Mobile Development

CS 346: Application
Development

Features

* Smartphones are portable, designed for ad hoc
interaction.

* Interaction is touch-based. Keyboard input is
secondary to touch. No assumption of physical
buttons.

* Designed around a single foreground application,
running full-screen (not resizable or movable).

* Restrictive environment:
* Limited memory.
* Slow CPU/IO.
* Applications paused when not in the foreground.

Interactive Graphical Elements

* Window contents are a combination of text,
images, and interactive elements.

* Mobile applications tend to have fewer
controls or on-screen widgets compared to
desktop.

* Interaction is typically by gestures (touch and
swipe on regions of the screen). Direct
manipulation is emphasized.

* Challenges?
* Screen size and
* Difficulty interacting with small elements by touch.

a~ kN OIN T,

Apps

1 o=

Accessories

NCE & apps|
androidVNC Appstore

Y &

Automatelt Backup to
Pro Gmail

Y&
| X &

Business Calculator
Calendar Free

kindle

Amazon
Kindle

ASTRO File
Manager

fmmm
L

Barcode

Calendar

“A: g

Chrome

12:09 PM

Audible

,- ,

BeyondPod

(i)

Caller Name
[]

Click

~

Tap Press %

Double tap Drag %

Pinch % @ Flick @
Rotate %

We use a relatively small number of gestures to interact with our phones.
The highlighted ones loosely correspond to mouse events on desktop.

Right-click

Drag

Toolkits

* In a desktop OS, we might have a widget or GUI toolkit to provide
advanced features for building applications (e.g. creating and
managing application windows, providing reusable widgets like
buttons, lists, toolbars.

* Android has two toolkits, both provided by Google:
* Android Views/XML: the original imperative toolkit (deprecated).

» Jetpack Compose: a declarative toolkit, recommended.
* This is the same toolkit we discussed last class.

https://en.wikipedia.org/wiki/Widget_toolkit
https://en.wikipedia.org/wiki/Graphical_widget

Structure

How is a program structured?

Activities

* Applications consist of one or more running activities, each one
corresponding to a screen.

* You can think of an activity as a visible screen with state information.

* An activity can be one of the following running states:

* The activity in the foreground, typically the one that user is interacting with,
i.e., running.

* An activity that has lost focus but can still be seen is visible and active.

* An activity that is completely hidden, or minimized is stopped. It retains its
state (it’s basically paused) BUT the OS may choose to terminate it to free up
resources.

* The OS can choose to destroy an application to free up resources.

https://developer.android.com/reference/android/app/Activity

onCreate()

R

onStart() 4—‘ onRestart()

—

User navigates onResume()

to the activity

-

Another activity comes
into the foreground

User returns
+ to the activity

— onPause() —
S—
The activity is

no longer visible)
* User navigates

to the activity
onstop() J

R —
The activity is finishing or
being destroyed by the system

v

onDestroy()

Apps with hlgher priority
need memory

Key takeaway: your
application needs to support
being paused or stopped
(typically by saving data for
later).

Activity Lifecycle

There are three key loops that these phases attempt to capture:
* The entire lifetime of an activity happens between the first call to
onCreate(Bundle) through to a single final call to onDestroy(). Setup is done

in onCreate(), and all remaining resources are released by onDestroy().

* The visible lifetime of an activity happens between a call to onStart() until a

corresponding call to onStop (). During this time the user can see the activity
on-screen, though it may not be in the foreground.

* The foreground lifetime of an activity happens between a call to onResume ()
until a corresponding call to onPause (). During this time the activity is in

visible, active and interacting with the user. An activity can frequently go
between the resumed and paused states e.g. when the device goes to sleep.

Intents

An intent is an asynchronous message, that represents an an operation to be
performed. This can include activating components, or activities.

* The startActivity(Intent) method can be used to start a new activity. It

takes a single argument, an Intent, which describes the activity to be
executed. This is the simplest way to support multiple screens.

Intent Intent

- /
startActivity() Y / onCreate()

|

H v H \4

Activity A Activity B

https://developer.android.com/reference/android/content/Intent

Jetpack Compose on Android

Using the GUI toolkit for mobile development.

