
Mobile Development
CS 346: Application

Development

Features
• Smartphones are portable, designed for ad hoc

interaction.
• Interaction is touch-based. Keyboard input is

secondary to touch. No assumption of physical
buttons.
• Designed around a single foreground application,

running full-screen (not resizable or movable).
• Restrictive environment:

• Limited memory.
• Slow CPU/IO.
• Applications paused when not in the foreground.

Interactive Graphical Elements
• Window contents are a combination of text,

images, and interactive elements.
• Mobile applications tend to have fewer

controls or on-screen widgets compared to
desktop.
• Interaction is typically by gestures (touch and

swipe on regions of the screen). Direct
manipulation is emphasized.
• Challenges?

• Screen size and
• Difficulty interacting with small elements by touch.

We use a relatively small number of gestures to interact with our phones.
The highlighted ones loosely correspond to mouse events on desktop.

Click Right-click

Drag

Toolkits
• In a desktop OS, we might have a widget or GUI toolkit to provide

advanced features for building applications (e.g. creating and
managing application windows, providing reusable widgets like
buttons, lists, toolbars.
• Android has two toolkits, both provided by Google:
• Android Views/XML: the original imperative toolkit (deprecated).
• Jetpack Compose: a declarative toolkit, recommended.

• This is the same toolkit we discussed last class.

https://en.wikipedia.org/wiki/Widget_toolkit
https://en.wikipedia.org/wiki/Graphical_widget

Structure
How is a program structured?

Activities
• Applications consist of one or more running activities, each one

corresponding to a screen.
• You can think of an activity as a visible screen with state information.
• An activity can be one of the following running states:

• The activity in the foreground, typically the one that user is interacting with,
i.e., running.

• An activity that has lost focus but can still be seen is visible and active.
• An activity that is completely hidden, or minimized is stopped. It retains its

state (it’s basically paused) BUT the OS may choose to terminate it to free up
resources.

• The OS can choose to destroy an application to free up resources.

https://developer.android.com/reference/android/app/Activity

Key takeaway: your
application needs to support
being paused or stopped
(typically by saving data for
later).

Activity Lifecycle
There are three key loops that these phases attempt to capture:

• The entire lifetime of an activity happens between the first call to
onCreate(Bundle) through to a single final call to onDestroy(). Setup is done
in onCreate(), and all remaining resources are released by onDestroy().

• The visible lifetime of an activity happens between a call to onStart() until a
corresponding call to onStop(). During this time the user can see the activity
on-screen, though it may not be in the foreground.

• The foreground lifetime of an activity happens between a call to onResume()
until a corresponding call to onPause(). During this time the activity is in
visible, active and interacting with the user. An activity can frequently go
between the resumed and paused states e.g. when the device goes to sleep.

Intents
An intent is an asynchronous message, that represents an an operation to be
performed. This can include activating components, or activities.
• The startActivity(Intent) method can be used to start a new activity. It

takes a single argument, an Intent, which describes the activity to be
executed. This is the simplest way to support multiple screens.

https://developer.android.com/reference/android/content/Intent

Jetpack Compose on Android
Using the GUI toolkit for mobile development.

Creating a Project
• Android uses Gradle projects. You can

create an Android project in IntelliJ
IDEA or Android Studio.
• Make sure that you and your team

use the same IDE (and plugins).
• Most project templates will create a

simple project with one activity.
• Try “Basic Views” for a simple Activity.

• The project structure that is created
will match a standard Android project,
with source and res folders.

Android Device Manager

Tools > Android > Android Device Manager

Main Activity (Entry Point)
• MainActivity is a class that extends ComponentActivity. It’s the default

name given to the activity that gets launched on application startup.
• The onCreate() method is the first method that is called when the

MainActivity is instantiated and serves as the entry point for your
application.

class MainActivity : ComponentActivity() {
 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 setContent {
 // Compose user interface goes here
 }
 }

// an activity is essentially a screen
class MainActivity : ComponentActivity() {
 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 setContent {
 MaterialTheme {
 Surface() {
 ButtonExample()
 }
 }
 }
 }
}

@Composable
fun ButtonExample() {
 var text = remember { mutableStateOf("Hello world!")}
 Button(onClick = { text.value = "Button clicked"}) {
 Text(text = text.value)
 }
}

Android-Specific Composables
What Compose functionality is specific to mobile development?

Composable: Scaffold

@Composable
fun ScaffoldDemo() {
 val materialBlue700= Color(0xFF1976D2)
 val scaffoldState = rememberScaffoldState(rememberDrawerState(DrawerValue.Open))
 Scaffold(
 scaffoldState = scaffoldState,
 topBar = {
 TopAppBar(title = {Text(“TopAppBar")}, backgroundColor = materialBlue700)
 },
 floatingActionButtonPosition = FabPosition.End,
 floatingActionButton = { FloatingActionButton(onClick = {}){Text(“X”)} },
 drawerContent = { Text(text = "drawerContent") },
 content = { Text("BodyContent") },
 bottomBar = {
 BottomAppBar(backgroundColor = materialBlue700) {Text(“BottomAppBar”)}
 }
)
}

Composable: Image
@Composable
fun ImageResourceDemo() {
 val image: Painter = painterResource(id = R.drawable.composelogo)
 Image(painter = image,contentDescription = "")

