
Unit Testing
CS 346: Application

Development

1

Why do we test?
The goal of testing is to ensure that the software that we produce meets our
objectives when deployed into the environment in which it will be used.
Why do we test?

• Improve your confidence in the correctness of your software (we
cannot “guarantee correctness”).

• Ensure that you are handling errors properly, which will result in a
better user experience and a more stable application.

• Produce an improved design, usually as a by-product of having written
tests. The process of writing tests forces us to structure our code more
thoughtfully.

• Identify deficiencies and flaws in both design and implementation.

2

Layered Testing
We should produce a range of tests that can
confirm that our system is working as
expected.
We can identify three types of tests:
1. Unit tests: tests operating at the class level

(or smallest functional unit), which are
meant to check low-level interfaces.

2. Integration tests: testing across multiple
classes or functional units, to check
interaction between objects.

3. Functional (system) tests: testing
functionality from the perspective of the
user; end-to-end feature testing.

3

When should we test?
Traditional views suggest that testing should be done after
implementation. This is a poor approach; testing is more useful when
done earlier in the process.

• It gives you more opportunity to incorporate the feedback from testing.
• It’s much cheaper to “fix bugs” earlier in the process.

Different tests suit for different parts of the development process:
• Unit Tests: done during implementation, when you are working on a class.
• Integration Tests: done after implementation, when you want to ensure that

classes work together (on all platforms).
• System Tests: done when features are complete and merged, to ensure that

the system continues working.

4

Test-Driven Development (TDD)
Promoted by Kent Beck around 2002 as an
Extreme Programming (XP) practice.
• The basic idea is that you write tests before

writing the corresponding implementation code.
TDD development cycle

1. Define an interface or specification for your class or
module.

2. Write a test against that interface.
3. Write the implementation code that causes the test

to pass.
4. Repeat until completed.

5

Advantages of continuous testing
There are some clear benefits:

• Early bug detection. You are building up a set of tests that can verify that your
code works as expected.

• Better designs. Making your code testable often means improving your
interfaces, having clean separation of concerns, and cohesive classes. Testable
code is by necessity better code.

• Confidence to refactor. What is refactoring? The process is improving your
code incrementally over time. You can only do this if you can easily verify that
you haven’t “broken anything” in the process.

• Simplicity. Code that is built up over time this way tends to be simpler to
maintain and modify.

6

Our initial goal is to generate unit tests

Unit tests are meant to exercise the interface of a single class or
module.

• Unit tests should be very quick to execute and report results.
• They should return consistent results from a specified input.
• They should be integrated into our development workflow, so that they are

routinely executed. i.e. they need to be automated.
• Unit testing is behavioural testing i.e., test how classes behave across

a range of valid and invalid inputs.
• How many unit tests should you have? As many as required to cover

your critical classes and workflows. (You will NOT get 100% code
coverage, despite best intentions).

7

Using Junit
Setting up unit tests for a Kotlin project

8

Installing JUnit
To manage our tests, we’re going to use JUnit 5, a popular testing
framework. We’ll let Gradle manage JUnit for us as a project
dependency: add these lines to your project build.gradle.kts file.
The “test” dependency will pull in Kotlin test classes for JUnit.

dependencies {
 testImplementation(kotlin("test"))
}
tasks.test {
 useJUnitPlatform()
}

9

Unit tests are just functions
Unit tests are just Kotlin classes and functions that check
inputs and outputs for what they are testing.
• Unit tests should be placed under src/test/kotlin.
• It’s best practice to have one test class for each class that

you want to test. e.g., classes Main and MainTest.
• Unit tests are automatically executed with gradle
build or can be executed manually with gradle test.

$ gradle build
BUILD SUCCESSFUL in 928ms
8 actionable tasks: 8 up-to-date // this includes tests

$ gradle test
BUILD SUCCESSFUL in 775ms
3 actionable tasks: 3 up-to-date

10

A Simple Unit Test

11

1. Create a class to test under src/main/kotlin.

class Sample() {
 fun sum(a: Int, b: Int): Int {
 return a + b
 }
}

2. Create a test class under src/test/kotlin. Add functions as tests.

import kotlin.test.Test
import kotlin.test.assertEquals

internal class SampleTest {
 @Test
 fun testSum() {
 private val testSample: Sample = Sample()
 assertEquals(42, testSample.sum(40, 2))
 }
}

Sidebar: IntelliJ Tips

In the test class, you can execute a particular test by
clicking the Run icon in the gutter.

