {
Window(

title = "CS 346 Compose Layout Demo",
onCloseRequest = ::exitApplication

) {
SimpleRow()

}
}

@Composable
fun SimpleRow() {

Row(
modifier = Modifier.fillMaxSize(),
horizontalArrangement = Arrangement.SpaceEvenly,
verticalAlignment = Alignment.CenterVertically

) {
Text("One")
Text("Two")
Text("Three")

}
}

Box Composable

28

fun main() = application {
Window(

title = "Custom Theme",
onCloseRequest = ::exitApplication,
state = WindowState(

width = 300.dp, height = 250.dp,
position = WindowPosition(50.dp, 50.dp)

)
){

SimpleBox()
}

}

@Composable
fun SimpleBox() {
Box(Modifier.fillMaxSize().padding(15.dp)) {

Text("Drawn first", modifier = Modifier.align(Alignment.TopCenter))
Text("Drawn second", modifier = Modifier.align(Alignment.CenterStart))
Text("Drawn third", modifier = Modifier.align(Alignment.CenterEnd))
FloatingActionButton(

modifier = Modifier.align(Alignment.BottomEnd),
onClick = {println("+ pressed")}

) {
Text("+")

}
}

}

Nesting Layouts
This example contains a Column as the top-level composable, and a
Row at the bottom that contains Text and Button composables (which
is how we have the layout flowing both top-bottom and left-right).

29

Lazy Layouts
• Columns and rows work fine for a small amount of data that fits on the

screen. What do you do if you have large lists that might be longer or wider
than the space that you have available?
• Ideally, we would like that content to be scrollable. For performance

reasons, we also want large amounts of data to be lazy loaded: only the
data that is being displayed needs to be in-memory and other data is
loaded only when it needs to be displayed.
• Compose has a series of lazy components that work like this:

• LazyColumn
• LazyRow
• LazyVerticalGrid
• LazyHorizontalGrid

30

https://developer.android.com/jetpack/compose/lists

https://developer.android.com/jetpack/compose/lists

LazyRow Composable

31

fun main() = application {
Window(

title = "LazyColumn",
state = WindowState(width = 500.dp, height = 100.dp),
onCloseRequest = ::exitApplication

) {
LazyRowDemo()

}
}

@Composable
fun LazyRowDemo(modifier: Modifier = Modifier) {

LazyRow(
modifier = modifier.padding(4.dp).fillMaxSize(),
verticalAlignment = Alignment.CenterVertically

) {
items(45) {

Button(
onClick = { },
modifier = Modifier

.size(100.dp, 50.dp)

.padding(4.dp)
) {

Text(it.toString())
}

}
}

}

LazyGrid Composable

32

@Composable
fun AndroidLazyGrid(modifier: Modifier = Modifier) {

LazyVerticalGrid(modifier = modifier, columns = GridCells.Fixed(5)) {
val colors = listOf<Color>(Color.Blue, Color.Red, Color.Green)
items(45) {

AndroidAlien(color = colors.get(Random.nextInt(0,3)))
}

}
}

Compose > State
CS 346: Application Development

33

Adding Interactivity (1/4)

34

Let’s revisit our Window demo and add an interactive Button.

fun main() = application {
Window(

title = "Hello Window",
onCloseRequest = ::exitApplication

) {
Greeting("Unpressed")

}
}

@Composable
fun Greeting(name: String) {

Button(onClick = { println("Button pressed") }) {
Text("Hello $name")

}
}

Console Output
> Task :run
Button pressed
Button pressed
Button pressed

onCloseRequest and onClick are
event handlers; we’re assigning

functions to be called when
those events occur.

samples/desktop/compose-demo > state/HelloState.kt

https://git.uwaterloo.ca/cs346/public/-/tree/main/samples/desktop/compose-demo?ref_type=heads

Adding Interactivity (2/4)

35

Let’s have it try and update the emitted UI.

fun main() = application {
Window(

title = "Hello Window",
onCloseRequest = ::exitApplication

) {
Greeting("Unpressed")

}
}

@Composable
fun Greeting(caption: String) {

var currentCaption = name
Button(onClick = { currentCaption = "Pressed" }) {

Text("Hello $currentCaption")
}

}

It doesn’t work. The UI never
updates.
Why?

samples/desktop/compose-demo > state/HelloState.kt

https://git.uwaterloo.ca/cs346/public/-/tree/main/samples/desktop/compose-demo?ref_type=heads

Concept: Recomposition
The declarative design of Compose means that it draws the screen when the
application launches, and then only redraws elements when their state
changes.
Compose is effectively doing this:

• Drawing the initial user interface.
• Monitoring your state (aka variables) directly.
• When a change is detected in state, the portion of the UI that relies on that state is

updated.

