
Building Desktop
Applications

CS 346: Application
Development

1

Features
What makes a desktop application?

2

Modern Features
1. Graphical User Interface.
Interactive graphical interfaces are a major part of a modern
application. Your application should support these features:
• Interaction using standard controls e.g., buttons, panels, images,

scrollbars, and so on. We’ll discuss how to use standard controls from
a GUI toolkit.
• Rich data, animations and other design elements that add to the

aesthetics and appeal of the platform.

3

Modern Features
2. Keyboard + mouse interaction
Interaction based on keyboard and mouse (pointing device) support:
• Users should be able to use the keyboard for navigation & common

tasks. You should support keyboard shortcuts aka “hotkeys” when
possible.
• The mouse should be used for most selection tasks, and for

manipulating data i.e., a right-click context menu, or dropdown menu.
• Support standard navigation conventions for the platform. e.g.,

window manipulation including window and content resizing.
• Undo/redo cycle i.e., being able to explore the interface by

performing and potentially undoing actions.

4

Modern Features
3. Rich Data Manipulation
Users expect to be able to manipulate data in a variety of ways:
• Cut-Copy-Paste. You should be able to use these commands in both desktop and

mobile applications to manipulate text and image data.
• Drag-Drop. When an application requires you to move data from one place to

another, you should be able to drag and drop it. e.g., dragging an image from
your file system into a dialog box.

5

Compose > Desktop
Desktop-specific GUI considerations.

6

Creating a desktop project

Use IntelliJ IDEA
• Install the plugin for Compose

Multiplatform IDE Support
• File > New Project > Compose

Multiplatform

Do NOT use the Kotlin
Multiplatform Wizard
• KMP uses a different project

format
• If you don’t know what this

wizard is…. Ignore this
comment!

7

Install Compose Dependencies

libs.versions.toml
[plugins]
kotlin-jvm = {id = "org.jetbrains.kotlin.jvm", version.ref = “2.0.20"}
jetbrains-compose = {id = "org.jetbrains.compose", version.ref = “1.6.11"}
compose-compiler = {id = "org.jetbrains.kotlin.plugin.compose", version.ref = “2.0.20"}

build.gradle.kts

plugins {
alias(libs.plugins.jetbrains.compose)
alias(libs.plugins.compose.compiler)

}

dependencies {

 implementation(compose.desktop.currentOs)

}

8

If you have an existing project, you need to add dependencies + compiler plugins.
New projects will already include this.

Gradle Tasks for Desktop
Use the Gradle menu (View > Tool Windows > Gradle).

9

Application Structure
A desktop GUI application is just a regular application that uses Compose.
It needs to:

• use a main method as its entry point,
• declare a top-level application scope,
• declare one or more windows within that application scope.

10samples/desktop/compose-demo -> run MinimumWindow main method

fun main() = application {
 Window(
 title = "Minimum Window",
 onCloseRequest = ::exitApplication
) {
 Text("Hello Compose!")
 }
}

Nothing new here!

https://git.uwaterloo.ca/cs346/public/-/tree/main/samples/desktop/compose-demo?ref_type=heads

Window position/size
Create a WindowState for the Window composable and pass in the appropriate values.

11

fun main() {
 application {
 Window(
 title = "WindowState",
 state = WindowState(
 position = WindowPosition(0.dp, 0.dp),
 size = DpSize(300.dp, 200.dp)
),
 onCloseRequest = ::exitApplication
) {
 Text("This is a window")
 }
}

samples/desktop/compose-demo -> run WindowState main method

https://git.uwaterloo.ca/cs346/public/-/tree/main/samples/desktop/compose-demo?ref_type=heads

Adding Menus

12

fun main() = application {
Window(onCloseRequest = ::exitApplication) {

App(this, this@application)
}

}

@Composable
fun App(

windowScope: FrameWindowScope,
applicationScope: ApplicationScope

) {
windowScope.MenuBar {

Menu("File", mnemonic = 'F') {
val nextWindowState = rememberWindowState()
Item(

"Exit",
onClick = { applicationScope.exitApplication() },
shortcut = KeyShortcut(

Key.X, ctrl = false
)

)
}

}
}

Keyboard Input

13

fun main() = application {
Window(

title = "Key Events",
state = WindowState(width = 500.dp, height = 100.dp),
onCloseRequest = ::exitApplication,
onKeyEvent = {

if (it.type == KeyEventType.KeyUp) {
println("Window handler: " + it.key.toString())

}
}

) {
MaterialTheme {

Frame()
}

}
}

It’s just a new event type
Captured at window level, so
no focus issues.

Mouse Input

14

Box(
modifier = Modifier

.background(Color.Magenta)

.fillMaxWidth(0.9f)

.fillMaxHeight(0.2f)

.combinedClickable(
onClick = { text = "Click! ${count++}” },
onDoubleClick = { text = "Double click! ${count++}” },
onLongClick = { text = "Long click! ${count++}” }

)
)

Mouse Movement

15

var color by remember { mutableStateOf(Color(0, 0, 0)) }

Box(
modifier = Modifier

.wrapContentSize(Alignment.Center)

.fillMaxSize()

.background(color = color)

.onPointerEvent(PointerEventType.Move) {
val position = it.changes.first().position
color = Color(position.x.toInt() % 256, position.y.toInt() % 256, 0)

}
)

Drag-Drop Interaction

16

Compose supports drag and drop with two modifiers:
• dragAndDropSource: Specifies a composable as the starting point.
• dragAndDropTarget: Specifies a composable that accepts the dropped data

e.g., to enable users to drag an image in your app, create an image composable and
add the dragAndDropSource modifier. To set up a drop target, create another
image composable and add the dragAndDropTarget modifier.

https://developer.android.com/develop/ui/compose/touch-input/user-interactions/drag-and-drop

Modifier.dragAndDropSource {
 detectTapGestures(onLongPress = {
 // Transfer data here.
 })
}

https://developer.android.com/develop/ui/compose/touch-input/user-interactions/drag-and-drop

Creating an installer
Gradle tasks are built-in for this!
Tasks > Compose desktop > packageDistributionforCurrentOS

You need to use a Mac to build a macOS installer, Windows to build a
Windows installer etc.
• No other platform specific code i.e., your app should run everywhere.
• When building installers, target the platforms that you have access to.

17