12

Press Cmd-N to generate a new test for
a selected class.

Assertions
We call utility functions to assert how the function should successfully
perform.

13

Function Purpose

assertEquals Provided value matches the actual value

assertNotEquals The provided and actual values do not match

assertFalse The given block returns false

assertTrue The given block returns true

Test Annotations
The @Test annotation tells the compiler that this is a unit test function.
The kotlin.test package provides annotations to mark test functions,
and denote how they are managed:

14

Annotation Purpose

@AfterTest Marks a function to be invoked after each test

@BeforeTest Marks a function to be invoked before each test

@Ignore Mark a function to be ignored

@Test Marks a function as a test

Writing Unit Tests
What are the characteristics of well-written tests?

15

Unit Test Characteristics

A unit test is a test that meets the following three requirements:
1. Verifies a single unit of behaviour,
2. Does it quickly, and
3. Does it in isolation from other tests.

Unit tests are the lowest-level tests that you can write:
• Tests should be small and quick to execute and return results.
• Each test focuses on a specific class or component, tested in isolation.
• Tests cannot have dependencies on other tests! i.e., can execute in any order.
• As an author, favour many small tests that each check a single thing over

monolithic tests.

If a test exercises more than a single class, it’s not a unit test. 16

Unit test Composition
Every unit test should be a separate function, with the following steps:
1. Arrange:

• Setup the conditions for your test.
• Initialize variables, load data, setup any dependencies that you might need.
• Do NOT reuse anything from a different test.

2. Act:
• Execute the functionality that you want to test and capture the results.

3. Assert:
• Check that the actual and expected results match.
• Use asserts appropriately - see next page.

17

import kotlin.test.Test

class MainTest {

 @Test
 fun saveFiles() {
 // FILE 1
 val f1 = "file1.txt" // arrange
 val file1 = File(f1)
 val status1 = file1.save() // act
 assert(status1 == FILE.OK) // assert

 // FILE 2
 val f2 = "file2.txt" // arrange
 val file2 = File(f2)
 val status2 = file2.save() // act
 assert(status2 == FILE.OK) // assert
 }

}

18

class CalcTest {
@Test
fun validPlus() {

val input = arrayOf("1", "+" , "2")
 val results = Calc().calculate(input)}
 assertEquals(3, results)

}

@Test
fun invalidPlus() {

val input = arrayOf("1", "+", "2")
 val results = Calc().calculate(input)
 assertNotEquals(5, results)

}

@Test
fun insufficientArguments() {

 try {
val input = arrayOf("1", "+")
Calc().calculate(input)

 } catch (e:Exception) {
assertTrue(true)

}
}

Test valid input conditions.
Create a unit test like this for each
operation or function.

Test invalid input conditions.
Create a unit test like this for each
operation or function to ensure that you
handle input errors correctly. Choose
representative values (or important
outliers)

Special-purpose unit test to
check a specific error condition.

19

Testing > Integration Tests
CS 346: Application Development

20

Integration tests

"Unit tests are great at verifying business logic, but it’s not enough to
check that logic in a vacuum. You have to validate how different parts
of it integrate with each other and external systems: the database, the

message bus, and so on." — Khorikov (2020).

• A unit test is a test that verifies a single unit of failure, in isolation.
• An integration test is a test with a broader scope.

• It checks multiple potential units of failure.
• Tests components that have dependencies between them.
• Seeks to understand the interaction between components.

21

Area of Responsibility

• Unit tests primarily test the domain model, or business logic classes.
• Integration tests focus on the point where these business logic

classes interact with external systems or dependencies.
• Code that we shouldn't bother testing:

• Trivial code is low complexity, and typically has no dependencies or external
impact so it doesn't require extensive testing.

• Overcomplicated code likely has so many dependencies that it's nearly
impossible to test.

22

Integration Test coverage
You should have fewer integration tests than
unit tests; they are more complex.
To determine what to test, identify a “happy
path”: an execution path that will be your first
(aka main) integration test.