Compose redraws affected components by calling their Composable
functions. This process (detecting a change and then redrawing the UI) is
called recomposition and is the main design principle behind Compose.

36

Adding Interactivity (3/4)

37

Let’s revisit our demo. Why doesn’t the Button update?

fun main() = application {
Window(

title = "Hello Window",
onCloseRequest = ::exitApplication

) {
Greeting("Unpressed")

}
}

@Composable
fun Greeting(caption: String) {

var currentCaption = caption
Button(onClick = {currentCaption = "Pressed" }) {

Text("Hello $currentCaption")
}

}

This doesn’t work.
The onClick handler attempts to change
the text property of the Button.
This triggers Compose to call the Window
composable, which calls the Button
composable, which initializes text to its
initial value...

Adding Interactivity (4/4)

38

To make state observable, use a MutableState class.

fun main() = application {
Window(

title = "Hello Window",
onCloseRequest = ::exitApplication

) {
Greeting("Unpressed")

}
}

@Composable
fun Greeting(caption: String) {

var currentCaption = remember { mutableStateOf(caption) }
Button(onClick = {currentCaption.value = "Pressed" }) {

Text("Hello ${currentCaption.value}")
}

}

This works!
mutableStateOf(name) is an observable
String (via type inference).
Remember tells it the @Composable
function to NOT re-initialize this state when
Recomposition happens.

Remembering State

39

There are multiple classes to handle different types of State. Here's a partial list:

fun main() = application {
Window(

title = "Hello Window",
onCloseRequest = ::exitApplication,
state = WindowState(width=300.dp, height=200.dp, position = WindowPosition(50.dp, 50.dp))

) {
val caption = remember { mutableStateOf("Press me") }
Button(onClick = {caption.value = "Pressed!"}) {

Text(caption.value)
}

}
}

State Hoisting (1/2)

• A composable that uses remember is storing the internal state within
that composable, making it stateful (e.g. our Greeting composable
function above).
• However, storing state in a function can make it difficult to test and

reuse. It's sometimes helpful to pull state out of a function into a
higher-level, calling function. This process is called state hoisting.

40

State Hoisting (2/2)

41

fun main() = application {
Window(title = "Hello Window", onCloseRequest = ::exitApplication) {

HelloScreen()
}

}

@Composable
fun HelloScreen() {
var name by remember { mutableStateOf("") }
HelloContent(name = name, onNameChange = { name = it })

}

@Composable
fun HelloContent(name: String, onNameChange: (String) -> Unit) {
Column(modifier = Modifier.padding(16.dp)) {

Text(
text = "Hello, $name",
modifier = Modifier.padding(bottom = 8.dp),
style = MaterialTheme.typography.body1

)
OutlinedTextField(value = name, onValueChange = onNameChange, label = { Text("Name") })

}
}

Our state is the name that the user is entering
in the OutlinedTextField.

Instead of storing that in our HelloContent
composable, we keep our state variable in the
calling class HelloScreen and pass in the callback
function that will set that value.

Compose > Themes
CS 346: Application Development

42

Material 3 Theme
• A theme is a common look-and-feel that

is used when building software.
• Google includes their Material Design

theme in Compose, and by default,
composables will be drawn using the
Material look-and-feel. This includes
colors, opacity, shadowing and other
visual elements.

• https://m3.material.io/
• This is fantastic as an Android

developer: it’s very well specified and
complete. It also may not be what you
want on desktop, or iOS.

43

https://m3.material.io/
https://m3.material.io/
https://m3.material.io/

44https://m3.material.io

https://m3.material.io/

45

https://developer.android.com/codelabs/jetpack-compose-theming#0

https://developer.android.com/codelabs/jetpack-compose-theming

To customize the default theme, we can just extend it and change its properties, and then set our
application to use the modified theme.

@Composable
fun CustomTheme(

content: @Composable () -> Unit
) {

MaterialTheme(
colors = MaterialTheme.colors.copy(primary = Color.Red, secondary = Color.Magenta),
shapes = MaterialTheme.shapes.copy(

small = AbsoluteCutCornerShape(0.dp),
medium = AbsoluteCutCornerShape(0.dp),
large = AbsoluteCutCornerShape(0.dp)

)
) { content() }

}

fun main() = application {
Window(

title = "Hello Window",
onCloseRequest = ::exitApplication,
state = WindowState(width=300.dp, height=250.dp, position = WindowPosition(50.dp, 50.dp))

) {
CustomTheme { … }

46