Creating a Project

* Android uses Gradle projects. You can

create an Android project in IntelliJ
IDEA or Android Studio.

* Make sure that you and your team
use the same IDE (and plugins).

* Most project templates will create a
simple project with one activity.

* Try “Basic Views” for a simple Activity.

* The project structure that is created
will match a standard Android project,
with source and res folders.

eeeeeeeeee

Micronaut

RRRRR

eeeeeeeee

Android

???????

nnnnnnnnnnnnnn

Television

Automotive

Empty Activity

Basic Views Activity

Android Device Manager

Select Hardware

Virtual Device Configuration

Choose a device definition

Q-
Category Name v Play Store
Phone Resizable (Experimental)
Tablet Pixel XL
Wear 0S Pixel 7 Pro
Desktop Pixel 7 3
v Pixel 6a
Automoti... Pixel 6 Pro
Pixel 6
Pixel 5
New Hardware Profile Import Hardware Profiles
?

Size

6.0"

55

6.71"

6.31"

6.13"

6.7"

6.4"

6.0"

Resolution

1080x2...

1440x2...

1440x3...

1080x2...

1080x2...

1440x3...

1080x2...

1080x2...

Density

420dpi
560dpi
560dpi
420dpi
420dpi
560dpi
420dpi

440dpi

12

g Pixel2
1080px
Size: large
Ratio: long
Density: 420dpi
1920px
Clone Device...
Cancel Fi

Tools > Android > Android Device Manager

Main Activity (Entry Point)

+ MainActivity is a class that extends ComponentActivity. It’s the default
name given to the activity that gets launched on application startup.

* The onCreate() method is the first method that is called when the

MainActivity is instantiated and serves as the entry point for your
application.

class MainActivity : ComponentActivity() {
override fun onCreate(savedInstanceState: Bundle?) A
super.onCreate(savedInstanceState)
setContent {
// Compose user interface goes here
}

}

// an activity is essentially a screen
class MainActivity : ComponentActivity() {
override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
setContent {
MaterialTheme {
Surface() {
ButtonExample()
}

@Composable
fun ButtonExample() {
var text = remember { mutableStateOf("Hello world!")}
Button(onClick = { text.value = "Button clicked"}) {
Text(text = text.value)
}

9207 O 0 B

Button clicked

Android-Specific Composables

What Compose functionality is specific to mobile development?

nnnnnnnnnnn

ooooooooooo

Composable: Scaffold

@Composable

fun ScaffoldDemo() {
val materialBlue700= Color(OxFF1976D2)
val scaffoldState = rememberScaffoldState(rememberDrawerState(DrawerValue.0pen))

Scaffold(
scaffoldState = scaffoldState,
topBar = {

TopAppBar(title = {Text(“TopAppBar")}, backgroundColor = materialBlue700)
floatingActionButtonPosition = FabPosition.End,
floatingActionButton = { FloatingActionButton(onClick = {}){Text(“X™)} },
drawerContent = { Text(text = "drawerContent") },
content = { Text("BodyContent") },
bottomBar = {

BottomAppBar(backgroundColor = materialBlue700) {Text(“BottomAppBar”)}
}.

Composable: Image

@Composable

fun ImageResourceDemo() {
val image: Painter = painterResource(id = R.drawable.composelogo)
Image(painter = image,contentDescription = "")

Composable: Floating Action Buttons

@Composable

fun FloatingActionButtonDemo() {
FloatingActionButton(onClick = { /*do somethingx/}) {

Text("FloatingActionButton")
IS

@Composable

fun ExtendedFloatingActionButtonDemo() {
ExtendedFloatingActionButton(—
icon = { Icon(Icons.Filled.Favorite,"") },
text = { Text("FloatingActionButton") },

onClick = { /*do something*/ },
elevation = FloatingActionButtonDefaults.elevation(8.dp)

Composable: Card

@Composable
fun CardDemo() {
Card(
modifier = Modifier.fillMaxWidth().padding(15.dp).clickable{ },
elevation = 10.dp
) {
Column(modifier = Modifier.padding(15.dp)) {
Text("Jetpack Compose Playground")
Text("Now you are in the Card section")

welcome to Jetpack Compose Playground
Now you are in the Card section

Finding More Composables

All of the other composables work as well! The amazing thing about

Compose is that you can copy/paste composables between platforms.