• It should reflect the most used execution path.
Ensure that common functionality works before
testing more obscure functions.

• This main integration test should exercise all
external dependencies i.e. libraries, interfaces,
database.

The primary purpose of integration tests is to
exercise dependencies (on libraries, other
classes).

23

What is a dependency?
• When you are examining a software component, we say that your

component may be dependent on one or more other software entities to
be able to run successfully. e.g. a library, or a different class, or a database.
Each of these represents code that affects how the code being tested will
execute.
• We often call the external software component or class a dependency.

That word describes the relationship (classes dependent on one another),
and the type of component (a dependency with respect to the original
class).
• A key strategy when testing is to figure out how to control these

dependencies, so that you're exercising your class independently of the
influence of other components.

24

Unmanaged vs. Managed Dependencies
• Managed vs. Unmanaged dependencies. There is a difference between those

that we control directly (managed), vs. those that may be shared with other
software (unmanaged). A managed dependency suggests that we control the
state of that system.
• e.g., A database could be single-file and used only for your application (managed) or

shared among different applications (unmanaged).
• Internal vs. External dependencies. Running in the context of our process

(internal) or out-of-process (external). External dependencies tend to be
unmanaged.
• e.g., A library is internal. A database, as a separate process is always external.

• An unmanaged dependency means that we do not control its state and we may
not be able to test that specific component or dependency. The best we could do
it test our interface against it, since we may not be able to trust the results of any
actions that we take against it.
• We cannot test unmanaged dependencies. We also tend to be limited in our

ability to test external systems, since we do not manage their state.

25

Test Doubles (aka Mocks)
If you cannot test an unmanaged dependency, then you need to test
“around it”. We can do this with test doubles (mocks).
• A mock is a fake object that holds the expected behaviour of a real

object but without any genuine implementation. For example, we can
have a mock File System that would report a file as saved but would
not actually modify the underlying file system.
• The value in a mock is to remove dependencies and allow controlled

testing.

26

Strategy: Extract Interfaces

• One important recommendation is that you introduce interfaces for
out-of-class dependencies. e.g., you may see code like this:

public interface IUserRepository
public class UserRepository : IUserRepository

• This is common when testing, even in cases when that class may
represent the only realization of an interface. This allows you to easily
write mocks against the interface, where it's relatively easy to
determine what expected behaviour should be.
• Replacing concretions with interfaces is one of our SOLID principles.

27

Strategy: Dependency Injection
Dependency injection is the practice of supplying dependencies to an object
in its argument list instead of allowing the object to create them itself.
Problem: Here’s a class that manages the underlying database connection.
How do you test the saveUserProfile() method separately from the
database?

class Persistence {
 val repo = UserRepository() // Create the required repo instance
fun saveUserProfile(val user: User) {

 repo.save(user)
 }

}

val persist = Persistence()
persist.saveUserProfile(user) // save using the real database

28

https://en.wikipedia.org/wiki/Dependency_injection

Example: Mock DB

29

To reduce coupling, we could instead change our Persistence class so that
we pass in the dependency. This allows us to control how it is created,
and even replace the UserRepository() with a mock.
class Persistence(val repo: IUserRepository) { // pass in the repo
 fun saveUserProfile(val user: User) {
 repo.save(user)
 }
}
class MockRepo : IUserRepository {
 // body with functions that mirror how the repo would work
 // but simpler/fake implementation
}

val mock = MockRepo()
val persist = Persistance(mock)
persist.saveUserProfile(user) // save using the mock database

Tip: Integration Tests
1. Keep your code simply and reduce
abstractions when you can.
• Many abstraction layers will make it very

difficult to write integration tests for your
code. e.g., Java libraries and “class bloat”.

• Try and keep the overall number of
architectural layers relatively small:
• UI, controller, persistence.
• Domain model, application services,

infrastructure.
2. Make domain boundaries explicit
• You should be testing end-user functionality.

Design classes to emphasize different
problem domains.
• e.g., user-creation/editing tests; note-creation

and note-deletion.
30

https://martinfowler.com/bliki/BoundedContext.html

https://martinfowler.com/bliki/BoundedContext.html