}

Composable: Floating Action Buttons

@Composable
fun ExtendedFloatingActionButtonDemo() {
 ExtendedFloatingActionButton(
 icon = { Icon(Icons.Filled.Favorite,"") },
 text = { Text("FloatingActionButton") },
 onClick = { /*do something*/ },
 elevation = FloatingActionButtonDefaults.elevation(8.dp)
)

}

@Composable
fun FloatingActionButtonDemo() {
 FloatingActionButton(onClick = { /*do something*/}) {
 Text("FloatingActionButton")
 }

}

Composable: Card
@Composable
fun CardDemo() {
 Card(
 modifier = Modifier.fillMaxWidth().padding(15.dp).clickable{ },
 elevation = 10.dp
) {
 Column(modifier = Modifier.padding(15.dp)) {
 Text("Jetpack Compose Playground")
 Text("Now you are in the Card section")
 }

 }
}

Finding More Composables

21

All of the other composables work as well! The amazing thing about
Compose is that you can copy/paste composables between platforms.

List of Composables
https://developer.android.com/reference/kotlin/androidx/compos
e/material/package-summary

Sample Code
https://foso.github.io/Jetpack-Compose-Playground/
https://developer.android.com/jetpack/compose/components

https://developer.android.com/reference/kotlin/androidx/compose/material/package-summary
https://developer.android.com/reference/kotlin/androidx/compose/material/package-summary
https://foso.github.io/Jetpack-Compose-Playground/
https://developer.android.com/jetpack/compose/components

Navigation
CS 346: Application Development

What is navigation?
• Navigation refers to

switching screens.
• Intents allow you to switch

between Activities. What if
you want to switch
composables?
• Navigation components

support Compose.
• Limited to Android only.

• Alternatives
• Voyager – works on Android,

iOS, desktop.
• Simpler to setup and use.

class HomeScreen : Screen {

 @Composable
 override fun Content() {
 val screenModel = rememberScreenModel ()
 // ...
 }
}

class SingleActivity : ComponentActivity() {

 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)

 setContent {
 Navigator(HomeScreen())
 }
 }
}

Voyager code to load a composable screen.

https://developer.android.com/develop/ui/compose/navigation
https://github.com/adrielcafe/voyager

Jetpack Navigation
The Navigation component handles many navigation patterns, from button clicks to complex
patterns like app bars and the nav drawer. It provides animations, deep linking, back-and-up actions.

Concept Purpose Type

Host A UI element that contains the current navigation destination.
When a user navigates, the app swaps destinations in and out of
the navigation host.

NavHost

Graph A data structure that defines all the navigation destinations
within the app and how they connect.

NavGraph

Controller The central coordinator for managing navigation between
destinations.

NavController

Destination A node in the navigation graph. When the user navigates to this
node, the host displays its content.

NavDestination

Route Uniquely identifies a destination and any data required by it.
You can navigate using routes. Routes take you to destinations.

setContent {
 TypeSafeComposeNavigationTheme {
 val navController = rememberNavController()
 NavHost(
 navController = navController,
 startDestination = ScreenA
) {
 composable<ScreenA> {
 Column(
 modifier = Modifier.fillMaxSize(),
 verticalArrangement = Arrangement.Center,
 horizontalAlignment = Alignment.CenterHorizontally
) {
 Button(onClick = {
 navController.navigate(ScreenB(
 name = null,
 age = 25
))
 }) {
 Text(text = "Go to screen B")
 }
 }
 }

composable<ScreenB> {
 val args = it.toRoute<ScreenB>()
 Column(
 modifier = Modifier.fillMaxSize(),
 verticalArrangement = Arrangement.Center,
 horizontalAlignment = Alignment.CenterHorizontally
) {
 Text(text = "${args.name}, ${args.age} years old")
 }
 }
 }
 }

Interactivity
CS 346: Application Development

Interaction Styles

What types of interaction do we need to support on a mobile device?

1. Multi-touch for primary input.
• Tapping on widgets to activate e.g. touch a text widget to enter text; touch a

button to activate it.
• Dragging and other gestures.

2. Keyboard input as secondary.
• Soft-keyboard (on-screen).

Multi-touch Widgets

This is exactly the same as desktop. You override the handler functions for the
widgets, providing it with a lambda function that is executed when the event fires.

 FloatingActionButton(onClick = { /* something */ }) {
 Text("FloatingActionButton")
 }

Touch Gestures

29

You can apply gesture modifiers to make the composable listen to gestures.

var log by remember { mutableStateOf("") }
Column {

Box(
Modifier

.size(100.dp)

.background(Color.Red)

.pointerInput(Unit) {
detectTapGestures { log = "Tap!" }
detectDragGestures { _, _ -> log = "Dragging" }

}
)

}

https://developer.android.com/jetpack/compose/touch-input/pointer-input/understand-gestures

Key Gestures

30

@Composable
fun SimpleFilledTextFieldSample() {

var text by remember { mutableStateOf("Hello") }

TextField(
value = text,
onValueChange = { text = it },
label = { Text("Label") }

)
}

@Composable
fun SimpleOutlinedTextFieldSample() {

var text by remember { mutableStateOf("") }

OutlinedTextField(
value = text,
onValueChange = { text = it },
label = { Text("Label") }

)
}