List of Composables
https://developer.android.com/reference/kotlin/androidx/compos
e/material/package—-summary

Sample Code
https://foso.github.io/Jetpack-Compose-Playground/
https://developer.android.com/jetpack/compose/components

21

https://developer.android.com/reference/kotlin/androidx/compose/material/package-summary
https://developer.android.com/reference/kotlin/androidx/compose/material/package-summary
https://foso.github.io/Jetpack-Compose-Playground/
https://developer.android.com/jetpack/compose/components

Navigation

CS 346: Application Development

What is navigation?

* Navigation refers to
switching screens.

* Intents allow you to switch
between Activities. What if
you want to switch
composables?

* Navigation components
support Compose.

* Limited to Android only.
 Alternatives

* \Joyager —works on Android,
i0S, desktop.

* Simpler to setup and use.

class : {

@Composable

override fun O {
val screenModel = rememberScreenModel ()
/] ...
}
}.
class : 0O A
override fun (
super.onCreate(savedInstanceState)
setContent {
()
}
}
}.

Voyager code to load a composable screen.

) A

https://developer.android.com/develop/ui/compose/navigation
https://github.com/adrielcafe/voyager

Jetpack Navigation

The Navigation component handles many navigation patterns, from button clicks to complex
patterns like app bars and the nav drawer. It provides animations, deep linking, back-and-up actions.

Host

Graph

Controller

Destination

Route

A Ul element that contains the current navigation destination. NavHost
When a user navigates, the app swaps destinations in and out of
the navigation host.

A data structure that defines all the navigation destinations NavGraph
within the app and how they connect.

The central coordinator for managing navigation between NavController
destinations.

A node in the navigation graph. When the user navigates to this NavDestination
node, the host displays its content.

Uniquely identifies a destination and any data required by it.
You can navigate using routes. Routes take you to destinations.

setContent {
TypeSafeComposeNavigationTheme {
val navController = rememberNavController()
NavHost(
navController = navController,
startDestination = ScreenA

) {
composable<ScreenA> { composable<ScreenB> {
Column(val args = it.toRoute<ScreenB>()
modifier = Modifier.fillMaxSize(), Column(
verticalArrangement = Arrangement.Center, modifier = Modifier.fillMaxSize(),
horizontalAlignment = Alignment.CenterHorizontally verticalArrangement = Arrangement.Center,
) { horizontalAlignment = Alignment.CenterHorizontally
Button(onClick = {) {
navController.navigate(ScreenB(Text(text = "S{args.name}, S{args.age} years old")
name = null, }
age =25 }
) }
DA }
Text(text = "Go to screen B")
}
}

Interactivity

CS 346: Application Development

Interaction Styles

What types of interaction do we need to support on a mobile device?

1. Multi-touch for primary input.

* Tapping on widgets to activate e.g. touch a text widget to enter text; touch a
button to activate it.

* Dragging and other gestures.

2. Keyboard input as secondary.
e Soft-keyboard (on-screen).

Multi-touch Widgets

This is exactly the same as desktop. You override the handler functions for the
widgets, providing it with a lambda function that is executed when the event fires.

FloatingActionButton(onClick = { /* something =/ }) {
Text("FloatingActionButton")
}

Touch Gestures

You can apply gesture modifiers to make the composable listen to gestures.

var log by remember { mutableState0f("") }

Column {
Box (
Modifier
.size(100.dp)
.background(Color.Red)
.pointerInput(Unit) {
detectTapGestures { log = "Tap!" }
detectDragGestures { _, _ -> log = "Dragging" }
}.
)

29

https://developer.android.com/jetpack/compose/touch-input/pointer-input/understand-gestures

Key Gestures

@Composable
fun SimpleFilledTextFieldSample() {
var text by remember { mutableStateOf("Hello") }

Label
TextField(Hello

value = text,

onValueChange = { text = it },
label = { Text("Label") }

hy

@Composable
fun SimpleOutlinedTextFieldSample() {

~ Label

var text by remember { mutableStateOf("") }
Hello Compose

OutlinedTextField(

value = text,
onValueChange = { text = it },
label = { Text("Label") }

30

